File size: 22,871 Bytes
e66e8cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import json
import logging
import os
import re
import warnings
from copy import deepcopy
from dataclasses import asdict
from pathlib import Path
from typing import Any, Dict, Optional, Tuple, Union

import torch

from .convert import convert_state_dict
from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
    resize_pos_embed, get_cast_dtype, resize_text_pos_embed, set_model_preprocess_cfg
from .coca_model import CoCa
from .loss import ClipLoss, DistillClipLoss, CoCaLoss, SigLipLoss
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained,\
    list_pretrained_tags_by_model, download_pretrained_from_hf
from .transform import image_transform_v2, AugmentationCfg, PreprocessCfg, merge_preprocess_dict, merge_preprocess_kwargs
from .tokenizer import HFTokenizer, SimpleTokenizer, SigLipTokenizer, DEFAULT_CONTEXT_LENGTH

HF_HUB_PREFIX = 'hf-hub:'
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
_MODEL_CONFIGS = {}  # directory (model_name: config) of model architecture configs


def _natural_key(string_):
    return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]


def _rescan_model_configs():
    global _MODEL_CONFIGS

    config_ext = ('.json',)
    config_files = []
    for config_path in _MODEL_CONFIG_PATHS:
        if config_path.is_file() and config_path.suffix in config_ext:
            config_files.append(config_path)
        elif config_path.is_dir():
            for ext in config_ext:
                config_files.extend(config_path.glob(f'*{ext}'))

    for cf in config_files:
        with open(cf, 'r') as f:
            model_cfg = json.load(f)
            if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
                _MODEL_CONFIGS[cf.stem] = model_cfg

    _MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))}


_rescan_model_configs()  # initial populate of model config registry


def list_models():
    """ enumerate available model architectures based on config files """
    return list(_MODEL_CONFIGS.keys())


def add_model_config(path):
    """ add model config path or file and update registry """
    if not isinstance(path, Path):
        path = Path(path)
    _MODEL_CONFIG_PATHS.append(path)
    _rescan_model_configs()


def get_model_config(model_name):
    """ Fetch model config from builtin (local library) configs.
    """
    if model_name in _MODEL_CONFIGS:
        return deepcopy(_MODEL_CONFIGS[model_name])
    else:
        return None


def _get_hf_config(
        model_id: str,
        cache_dir: Optional[str] = None,
):
    """ Fetch model config from HuggingFace Hub.
    """
    config_path = download_pretrained_from_hf(
        model_id,
        filename='open_clip_config.json',
        cache_dir=cache_dir,
    )
    with open(config_path, 'r', encoding='utf-8') as f:
        config = json.load(f)
    return config


def get_tokenizer(
        model_name: str = '',
        context_length: Optional[int] = None,
        cache_dir: Optional[str] = None,
        **kwargs,
):
    if model_name.startswith(HF_HUB_PREFIX):
        model_name = model_name[len(HF_HUB_PREFIX):]
        try:
            config = _get_hf_config(model_name, cache_dir=cache_dir)['model_cfg']
        except Exception:
            tokenizer = HFTokenizer(
                model_name,
                context_length=context_length or DEFAULT_CONTEXT_LENGTH,
                cache_dir=cache_dir,
                **kwargs,
            )
            return tokenizer
    else:
        config = get_model_config(model_name)
        assert config is not None, f"No valid model config found for {model_name}."

    text_config = config.get('text_cfg', {})
    if 'tokenizer_kwargs' in text_config:
        tokenizer_kwargs = dict(text_config['tokenizer_kwargs'], **kwargs)
    else:
        tokenizer_kwargs = kwargs

    if context_length is None:
        context_length = text_config.get('context_length', DEFAULT_CONTEXT_LENGTH)

