File size: 38,117 Bytes
e66e8cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
""" CLIP Model

Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
"""
import copy
import logging
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.checkpoint import checkpoint
from functools import partial

from .hf_model import HFTextEncoder
from .modified_resnet import ModifiedResNet
from .timm_model import TimmModel
from .transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer,\
    text_global_pool
from .utils import to_2tuple


@dataclass
class CLIPVisionCfg:
    layers: Union[Tuple[int, int, int, int], int] = 12
    width: int = 768
    head_width: int = 64
    mlp_ratio: float = 4.0
    patch_size: int = 16
    image_size: Union[Tuple[int, int], int] = 224
    in_chans: int = 3 

    ls_init_value: Optional[float] = None  # layer scale initial value
    patch_dropout: float = 0.  # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
    attentional_pool: bool = False  # whether to use attentional pooler in the last embedding layer (overrides pool_type)
    attn_pooler_queries: int = 256  # n_queries for attentional pooler
    attn_pooler_heads: int = 8  # n heads for attentional_pooling
    no_ln_pre: bool = False  # disable pre transformer LayerNorm
    pos_embed_type: str = 'learnable'
    final_ln_after_pool: bool = False  # apply final LayerNorm after pooling
    pool_type: str = 'tok'
    output_tokens: bool = False
    act_kwargs: Optional[dict] = None
    norm_kwargs: Optional[dict] = None

    timm_model_name: Optional[str] = None  # a valid model name overrides layers, width, patch_size
    timm_model_pretrained: bool = False  # use (imagenet) pretrained weights for named model
    timm_pool: str = 'avg'  # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
    timm_proj: str = 'linear'  # linear projection for timm model output ('linear', 'mlp', '')
    timm_proj_bias: bool = False  # enable bias final projection
    timm_drop: float = 0.  # head dropout
    timm_drop_path: Optional[float] = None  # backbone stochastic depth


@dataclass
class CLIPTextCfg:
    context_length: int = 77
    vocab_size: int = 49408
    hf_tokenizer_name: Optional[str] = None
    tokenizer_kwargs: Optional[dict] = None

    width: int = 512
    heads: int = 8
    layers: int = 12
    mlp_ratio: float = 4.0
    ls_init_value: Optional[float] = None  # layer scale initial value
    embed_cls: bool = False
    pad_id: int = 0
    no_causal_mask: bool = False  # disable causal masking
    final_ln_after_pool: bool = False  # apply final LayerNorm after pooling
    pool_type: str = 'argmax'
    proj_bias: bool = False
    proj_type: str = 'linear'  # control final text projection, 'none' forces no projection
    output_tokens: bool = False
    act_kwargs: dict = None
    norm_kwargs: dict = None

    # HuggingFace specific text tower config
    hf_model_name: Optional[str] = None
    hf_model_pretrained: bool = True
    hf_proj_type: str = 'mlp'
    hf_pooler_type: str = 'mean_pooler'  # attentional pooling for HF models


def get_cast_dtype(precision: str):
    cast_dtype = None
    if precision == 'bf16':
        cast_dtype = torch.bfloat16
    elif precision == 'fp16':
        cast_dtype = torch.float16
    return cast_dtype


def get_input_dtype(precision: str):
    input_dtype = None
    if precision in ('bf16', 'pure_bf16'):
        input_dtype = torch.bfloat16
    elif precision in ('fp16', 'pure_fp16'):
        input_dtype = torch.float16
    return input_dtype


def _build_vision_tower(
        embed_dim: int,
        vision_cfg: CLIPVisionCfg,
        quick_gelu: bool = False,
        cast_dtype: Optional[torch.dtype] = None
):
    if isinstance(vision_cfg, dict):
        vision_cfg = CLIPVisionCfg(**vision_cfg)

    # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
    # memory efficient in recent PyTorch releases (>= 1.10).
    # NOTE: timm models always use native GELU regardless of quick_gelu flag.
    act_layer = QuickGELU if quick_gelu else nn.GELU

    if vision_cfg.timm_model_name:
        visual = TimmModel(
            vision_cfg.timm_model_name,
            pretrained=vision_cfg.timm_model_pretrained,
            pool=vision_cfg.timm_pool,
            proj=vision_cfg.timm_proj,
            proj_bias=vision_cfg.timm_proj_bias,
            drop=vision_cfg.timm_drop,
            drop_path=vision_cfg.timm_drop_path,
            patch_drop=vision_cfg.patch_dropout if vision_cfg.patch_dropout > 0 else None,
            embed_dim=embed_dim,
            image_size=vision_cfg.image_size,
        )
    elif isinstance(vision_cfg.layers, (tuple, list)):
        vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
        visual = ModifiedResNet(
            layers=vision_cfg.layers,
            output_dim=embed_dim,
            heads=vision_heads,
            image_size=vision_cfg.image_size,
            width=vision_cfg.width,
        )
    else:
        vision_heads = vision_cfg.width // vision_cfg.head_width
        norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
        if vision_cfg.norm_kwargs:
            norm_layer = partial(norm_layer, **vision_cfg.norm_kwargs)
        if vision_cfg.act_kwargs is not None:
            act_layer = partial(act_layer, **vision_cfg.act_kwargs)

        visual = VisionTransformer(
            image_size=vision_cfg.image_size,
            patch_size=vision_cfg.patch_size,
            width=vision_cfg.width,
            layers=vision_cfg.layers,
            heads=vision_heads,
            mlp_ratio=vision_cfg.mlp_ratio,
            ls_init_value=vision_cfg.ls_init_value,
            patch_dropout=vision_cfg.patch_dropout,
            attentional_pool=vision_cfg.attentional_pool,
            attn_pooler_queries=vision_cfg.attn_pooler_queries,
            attn_pooler_heads=vision_cfg.attn_pooler_heads,
            pos_embed_type=vision_cfg.pos_embed_type,
            no_ln_pre=vision_cfg.no_ln_pre,
            final_ln_after_pool=vision_cfg.final_ln_after_pool,
            pool_type=vision_cfg.pool_type,
            output_tokens=vision_cfg.output_tokens,
            output_dim=embed_dim,
            act_layer=act_layer,
            norm_layer=norm_layer,
            in_chans=vision_cfg.in_chans,
        )

    return visual


def _build_text_tower(
        embed_dim: int,
        text_cfg: CLIPTextCfg,
        quick_gelu: bool = False,
        cast_dtype: Optional[torch.dtype] = None,
):
    if isinstance(text_cfg, dict):
        text_cfg = CLIPTextCfg(**text_cfg)

    if text_cfg.hf_model_name:
        text = HFTextEncoder(
            text_cfg.hf_model_name,
            output_dim=embed_dim,
            proj_type=text_cfg.hf_proj_type,
            pooler_type=text_cfg.hf_pooler_type,
            pretrained=text_cfg.hf_model_pretrained,
            output_tokens=text_cfg.output_tokens,
        )
    else:
        act_layer = QuickGELU if quick_gelu else nn.GELU
        norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
        if text_cfg.norm_kwargs:
            norm_layer = partial(norm_layer, **text_cfg.norm_kwargs)
        if text_cfg.act_kwargs is not None:
            act_layer = partial(act_layer, **text_cfg.act_kwargs)

        text = TextTransformer(
            context_length=text_cfg.context_length,
            vocab_size=text_cfg.vocab_size,
            width=text_cfg.width,
            heads=text_cfg.heads,
            layers=text_cfg.layers,
            mlp_ratio=text_cfg.mlp_ratio,
            ls_init_value=text_cfg.ls_init_value,
            output_dim=embed_dim,
            embed_cls=text_cfg.embed_cls,
            no_causal_mask=text_cfg.no_causal_mask,
            pad_id=text_cfg.pad_id,
            pool_type=text_cfg.pool_type,
            proj_type=text_cfg.proj_type,
            proj_bias=text_cfg.proj_bias,
            output_tokens=text_cfg.output_tokens,
            act_layer=act_layer,
            norm_layer=norm_layer,
        )
    return text


