File size: 9,271 Bytes
2c76547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import os
import shutil
import requests
import functools
import json
import warnings

from argparse import ArgumentParser
from typing import List, Optional
from multiprocessing import Pool
from tqdm import tqdm

import sys

sys.path.append("./scripts/")

from checksum_check import check_dr_sha256


def download_dataset(
    link_list_file: str,
    download_folder: str,
    n_download_workers: int = 4,
    n_extract_workers: int = 4,
    download_splits: List[str] = ['real', 'valid', 'test', 'train'],
    checksum_check: bool = False,
    clear_archives_after_unpacking: bool = False,
    skip_downloaded_archives: bool = True,
    sha256s_file: Optional[str] = None,
):
    """
    Downloads and unpacks the dataset in CO3D format.
    Note: The script will make a folder `<download_folder>/_in_progress`, which
        stores files whose download is in progress. The folder can be safely deleted
        the download is finished.
    Args:
        link_list_file: A text file with the list of zip file download links.
        download_folder: A local target folder for downloading the
            the dataset files.
        n_download_workers: The number of parallel workers
            for downloading the dataset files.
        n_extract_workers: The number of parallel workers
            for extracting the dataset files.
        download_splits: A list of data splits to download.
            Must be in ['real', 'valid', 'test', 'train'].
        checksum_check: Enable validation of the downloaded file's checksum before
            extraction.
        clear_archives_after_unpacking: Delete the unnecessary downloaded archive files
            after unpacking.
        skip_downloaded_archives: Skip re-downloading already downloaded archives.
    """

    if checksum_check and not sha256s_file:
        raise ValueError(
            "checksum_check is requested but ground-truth SHA256 file not provided!"
        )

    if not os.path.isfile(link_list_file):
        raise ValueError(
            "Please specify `link_list_file` with a valid path to a json"
            " with zip file download links."
            # " The file is stored in the DynamicStereo github:"
            # " https://github.com/facebookresearch/dynamic_stereo/blob/main/dynamic_stereo/links.json"
        )

    if not os.path.isdir(download_folder):
        raise ValueError(
            "Please specify `download_folder` with a valid path to a target folder"
            + " for downloading the dataset."
            + f" {download_folder} does not exist."
        )

    # read the link file
    with open(link_list_file, "r") as f:
        links = json.load(f)

    for split in download_splits:
        if split not in ['real', 'valid', 'test', 'train']:
            raise ValueError(
                        f"Download split {str(split)} is not valid"
                    )

    data_links = []
    for split_name, urls in links.items():
        if split_name in download_splits:
            for url in urls:
                link_name = os.path.split(url)[-1]
                data_links.append((split_name, link_name, url))


    with Pool(processes=n_download_workers) as download_pool:
        download_ok = {}
        for link_name, ok in tqdm(
            download_pool.imap(
                functools.partial(
                    _download_split_file,
                    download_folder,
                    checksum_check,
                    sha256s_file,
                    skip_downloaded_archives,
                ),
                data_links,
            ),
            total=len(data_links),
        ):
            download_ok[link_name] = ok

    with Pool(processes=n_extract_workers) as extract_pool:
        for _ in tqdm(
            extract_pool.imap(
                functools.partial(
                    _unpack_split_file,
                    download_folder,
                    clear_archives_after_unpacking,
                ),
                data_links,
            ),
            total=len(data_links),
        ):
            pass
    print("Done")