    model_name = model_name.lower()
    if text_config.get('hf_tokenizer_name', ''):
        tokenizer = HFTokenizer(
            text_config['hf_tokenizer_name'],
            context_length=context_length,
            cache_dir=cache_dir,
            **tokenizer_kwargs,
        )
    elif 'siglip' in model_name:
        tn = 'gemma' if 'siglip2'  in model_name else 'mc4' if 'i18n' in model_name else 'c4-en'
        tokenizer = SigLipTokenizer(
            tn,
            context_length=context_length,
            # **tokenizer_kwargs,
        )
    else:
        tokenizer = SimpleTokenizer(
            context_length=context_length,
            **tokenizer_kwargs,
        )

    return tokenizer


def load_state_dict(
        checkpoint_path: str,
        device='cpu',
        weights_only=True,
):
    # Check if safetensors or not and load weights accordingly
    if str(checkpoint_path).endswith(".safetensors"):
        from safetensors.torch import load_file
        checkpoint = load_file(checkpoint_path, device=device)
    else:
        try:
            checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=weights_only)
        except TypeError:
            checkpoint = torch.load(checkpoint_path, map_location=device)

    if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
        state_dict = checkpoint['state_dict']
    elif isinstance(checkpoint, torch.jit.ScriptModule):
        state_dict = checkpoint.state_dict()
        for key in ["input_resolution", "context_length", "vocab_size"]:
            state_dict.pop(key, None)
    else:
        state_dict = checkpoint
    if next(iter(state_dict.items()))[0].startswith('module'):
        state_dict = {k[7:]: v for k, v in state_dict.items()}
    return state_dict


def load_checkpoint(
        model: Union[CLIP, CustomTextCLIP],
        checkpoint_path: str,
        strict: bool = True,
        weights_only: bool = True,
        device='cpu',
):
    if Path(checkpoint_path).suffix in ('.npz', '.npy'):
        # Separate path loading numpy big_vision (SigLIP) weights
        from open_clip.convert import load_big_vision_weights
        load_big_vision_weights(model, checkpoint_path)
        return {}

    state_dict = load_state_dict(checkpoint_path, device=device, weights_only=weights_only)

    # Detect & convert 3rd party state_dicts -> open_clip
    state_dict = convert_state_dict(model, state_dict)

    # Detect old format and make compatible with new format
    if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
        state_dict = convert_to_custom_text_state_dict(state_dict)

    # correct if logit_scale differs in being scaler vs 1d param
    if 'logit_scale' in state_dict and model.logit_scale.ndim != state_dict['logit_scale'].ndim:
        state_dict['logit_scale'] = state_dict['logit_scale'].reshape(model.logit_scale.shape)

    # correct if logit_bias differs in being scaler vs 1d param
    if 'logit_bias' in state_dict and model.logit_bias.ndim != state_dict['logit_bias'].ndim:
        state_dict['logit_bias'] = state_dict['logit_bias'].reshape(model.logit_bias.shape)

    # If loading a non-SigLIP model for SigLIP training. See https://github.com/mlfoundations/open_clip/issues/712
    if 'logit_bias' not in state_dict and model.logit_bias is not None:
        state_dict["logit_bias"] = torch.zeros_like(state_dict["logit_scale"])

    # Certain text transformers no longer expect position_ids after transformers==4.31
    position_id_key = 'text.transformer.embeddings.position_ids'
    if position_id_key in state_dict and not hasattr(model, position_id_key):
        del state_dict[position_id_key]

    resize_pos_embed(state_dict, model)
    resize_text_pos_embed(state_dict, model)

    # Finally, load the massaged state_dict into model
    incompatible_keys = model.load_state_dict(state_dict, strict=strict)
    return incompatible_keys


def create_model(
        model_name: str,
        pretrained: Optional[str] = None,
        precision: str = 'fp32',
        device: Union[str, torch.device] = 'cpu',
        jit: bool = False,
        force_quick_gelu: bool = False,
        force_custom_text: bool = False,
        force_patch_dropout: Optional[float] = None,
        force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
        force_preprocess_cfg: Optional[Dict[str, Any]] = None,
        pretrained_image: bool = False,
        pretrained_hf: bool = True,
        cache_dir: Optional[str] = None,
        output_dict: Optional[bool] = None,
        require_pretrained: bool = False,
        load_weights_only: bool = True,
        **model_kwargs,
):
    """Creates and configures a contrastive vision-language model.