    
class TrunkNet(nn.Module):
    def __init__(self, input_dim: int, hidden_dim: int, output_dim: int):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            LayerNorm(hidden_dim),
            nn.GELU(),
            nn.Linear(hidden_dim, hidden_dim),
            LayerNorm(hidden_dim),
            nn.GELU(),
            nn.Linear(hidden_dim, output_dim)
        )
    
    def forward(self, x):

        for i, layer in enumerate(self.net):
            x = layer(x)
        
        return x


class MultiTrunkNet(nn.Module):
    def __init__(self, embed_dim: int):
        super().__init__()
        self.embed_dim = embed_dim

        self.compound_trunk = TrunkNet(input_dim=159, hidden_dim=embed_dim, output_dim=embed_dim)
        self.concentration_trunk = TrunkNet(input_dim=2, hidden_dim=embed_dim, output_dim=embed_dim)
        self.time_trunk = TrunkNet(input_dim=1, hidden_dim=embed_dim, output_dim=embed_dim)

        total_dim = embed_dim * 3
        self.projection = nn.Linear(total_dim, embed_dim)
        
    def forward(self, compound_embedding: torch.Tensor, concentration: torch.Tensor, time: torch.Tensor):

        # Process each input through its own trunk
        compound_features = self.compound_trunk(compound_embedding)
      
        concentration_features = self.concentration_trunk(concentration)
        
        time = time.unsqueeze(-1) if time.dim() == 1 else time
        time_features = self.time_trunk(time)
      
        # Concatenate all features
        return compound_features, concentration_features, time_features


class CLIP(nn.Module):
    output_dict: torch.jit.Final[bool]

    def __init__(
            self,
            embed_dim: int,
            vision_cfg: CLIPVisionCfg,
            text_cfg: CLIPTextCfg,
            quick_gelu: bool = False,
            init_logit_scale: float = np.log(1 / 0.07),
            init_logit_bias: Optional[float] = None,
            nonscalar_logit_scale: bool = False,
            cast_dtype: Optional[torch.dtype] = None,
            output_dict: bool = False,
    ):
        super().__init__()
        self.output_dict = output_dict

        self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)

        text = _build_text_tower(int(embed_dim/4), text_cfg, quick_gelu, cast_dtype)
        self.transformer = text.transformer
        self.context_length = text.context_length
        self.vocab_size = text.vocab_size
        self.token_embedding = text.token_embedding
        self.positional_embedding = text.positional_embedding
        self.ln_final = text.ln_final
        self.text_projection = text.text_projection
        self.text_pool_type = text.pool_type
        self.register_buffer('attn_mask', text.attn_mask, persistent=False)

        # Add multi-trunk net for additional inputs
        self.multi_trunk = MultiTrunkNet(int(embed_dim/4))
        
        # # Add projection layer for concatenated features
        # self.fusion_projection = nn.Linear(embed_dim * 4, embed_dim)

        lshape = [1] if nonscalar_logit_scale else []
        self.logit_scale = nn.Parameter(torch.ones(lshape) * init_logit_scale)
        if init_logit_bias is not None:
            self.logit_bias = nn.Parameter(torch.ones(lshape) * init_logit_bias)
        else:
            self.logit_bias = None

    def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
        # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
        self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.visual.set_grad_checkpointing(enable)
        self.transformer.grad_checkpointing = enable

    @torch.jit.ignore
    def no_weight_decay(self):
        # for timm optimizers, 1d params like logit_scale, logit_bias, ln/bn scale, biases are excluded by default
        no_wd = {'positional_embedding'}
        if hasattr(self.visual, 'no_weight_decay'):
            for n in self.visual.no_weight_decay():
                no_wd.add('visual.' + n)
        return no_wd

    def encode_image(self, image, normalize: bool = False):
        features = self.visual(image)
        return F.normalize(features, dim=-1) if normalize else features

    def encode_text(self, text, normalize: bool = False, concentration: Optional[torch.Tensor] = None, 
                   time: Optional[torch.Tensor] = None, compound_embedding: Optional[torch.Tensor] = None):
        cast_dtype = self.transformer.get_cast_dtype()