def build_arg_parser(
    dataset_name: str,
    default_link_list_file: str,
    default_sha256_file: str,
) -> ArgumentParser:
    parser = ArgumentParser(description=f"Download the {dataset_name} dataset.")
    parser.add_argument(
        "--download_folder",
        type=str,
        required=True,
        help="A local target folder for downloading the the dataset files.",
    )
    parser.add_argument(
        "--n_download_workers",
        type=int,
        default=4,
        help="The number of parallel workers for downloading the dataset files.",
    )
    parser.add_argument(
        "--n_extract_workers",
        type=int,
        default=4,
        help="The number of parallel workers for extracting the dataset files.",
    )
    parser.add_argument(
        "--download_splits",
        default=['real', 'valid', 'test', 'train'],
        nargs='+',
        help=f"A comma-separated list of {dataset_name} splits to download.",
    )
    parser.add_argument(
        "--link_list_file",
        type=str,
        default=default_link_list_file,
        help=(
            f"The file with html links to the {dataset_name} dataset files."
            + " In most cases the default local file `links.json` should be used."
        ),
    )
    parser.add_argument(
        "--sha256_file",
        type=str,
        default=default_sha256_file,
        help=(
            f"The file with SHA256 hashes of {dataset_name} dataset files."
            + " In most cases the default local file `dr_sha256.json` should be used."
        ),
    )
    parser.add_argument(
        "--checksum_check",
        action="store_true",
        default=True,
        help="Check the SHA256 checksum of each downloaded file before extraction.",
    )
    parser.add_argument(
        "--no_checksum_check",
        action="store_false",
        dest="checksum_check",
        default=False,
        help="Does not check the SHA256 checksum of each downloaded file before extraction.",
    )
    parser.set_defaults(checksum_check=True)
    parser.add_argument(
        "--clear_archives_after_unpacking",
        action="store_true",
        default=False,
        help="Delete the unnecessary downloaded archive files after unpacking.",
    )
    parser.add_argument(
        "--redownload_existing_archives",
        action="store_true",
        default=False,
        help="Redownload the already-downloaded archives.",
    )

    return parser

def _unpack_split_file(
    download_folder: str,
    clear_archive: bool,
    link: str,
):
    split, link_name, url = link
    local_fl = os.path.join(download_folder, link_name)
    print(f"Unpacking dataset file {local_fl} ({link_name}) to {download_folder}.")
    
    download_folder_split = os.path.join(download_folder, split)
    # os.makedirs(download_folder_split, exist_ok=True)
    shutil.unpack_archive(local_fl, download_folder_split)
    if clear_archive:
        os.remove(local_fl)

def _download_split_file(
    download_folder: str,
    checksum_check: bool,
    sha256s_file: Optional[str],
    skip_downloaded_files: bool,
    link: str,
):
    __, link_name, url = link
    local_fl_final = os.path.join(download_folder, link_name)

    if skip_downloaded_files and os.path.isfile(local_fl_final):
        print(f"Skipping {local_fl_final}, already downloaded!")
        return link_name, True

    in_progress_folder = os.path.join(download_folder, "_in_progress")
    os.makedirs(in_progress_folder, exist_ok=True)
    local_fl = os.path.join(in_progress_folder, link_name)

    print(f"Downloading dataset file {link_name} ({url}) to {local_fl}.")
    _download_with_progress_bar(url, local_fl, link_name)
    if checksum_check:
        print(f"Checking SHA256 for {local_fl}.")
        try:
            check_dr_sha256(
                local_fl,
                sha256s_file=sha256s_file,
            )
        except AssertionError:
            warnings.warn(
                f"Checksums for {local_fl} did not match!"
                + " This is likely due to a network failure,"
                + " please restart the download script." 
            )
            return link_name, False
        
    os.rename(local_fl, local_fl_final)
    return link_name, True


def _download_with_progress_bar(url: str, fname: str, filename: str):

    # taken from https://stackoverflow.com/a/62113293/986477
    resp = requests.get(url, stream=True)
    print(url)
    total = int(resp.headers.get("content-length", 0))
    with open(fname, "wb") as file, tqdm(
        desc=fname,
        total=total,
        unit="iB",
        unit_scale=True,
        unit_divisor=1024,
    ) as bar:
        for datai, data in enumerate(resp.iter_content(chunk_size=1024)):
            size = file.write(data)
            bar.update(size)
            if datai % max((max(total // 1024, 1) // 20), 1) == 0:
                print(f"{filename}: Downloaded {100.0*(float(bar.n)/max(total, 1)):3.1f}%.")
                print(bar)