    Args:
        model_name: Name of the model architecture to create. Can be a local model name
            or a Hugging Face model ID prefixed with 'hf-hub:'.
        pretrained: Tag/path for pretrained model weights. Can be:
            - A pretrained tag name (e.g., 'openai')
            - A path to local weights
            - None to initialize with random weights
        precision: Model precision/AMP configuration. Options:
            - 'fp32': 32-bit floating point
            - 'fp16'/'bf16': Mixed precision with FP32 for certain layers
            - 'pure_fp16'/'pure_bf16': Pure 16-bit precision
        device: Device to load the model on ('cpu', 'cuda', or torch.device object)
        jit: If True, JIT compile the model
        force_quick_gelu: Force use of QuickGELU activation
        force_custom_text: Force use of custom text encoder
        force_patch_dropout: Override default patch dropout value
        force_image_size: Override default image size for vision encoder
        force_preprocess_cfg: Override default preprocessing configuration
        pretrained_image: Load pretrained weights for timm vision models
        pretrained_hf: Load pretrained weights for HF text models when not loading CLIP weights
        cache_dir: Override default cache directory for downloaded model files
        output_dict: If True and model supports it, return dictionary of features
        require_pretrained: Raise error if pretrained weights cannot be loaded
        load_weights_only: Only deserialize model weights and unpickling torch checkpoints (for safety)
        **model_kwargs: Additional keyword arguments passed to model constructor

    Returns:
        Created and configured model instance

    Raises:
        RuntimeError: If model config is not found or required pretrained weights
            cannot be loaded

    Examples:
        # Create basic CLIP model
        model = create_model('ViT-B/32')

        # Create CLIP model with mixed precision on GPU
        model = create_model('ViT-B/32', precision='fp16', device='cuda')

        # Load pretrained OpenAI weights
        model = create_model('ViT-B/32', pretrained='openai')

        # Load Hugging Face model
        model = create_model('hf-hub:organization/model-name')
    """

    force_preprocess_cfg = force_preprocess_cfg or {}
    preprocess_cfg = asdict(PreprocessCfg())
    has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX)
    if has_hf_hub_prefix:
        model_id = model_name[len(HF_HUB_PREFIX):]
        checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
        config = _get_hf_config(model_id, cache_dir=cache_dir)
        preprocess_cfg = merge_preprocess_dict(preprocess_cfg, config['preprocess_cfg'])
        model_cfg = config['model_cfg']
        pretrained_hf = False  # override, no need to load original HF text weights
    else:
        model_name = model_name.replace('/', '-')  # for callers using old naming with / in ViT names
        checkpoint_path = None
        model_cfg = None

    if isinstance(device, str):
        device = torch.device(device)

    model_cfg = model_cfg or get_model_config(model_name)
    if model_cfg is not None:
        logging.info(f'Loaded {model_name} model config.')
    else:
        logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
        raise RuntimeError(f'Model config for {model_name} not found.')

    if force_quick_gelu:
        # override for use of QuickGELU on non-OpenAI transformer models
        model_cfg["quick_gelu"] = True

    if force_patch_dropout is not None:
        # override the default patch dropout value
        model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout

    if force_image_size is not None:
        # override model config's image size
        model_cfg["vision_cfg"]["image_size"] = force_image_size

    is_timm_model = 'timm_model_name' in model_cfg.get('vision_cfg', {})
    if pretrained_image:
        if is_timm_model:
            # pretrained weight loading for timm models set via vision_cfg
            model_cfg['vision_cfg']['timm_model_pretrained'] = True
        else:
            assert False, 'pretrained image towers currently only supported for timm models'