        x = self.token_embedding(text).to(cast_dtype)
        x = x + self.positional_embedding.to(cast_dtype)
        x = self.transformer(x, attn_mask=self.attn_mask)
        x = self.ln_final(x)
        x = text_global_pool(x, text, self.text_pool_type)

        if self.text_projection is not None:
            if isinstance(self.text_projection, nn.Linear):
                x = self.text_projection(x)
            else:
                x = x @ self.text_projection

        if compound_embedding is not None and concentration is not None and time is not None:
            compound_features, concentration_features, time_features = self.multi_trunk(compound_embedding, concentration, time)
            x = torch.cat([x, compound_features, concentration_features, time_features], dim=-1)

        if normalize:
            x = F.normalize(x, dim=-1)

        return x

    def get_logits(self, image, text, concentration: Optional[torch.Tensor] = None,
                 time: Optional[torch.Tensor] = None, 
                 compound_embedding: Optional[torch.Tensor] = None):
        image_features = self.encode_image(image, normalize=True)
        text_features = self.encode_text(text, normalize=True, 
                                       concentration=concentration,
                                       time=time,
                                       compound_embedding=compound_embedding)
        image_logits = self.logit_scale.exp() * image_features @ text_features.T
        if self.logit_bias is not None:
            image_logits += self.logit_bias
        text_logits = image_logits.T
        return image_logits, text_logits

    def forward_intermediates(
            self,
            image: Optional[torch.Tensor] = None,
            text: Optional[torch.Tensor] = None,
            image_indices: Optional[Union[int, List[int]]] = None,
            text_indices: Optional[Union[int, List[int]]] = None,
            stop_early: bool = False,
            normalize: bool = True,
            normalize_intermediates: bool = False,
            intermediates_only: bool = False,
            image_output_fmt: str = 'NCHW',
            image_output_extra_tokens: bool = False,
            text_output_fmt: str = 'NLC',
            text_output_extra_tokens: bool = False,
            output_logits: bool = False,
            output_logit_scale_bias: bool = False,
    ) -> Dict[str, Union[torch.Tensor, List[torch.Tensor]]]:
        """ Forward features that returns intermediates.

        Args:
            image: Input image tensor
            text: Input text tensor
            image_indices: For image tower, Take last n blocks if int, all if None, select matching indices if sequence
            text_indices: Take last n blocks if int, all if None, select matching indices if sequence
            stop_early: Stop iterating over blocks when last desired intermediate hit
            normalize_intermediates: Apply final norm layer to all intermediates
            normalize: L2 Normalize final features
            intermediates_only: Only return intermediate features, do not return final features
            image_output_fmt: Shape of intermediate image feature outputs
            image_output_extra_tokens: Return both prefix and spatial intermediate tokens
            text_output_fmt: Shape of intermediate text feature outputs (ignored for this model)
            text_output_extra_tokens: Return both prefix and spatial intermediate tokens (ignored for this model)
            output_logits: Include logits in output
            output_logit_scale_bias: Include the logit scale bias in the output
        Returns:

        """
        output = {}
        if intermediates_only:
            # intermediates only disables final feature normalization, and include logits
            normalize = False
            output_logits = False
        if output_logits:
            assert image is not None and text is not None, 'Both image and text inputs are required to compute logits'

        if image is not None:
            image_output = self.visual.forward_intermediates(
                image,
                indices=image_indices,
                stop_early=stop_early,
                normalize_intermediates=normalize_intermediates,
                intermediates_only=intermediates_only,
                output_fmt=image_output_fmt,
                output_extra_tokens=image_output_extra_tokens,
            )
            if normalize and "image_features" in image_output:
                image_output["image_features"] = F.normalize(image_output["image_features"], dim=-1)
            output.update(image_output)

        if text is not None:
            cast_dtype = self.transformer.get_cast_dtype()
            x = self.token_embedding(text).to(cast_dtype)  # [batch_size, n_ctx, d_model]
            x = x + self.positional_embedding.to(cast_dtype)
            x, intermediates = self.transformer.forward_intermediates(
                x,
                attn_mask=self.attn_mask,
                indices=text_indices
            )
            if normalize_intermediates:
                intermediates = [self.ln_final(xi) for xi in intermediates]

