kensvin/sdss-cnn
Browse files- README.md +95 -1
- config.json +25 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
CHANGED
|
@@ -1,3 +1,97 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
metrics:
|
| 5 |
+
- accuracy
|
| 6 |
+
model-index:
|
| 7 |
+
- name: sdss-cnn
|
| 8 |
+
results: []
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 12 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 13 |
+
|
| 14 |
+
# sdss-cnn
|
| 15 |
+
|
| 16 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
| 17 |
+
It achieves the following results on the evaluation set:
|
| 18 |
+
- Loss: 0.1573
|
| 19 |
+
- Accuracy: 0.9505
|
| 20 |
+
|
| 21 |
+
## Model description
|
| 22 |
+
|
| 23 |
+
More information needed
|
| 24 |
+
|
| 25 |
+
## Intended uses & limitations
|
| 26 |
+
|
| 27 |
+
More information needed
|
| 28 |
+
|
| 29 |
+
## Training and evaluation data
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Training procedure
|
| 34 |
+
|
| 35 |
+
### Training hyperparameters
|
| 36 |
+
|
| 37 |
+
The following hyperparameters were used during training:
|
| 38 |
+
- learning_rate: 0.0001
|
| 39 |
+
- train_batch_size: 100
|
| 40 |
+
- eval_batch_size: 100
|
| 41 |
+
- seed: 42
|
| 42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 43 |
+
- lr_scheduler_type: linear
|
| 44 |
+
- num_epochs: 40
|
| 45 |
+
|
| 46 |
+
### Training results
|
| 47 |
+
|
| 48 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 49 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
| 50 |
+
| No log | 1.0 | 80 | 0.4954 | 0.8635 |
|
| 51 |
+
| No log | 2.0 | 160 | 0.2788 | 0.9055 |
|
| 52 |
+
| No log | 3.0 | 240 | 0.2239 | 0.9085 |
|
| 53 |
+
| No log | 4.0 | 320 | 0.1991 | 0.9325 |
|
| 54 |
+
| No log | 5.0 | 400 | 0.1954 | 0.94 |
|
| 55 |
+
| No log | 6.0 | 480 | 0.1854 | 0.9445 |
|
| 56 |
+
| 0.3543 | 7.0 | 560 | 0.1891 | 0.9375 |
|
| 57 |
+
| 0.3543 | 8.0 | 640 | 0.1777 | 0.943 |
|
| 58 |
+
| 0.3543 | 9.0 | 720 | 0.1780 | 0.9415 |
|
| 59 |
+
| 0.3543 | 10.0 | 800 | 0.1804 | 0.942 |
|
| 60 |
+
| 0.3543 | 11.0 | 880 | 0.1734 | 0.9475 |
|
| 61 |
+
| 0.3543 | 12.0 | 960 | 0.1689 | 0.947 |
|
| 62 |
+
| 0.2022 | 13.0 | 1040 | 0.1698 | 0.9445 |
|
| 63 |
+
| 0.2022 | 14.0 | 1120 | 0.1689 | 0.9405 |
|
| 64 |
+
| 0.2022 | 15.0 | 1200 | 0.1650 | 0.9475 |
|
| 65 |
+
| 0.2022 | 16.0 | 1280 | 0.1755 | 0.934 |
|
| 66 |
+
| 0.2022 | 17.0 | 1360 | 0.1635 | 0.944 |
|
| 67 |
+
| 0.2022 | 18.0 | 1440 | 0.1711 | 0.942 |
|
| 68 |
+
| 0.1836 | 19.0 | 1520 | 0.1604 | 0.9485 |
|
| 69 |
+
| 0.1836 | 20.0 | 1600 | 0.1595 | 0.95 |
|
| 70 |
+
| 0.1836 | 21.0 | 1680 | 0.1613 | 0.9475 |
|
| 71 |
+
| 0.1836 | 22.0 | 1760 | 0.1579 | 0.949 |
|
| 72 |
+
| 0.1836 | 23.0 | 1840 | 0.1593 | 0.946 |
|
| 73 |
+
| 0.1836 | 24.0 | 1920 | 0.1579 | 0.945 |
|
| 74 |
+
| 0.167 | 25.0 | 2000 | 0.1584 | 0.9495 |
|
| 75 |
+
| 0.167 | 26.0 | 2080 | 0.1573 | 0.9505 |
|
| 76 |
+
| 0.167 | 27.0 | 2160 | 0.1596 | 0.945 |
|
| 77 |
+
| 0.167 | 28.0 | 2240 | 0.1599 | 0.9435 |
|
| 78 |
+
| 0.167 | 29.0 | 2320 | 0.1565 | 0.9485 |
|
| 79 |
+
| 0.167 | 30.0 | 2400 | 0.1582 | 0.946 |
|
| 80 |
+
| 0.167 | 31.0 | 2480 | 0.1563 | 0.95 |
|
| 81 |
+
| 0.1568 | 32.0 | 2560 | 0.1563 | 0.95 |
|
| 82 |
+
| 0.1568 | 33.0 | 2640 | 0.1573 | 0.9495 |
|
| 83 |
+
| 0.1568 | 34.0 | 2720 | 0.1564 | 0.9465 |
|
| 84 |
+
| 0.1568 | 35.0 | 2800 | 0.1557 | 0.95 |
|
| 85 |
+
| 0.1568 | 36.0 | 2880 | 0.1554 | 0.949 |
|
| 86 |
+
| 0.1568 | 37.0 | 2960 | 0.1562 | 0.948 |
|
| 87 |
+
| 0.1515 | 38.0 | 3040 | 0.1555 | 0.948 |
|
| 88 |
+
| 0.1515 | 39.0 | 3120 | 0.1557 | 0.95 |
|
| 89 |
+
| 0.1515 | 40.0 | 3200 | 0.1559 | 0.9485 |
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
### Framework versions
|
| 93 |
+
|
| 94 |
+
- Transformers 4.33.3
|
| 95 |
+
- Pytorch 2.0.1+cu118
|
| 96 |
+
- Datasets 2.14.5
|
| 97 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"CNNModel"
|
| 4 |
+
],
|
| 5 |
+
"batch_size": 100,
|
| 6 |
+
"dropout": [
|
| 7 |
+
0.2,
|
| 8 |
+
0.5
|
| 9 |
+
],
|
| 10 |
+
"filter_size": 3,
|
| 11 |
+
"hidden_size": 128,
|
| 12 |
+
"image_size": 128,
|
| 13 |
+
"input_channels": 3,
|
| 14 |
+
"model_type": "cnn",
|
| 15 |
+
"num_classes": 3,
|
| 16 |
+
"num_filters": [
|
| 17 |
+
32,
|
| 18 |
+
64
|
| 19 |
+
],
|
| 20 |
+
"padding": 0,
|
| 21 |
+
"pool_size": 2,
|
| 22 |
+
"stride": 1,
|
| 23 |
+
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.33.3"
|
| 25 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1a3a6d95e9f482a835672798e08383cc9a7480b15fe7084a292041ba0ad3d9f5
|
| 3 |
+
size 29573515
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:917748bd9b3495555536d364ce7c2a54bf9ba941da54ce33b51c17da9ffb57b5
|
| 3 |
+
size 4027
|