    # cast_dtype set for fp16 and bf16 (manual mixed-precision), not set for 'amp' or 'pure' modes
    cast_dtype = get_cast_dtype(precision)
    is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {})
    if is_hf_model:
        # load pretrained weights for HF text model IFF no CLIP weights being loaded
        model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf and not pretrained
    custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model

    model_cfg = dict(model_cfg, **model_kwargs)  # merge cfg dict w/ kwargs (kwargs overrides cfg)
    if custom_text:
        if "multimodal_cfg" in model_cfg:
            model = CoCa(**model_cfg, cast_dtype=cast_dtype)
        else:
            model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype)
    else:
        model = CLIP(**model_cfg, cast_dtype=cast_dtype)

    if precision in ("fp16", "bf16"):
        dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
        # manual mixed precision that matches original OpenAI behaviour
        if is_timm_model:
            # FIXME this is a bit janky, create timm based model in low-precision and
            # then cast only LayerNormFp32 instances back to float32 so they don't break.
            # Why? The convert_weights_to_lp fn only works with native models.
            model.to(device=device, dtype=dtype)
            from .transformer import LayerNormFp32

            def _convert_ln(m):
                if isinstance(m, LayerNormFp32):
                    m.weight.data = m.weight.data.to(torch.float32)
                    m.bias.data = m.bias.data.to(torch.float32)
            model.apply(_convert_ln)
        else:
            model.to(device=device)
            convert_weights_to_lp(model, dtype=dtype)
    elif precision in ("pure_fp16", "pure_bf16"):
        dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
        model.to(device=device, dtype=dtype)
    else:
        model.to(device=device)

    pretrained_loaded = False
    if pretrained:
        checkpoint_path = ''
        pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
        if pretrained_cfg:
            checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
            preprocess_cfg = merge_preprocess_dict(preprocess_cfg, pretrained_cfg)
            pretrained_quick_gelu = pretrained_cfg.get('quick_gelu', False)
            model_quick_gelu = model_cfg.get('quick_gelu', False)
            if pretrained_quick_gelu and not model_quick_gelu:
                warnings.warn(
                    f'These pretrained weights were trained with QuickGELU activation but the model config does '
                    f'not have that enabled. Consider using a model config with a "-quickgelu" suffix or enable with a flag.')
            elif not pretrained_quick_gelu and model_quick_gelu:
                warnings.warn(
                    f'The pretrained weights were not trained with QuickGELU but this activation is enabled in the '
                    f'model config, consider using a model config without QuickGELU or disable override flags.')
        elif os.path.exists(pretrained):
            checkpoint_path = pretrained

        if checkpoint_path:
            logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
            load_checkpoint(model, checkpoint_path, weights_only=load_weights_only)
        else:
            error_str = (
                f'Pretrained weights ({pretrained}) not found for model {model_name}.'
                f' Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
            logging.warning(error_str)
            raise RuntimeError(error_str)
        pretrained_loaded = True
    elif has_hf_hub_prefix:
        logging.info(f'Loading pretrained {model_name} weights ({checkpoint_path}).')
        load_checkpoint(model, checkpoint_path, weights_only=load_weights_only)
        pretrained_loaded = True

    if require_pretrained and not pretrained_loaded:
        # callers of create_model_from_pretrained always expect pretrained weights
        raise RuntimeError(
            f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.')

    if output_dict and hasattr(model, "output_dict"):
        model.output_dict = True

    if jit:
        model = torch.jit.script(model)

    # set image preprocessing configuration in model attributes for convenience
    if getattr(model.visual, 'image_size', None) is not None:
        # use image_size set on model creation (via config or force_image_size arg)
        force_preprocess_cfg['size'] = model.visual.image_size
    set_model_preprocess_cfg(model, merge_preprocess_dict(preprocess_cfg, force_preprocess_cfg))

    return model


def create_loss(args):
    if args.distill:
        return DistillClipLoss(
            local_loss=args.local_loss,
            gather_with_grad=args.gather_with_grad,
            cache_labels=True,
            rank=args.rank,
            world_size=args.world_size,
            use_horovod=args.horovod,
        )
    elif "coca" in args.model.lower():
        return CoCaLoss(
            caption_loss_weight=args.coca_caption_loss_weight,
            clip_loss_weight=args.coca_contrastive_loss_weight,
            local_loss=args.local_loss,
            gather_with_grad=args.gather_with_grad,
            cache_labels=True,
            rank=args.rank,
            world_size=args.world_size,
            use_horovod=args.horovod,
        )
    elif args.siglip:
        assert not args.horovod, "Horovod not currently supported for SigLip"
        return SigLipLoss(
            rank=args.rank,
            world_size=args.world_size,
            dist_impl=args.loss_dist_impl,  # siglip has multiple distributed implementations to choose from
        )