            # NOTE this model doesn't support cls embed in text transformer, no need for extra intermediate tokens
            output["text_intermediates"] = intermediates

            if not intermediates_only:
                x = self.ln_final(x)  # [batch_size, n_ctx, transformer.width]
                x = text_global_pool(x, text, self.text_pool_type)
                if self.text_projection is not None:
                    if isinstance(self.text_projection, nn.Linear):
                        x = self.text_projection(x)
                    else:
                        x = x @ self.text_projection
                if normalize:
                    x = F.normalize(x, dim=-1)
                output["text_features"] = x

        logit_scale_exp = self.logit_scale.exp() if output_logits or output_logit_scale_bias else None

        if output_logits:
            image_logits = logit_scale_exp * output["image_features"] @ output["text_features"].T
            if self.logit_bias is not None:
                image_logits += self.logit_bias
            text_logits = image_logits.T
            output["image_logits"] = image_logits
            output["text_logits"] = text_logits

        if output_logit_scale_bias:
            output["logit_scale"] = logit_scale_exp
            if self.logit_bias is not None:
                output['logit_bias'] = self.logit_bias

        return output


    def forward(
        self,
        image: Optional[torch.Tensor] = None,
        text: Optional[torch.Tensor] = None,
        concentration: Optional[torch.Tensor] = None,
        time: Optional[torch.Tensor] = None,
        compound_embedding: Optional[torch.Tensor] = None,
    ):
        
        image_features = self.encode_image(image, normalize=True) if image is not None else None
        text_features = self.encode_text(text, normalize=True, concentration=concentration, time=time, compound_embedding=compound_embedding) 
        if self.output_dict:
            out_dict = {
                "image_features": image_features,
                "text_features": text_features,
                "logit_scale": self.logit_scale.exp()
            }
            if self.logit_bias is not None:
                out_dict['logit_bias'] = self.logit_bias
            return out_dict

        if self.logit_bias is not None:
            return image_features, text_features, self.logit_scale.exp(), self.logit_bias
        return image_features, text_features, self.logit_scale.exp()


class CustomTextCLIP(nn.Module):
    output_dict: torch.jit.Final[bool]

    def __init__(
            self,
            embed_dim: int,
            vision_cfg: CLIPVisionCfg,
            text_cfg: CLIPTextCfg,
            quick_gelu: bool = False,
            init_logit_scale: float = np.log(1 / 0.07),
            init_logit_bias: Optional[float] = None,
            nonscalar_logit_scale: bool = False,
            cast_dtype: Optional[torch.dtype] = None,
            output_dict: bool = False,
    ):
        super().__init__()
        self.output_dict = output_dict
        self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
        self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
        self.context_length = self.text.context_length
        self.vocab_size = self.text.vocab_size

        lshape = [1] if nonscalar_logit_scale else []
        self.logit_scale = nn.Parameter(torch.ones(lshape) * init_logit_scale)
        if init_logit_bias is not None:
            self.logit_bias = nn.Parameter(torch.ones(lshape) * init_logit_bias)
        else:
            self.logit_bias = None

    def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
        # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
        self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)

    def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
        self.text.lock(unlocked_layers, freeze_layer_norm)

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.visual.set_grad_checkpointing(enable)
        self.text.set_grad_checkpointing(enable)

    @torch.jit.ignore
    def no_weight_decay(self):
        # for timm optimizers, 1d params like logit_scale, logit_bias, ln/bn scale, biases are excluded by default
        no_wd = set()
        if hasattr(self.visual, 'no_weight_decay'):
            for n in self.visual.no_weight_decay():
                no_wd.add('visual.' + n)
        if hasattr(self.text, 'no_weight_decay'):
            for n in self.visual.no_weight_decay():
                no_wd.add('text.' + n)
        return no_wd

    def encode_image(self, image, normalize: bool = False):
        features = self.visual(image)
        return F.normalize(features, dim=-1) if normalize else features

    def encode_text(self, text, normalize: bool = False):
        features = self.text(text)
        return F.normalize(features, dim=-1) if normalize else features

    def get_logits(self, image, text):
        image_features = self.encode_image(image, normalize=True)
        text_features = self.encode_text(text, normalize=True)
        image_logits = self.logit_scale.exp() * image_features @ text_features.T
        if self.logit_bias is not None:
            image_logits += self.logit_bias
        text_logits = image_logits.T
        return image_logits, text_logits

    def forward_intermediates(
            self,
            image: Optional[torch.Tensor] = None,
            text: Optional[torch.Tensor] = None,
            image_indices: Optional[Union[int, List[int]]] = None,
            text_indices: Optional[Union[int, List[int]]] = None,
            stop_early: bool = False,
            normalize: bool = True,
            normalize_intermediates: bool = False,
            intermediates_only: bool = False,
            image_output_fmt: str = 'NCHW',
            image_output_extra_tokens: bool = False,
            text_output_fmt: str = 'NLC',
            text_output_extra_tokens: bool = False,
            output_logits: bool = False,
            output_logit_scale_bias: bool = False,
    ) -> Dict[str, Union[torch.Tensor, List[torch.Tensor]]]:
        """ Forward features that returns intermediates.

        Args:
            image: Input image tensor
            text: Input text tensor
            image_indices: For image tower, Take last n blocks if int, all if None, select matching indices if sequence
            text_indices: Take last n blocks if int, all if None, select matching indices if sequence
            stop_early: Stop iterating over blocks when last desired intermediate hit
            normalize: L2 Normalize final image and text features (if present)
            normalize_intermediates: Apply final encoder norm layer to all intermediates (if possible)
            intermediates_only: Only return intermediate features, do not return final features
            image_output_fmt: Shape of intermediate image feature outputs
            image_output_extra_tokens: Return both prefix and spatial intermediate tokens
            text_output_fmt: Shape of intermediate text feature outputs
            text_output_extra_tokens: Return both prefix and spatial intermediate tokens
            output_logits: Include logits in output
            output_logit_scale_bias: Include the logit scale bias in the output
        Returns:

        """
        output = {}
        if intermediates_only:
            # intermediates only disables final feature normalization, and include logits
            normalize = False
            output_logits = False
        if output_logits:
            assert image is not None and text is not None, 'Both image and text inputs are required to compute logits'

        if image is not None:
            image_output = self.visual.forward_intermediates(
                image,
                indices=image_indices,
                stop_early=stop_early,
                normalize_intermediates=normalize_intermediates,
                intermediates_only=intermediates_only,
                output_fmt=image_output_fmt,
                output_extra_tokens=image_output_extra_tokens,
            )
            if normalize and "image_features" in image_output:
                image_output["image_features"] = F.normalize(image_output["image_features"], dim=-1)
            output.update(image_output)

        if text is not None:
            text_output = self.text.forward_intermediates(
                text,
                indices=text_indices,
                stop_early=stop_early,
                normalize_intermediates=normalize_intermediates,
                intermediates_only=intermediates_only,
                output_fmt=text_output_fmt,
                output_extra_tokens=text_output_extra_tokens,
            )
            if normalize and "text_features" in text_output:
                text_output["text_features"] = F.normalize(text_output["text_features"], dim=-1)
            output.update(text_output)

        logit_scale_exp = self.logit_scale.exp() if output_logits or output_logit_scale_bias else None

        if output_logits:
            image_logits = logit_scale_exp * output["image_features"] @ output["text_features"].T
            if self.logit_bias is not None:
                image_logits += self.logit_bias
            text_logits = image_logits.T
            output["image_logits"] = image_logits
            output["text_logits"] = text_logits

        if output_logit_scale_bias:
            output["logit_scale"] = logit_scale_exp
            if self.logit_bias is not None:
                output['logit_bias'] = self.logit_bias