    return ClipLoss(
        local_loss=args.local_loss,
        gather_with_grad=args.gather_with_grad,
        cache_labels=True,
        rank=args.rank,
        world_size=args.world_size,
        use_horovod=args.horovod,
    )


def create_model_and_transforms(
        model_name: str,
        pretrained: Optional[str] = None,
        precision: str = 'fp32',
        device: Union[str, torch.device] = 'cpu',
        jit: bool = False,
        force_quick_gelu: bool = False,
        force_custom_text: bool = False,
        force_patch_dropout: Optional[float] = None,
        force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
        image_mean: Optional[Tuple[float, ...]] = None,
        image_std: Optional[Tuple[float, ...]] = None,
        image_interpolation: Optional[str] = None,
        image_resize_mode: Optional[str] = None,  # only effective for inference
        aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
        pretrained_image: bool = False,
        pretrained_hf: bool = True,
        cache_dir: Optional[str] = None,
        output_dict: Optional[bool] = None,
        load_weights_only: bool = True,
        **model_kwargs,
):
    force_preprocess_cfg = merge_preprocess_kwargs(
        {},
        mean=image_mean,
        std=image_std,
        interpolation=image_interpolation,
        resize_mode=image_resize_mode,
    )

    model = create_model(
        model_name,
        pretrained,
        precision=precision,
        device=device,
        jit=jit,
        force_quick_gelu=force_quick_gelu,
        force_custom_text=force_custom_text,
        force_patch_dropout=force_patch_dropout,
        force_image_size=force_image_size,
        force_preprocess_cfg=force_preprocess_cfg,
        pretrained_image=pretrained_image,
        pretrained_hf=pretrained_hf,
        cache_dir=cache_dir,
        output_dict=output_dict,
        load_weights_only=load_weights_only,
        **model_kwargs,
    )

    pp_cfg = PreprocessCfg(**model.visual.preprocess_cfg)

    preprocess_train = image_transform_v2(
        pp_cfg,
        is_train=True,
        aug_cfg=aug_cfg,
    )
    preprocess_val = image_transform_v2(
        pp_cfg,
        is_train=False,
    )

    return model, preprocess_train, preprocess_val


def create_model_from_pretrained(
        model_name: str,
        pretrained: Optional[str] = None,
        precision: str = 'fp32',
        device: Union[str, torch.device] = 'cpu',
        jit: bool = False,
        force_quick_gelu: bool = False,
        force_custom_text: bool = False,
        force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
        image_mean: Optional[Tuple[float, ...]] = None,
        image_std: Optional[Tuple[float, ...]] = None,
        image_interpolation: Optional[str] = None,
        image_resize_mode: Optional[str] = None,  # only effective for inference
        return_transform: bool = True,
        cache_dir: Optional[str] = None,
        load_weights_only: bool = True,
        **model_kwargs,
):
    force_preprocess_cfg = merge_preprocess_kwargs(
        {},
        mean=image_mean,
        std=image_std,
        interpolation=image_interpolation,
        resize_mode=image_resize_mode,
    )

    model = create_model(
        model_name,
        pretrained,
        precision=precision,
        device=device,
        jit=jit,
        force_quick_gelu=force_quick_gelu,
        force_custom_text=force_custom_text,
        force_image_size=force_image_size,
        force_preprocess_cfg=force_preprocess_cfg,
        cache_dir=cache_dir,
        require_pretrained=True,
        load_weights_only=load_weights_only,
        **model_kwargs,
    )

    if not return_transform:
        return model

    preprocess = image_transform_v2(
        PreprocessCfg(**model.visual.preprocess_cfg),
        is_train=False,
    )

    return model, preprocess