        return output

    def forward(
            self,
            image: Optional[torch.Tensor] = None,
            text: Optional[torch.Tensor] = None,
    ):
        image_features = self.encode_image(image, normalize=True) if image is not None else None
        text_features = self.encode_text(text, normalize=True) if text is not None else None

        if self.output_dict:
            out_dict = {
                "image_features": image_features,
                "text_features": text_features,
                "logit_scale": self.logit_scale.exp()
            }
            if self.logit_bias is not None:
                out_dict['logit_bias'] = self.logit_bias
            return out_dict

        if self.logit_bias is not None:
            return image_features, text_features, self.logit_scale.exp(), self.logit_bias
        return image_features, text_features, self.logit_scale.exp()


def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
    """Convert applicable model parameters to low-precision (bf16 or fp16)"""

    def _convert_weights(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
            l.weight.data = l.weight.data.to(dtype)
            if l.bias is not None:
                l.bias.data = l.bias.data.to(dtype)

        if isinstance(l, (nn.MultiheadAttention, Attention)):
            for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
                tensor = getattr(l, attr)
                if tensor is not None:
                    tensor.data = tensor.data.to(dtype)

        if isinstance(l, (CLIP, TextTransformer)):
            # convert text nn.Parameter projections
            attr = getattr(l, "text_projection", None)
            if attr is not None:
                attr.data = attr.data.to(dtype)

        if isinstance(l, VisionTransformer):
            # convert vision nn.Parameter projections
            attr = getattr(l, "proj", None)
            if attr is not None:
                attr.data = attr.data.to(dtype)

    model.apply(_convert_weights)


convert_weights_to_fp16 = convert_weights_to_lp  # backwards compat


# used to maintain checkpoint compatibility
def convert_to_custom_text_state_dict(state_dict: dict):
    if 'text_projection' in state_dict:
        # old format state_dict, move text tower -> .text
        new_state_dict = {}
        for k, v in state_dict.items():
            if any(k.startswith(p) for p in (
                'text_projection',
                'positional_embedding',
                'token_embedding',
                'transformer',
                'ln_final',
            )):
                k = 'text.' + k
            new_state_dict[k] = v
        return new_state_dict
    return state_dict


def build_model_from_openai_state_dict(
        state_dict: dict,
        quick_gelu=True,
        cast_dtype=torch.float16,
):
    vit = "visual.proj" in state_dict

    if vit:
        vision_width = state_dict["visual.conv1.weight"].shape[0]
        vision_layers = len(
            [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
        vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
        grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
        image_size = vision_patch_size * grid_size
    else:
        counts: list = [
            len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
        vision_layers = tuple(counts)
        vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
        output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
        vision_patch_size = None
        assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
        image_size = output_width * 32

    embed_dim = state_dict["text_projection"].shape[1]
    context_length = state_dict["positional_embedding"].shape[0]
    vocab_size = state_dict["token_embedding.weight"].shape[0]
    transformer_width = state_dict["ln_final.weight"].shape[0]
    transformer_heads = transformer_width // 64
    transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))

    vision_cfg = CLIPVisionCfg(
        layers=vision_layers,
        width=vision_width,
        patch_size=vision_patch_size,
        image_size=image_size,
    )
    text_cfg = CLIPTextCfg(
        context_length=context_length,
        vocab_size=vocab_size,
        width=transformer_width,
        heads=transformer_heads,
        layers=transformer_layers,
    )
    model = CLIP(
        embed_dim,
        vision_cfg=vision_cfg,
        text_cfg=text_cfg,
        quick_gelu=quick_gelu,  # OpenAI models were trained with QuickGELU
        cast_dtype=cast_dtype,
    )

    for key in ["input_resolution", "context_length", "vocab_size"]:
        state_dict.pop(key, None)
    convert_weights_to_fp16(model)  # OpenAI state dicts are partially converted to float16
    model.load_state_dict(state_dict)
    return model.eval()


def trace_model(model, batch_size=256, device=torch.device('cpu')):
    model.eval()
    image_size = model.visual.image_size
    example_images = torch.ones((batch_size, 2, image_size, image_size), device=device)
    example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
    example_concentration = torch.rand((batch_size, 2), device=device)
    example_time = torch.rand((batch_size, 1), device=device)
    example_compound_embedding = torch.rand((batch_size, 159), device=device)
    model = torch.jit.trace_module(
        model,
        inputs=dict(
            forward=(example_images, example_text, example_concentration, example_time, example_compound_embedding),
            encode_text=(example_text, True, example_concentration, example_time, example_compound_embedding),
            encode_image=(example_images,)
        ))
    model.visual.image_size = image_size
    return model


def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
    # Rescale the grid of position embeddings when loading from state_dict
    old_pos_embed = state_dict.get('visual.positional_embedding', None)
    if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
        return
    grid_size = to_2tuple(model.visual.grid_size)
    extra_tokens = 1  # FIXME detect different token configs (ie no class token, or more)
    new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
    if new_seq_len == old_pos_embed.shape[0]:
        return

    if extra_tokens:
        pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
    else:
        pos_emb_tok, pos_emb_img = None, old_pos_embed
    old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))

    logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
    pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
    pos_emb_img = F.interpolate(
        pos_emb_img,
        size=grid_size,
        mode=interpolation,
        antialias=antialias,
        align_corners=False,
    )
    pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
    if pos_emb_tok is not None:
        new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
    else:
        new_pos_embed = pos_emb_img
    state_dict['visual.positional_embedding'] = new_pos_embed


def resize_text_pos_embed(state_dict, model, interpolation: str = 'linear', antialias: bool = False):
    old_pos_embed = state_dict.get('positional_embedding', None)
    if old_pos_embed is None:
        return
    # FIXME add support for text cls_token
    model_pos_embed = getattr(model, 'positional_embedding', None)
    if model_pos_embed is None:
        model_pos_embed = getattr(model.text, 'positional_embedding', None)

    old_num_pos = old_pos_embed.shape[0]
    old_width = old_pos_embed.shape[1]
    num_pos = model_pos_embed.shape[0]
    width = model_pos_embed.shape[1]
    assert old_width == width, 'text pos_embed width changed!'
    if old_num_pos == num_pos:
        return

    logging.info('Resizing text position embedding num_pos from %s to %s', old_num_pos, num_pos)
    old_pos_embed = old_pos_embed.reshape(1, old_num_pos, old_width).permute(0, 2, 1)
    old_pos_embed = F.interpolate(
        old_pos_embed,
        size=num_pos,
        mode=interpolation,
        antialias=antialias,
        align_corners=False,
    )
    old_pos_embed = old_pos_embed.permute(0, 2, 1)[0]
    new_pos_embed = old_pos_embed

    state_dict['positional_embedding'] = new_pos_embed


def get_model_preprocess_cfg(model):
    module = getattr(model, 'visual', model)
    preprocess_cfg = getattr(module, 'preprocess_cfg', {})
    if not preprocess_cfg:
        # use separate legacy attributes if preprocess_cfg dict not found
        size = getattr(module, 'image_size')
        if size is not None:
            preprocess_cfg['size'] = size
        mean = getattr(module, 'image_mean', None)
        if mean is not None:
            preprocess_cfg['mean'] = mean
        std = getattr(module, 'image_std', None)
        if std is not None:
            preprocess_cfg['std'] = std
    return preprocess_cfg


def set_model_preprocess_cfg(model, preprocess_cfg: Dict[str, Any]):
    module = getattr(model, 'visual', model)
    module.image_mean = preprocess_cfg['mean']  # legacy attribute, keeping for bwd compat
    module.image_std = preprocess_cfg['std']  # legacy attribute, keeping for bwd compat
    module.preprocess_cfg = copy.deepcopy(preprocess_cfg)  # new attr, package all pp cfg as dict


def get_model_tokenize_cfg(model):
    module = getattr(model, 'text', model)
    cfg = {}
    context_length = getattr(module, 'context_length', None)
    if context_length is not None:
        cfg['context_length'] = context_length
    vocab_size = getattr(module, 'vocab_size', None)
    if vocab_size is not None:
        cfg['vocab_size'] = vocab_size
    return cfg