|
|
import os |
|
|
import warnings |
|
|
from typing import Optional |
|
|
|
|
|
import torch |
|
|
import torch.distributed as dist |
|
|
|
|
|
try: |
|
|
import horovod.torch as hvd |
|
|
except ImportError: |
|
|
hvd = None |
|
|
|
|
|
|
|
|
def is_global_master(args): |
|
|
return args.rank == 0 |
|
|
|
|
|
|
|
|
def is_local_master(args): |
|
|
return args.local_rank == 0 |
|
|
|
|
|
|
|
|
def is_master(args, local=False): |
|
|
return is_local_master(args) if local else is_global_master(args) |
|
|
|
|
|
|
|
|
def is_device_available(device): |
|
|
device_type = torch.device(device).type |
|
|
is_avail = False |
|
|
is_known = False |
|
|
if device_type == 'cuda': |
|
|
is_avail = torch.cuda.is_available() |
|
|
is_known = True |
|
|
elif device_type == 'npu': |
|
|
|
|
|
is_avail = torch.npu.is_available() |
|
|
is_known = True |
|
|
elif device_type == 'mps': |
|
|
is_avail = torch.backends.mps.is_available() |
|
|
is_known = True |
|
|
elif device_type == 'cpu': |
|
|
is_avail = True |
|
|
is_known = True |
|
|
|
|
|
return is_avail, is_known |
|
|
|
|
|
|
|
|
def set_device(device): |
|
|
if device.startswith('cuda:'): |
|
|
torch.cuda.set_device(device) |
|
|
elif device.startswith('npu:'): |
|
|
torch.npu.set_device(device) |
|
|
|
|
|
|
|
|
def is_using_horovod(): |
|
|
|
|
|
|
|
|
ompi_vars = ["OMPI_COMM_WORLD_RANK", "OMPI_COMM_WORLD_SIZE"] |
|
|
pmi_vars = ["PMI_RANK", "PMI_SIZE"] |
|
|
if all([var in os.environ for var in ompi_vars]) or all([var in os.environ for var in pmi_vars]): |
|
|
return True |
|
|
else: |
|
|
return False |
|
|
|
|
|
|
|
|
def is_using_distributed(): |
|
|
if 'WORLD_SIZE' in os.environ: |
|
|
return int(os.environ['WORLD_SIZE']) > 1 |
|
|
if 'SLURM_NTASKS' in os.environ: |
|
|
return int(os.environ['SLURM_NTASKS']) > 1 |
|
|
return False |
|
|
|
|
|
|
|
|
def world_info_from_env(): |
|
|
local_rank = 0 |
|
|
for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'): |
|
|
if v in os.environ: |
|
|
local_rank = int(os.environ[v]) |
|
|
break |
|
|
global_rank = 0 |
|
|
for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'): |
|
|
if v in os.environ: |
|
|
global_rank = int(os.environ[v]) |
|
|
break |
|
|
world_size = 1 |
|
|
for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'): |
|
|
if v in os.environ: |
|
|
world_size = int(os.environ[v]) |
|
|
break |
|
|
|
|
|
return local_rank, global_rank, world_size |
|
|
|
|
|
|
|
|
def init_distributed_device(args): |
|
|
|
|
|
|
|
|
args.distributed = False |
|
|
args.world_size = 1 |
|
|
args.rank = 0 |
|
|
args.local_rank = 0 |
|
|
result = init_distributed_device_so( |
|
|
device=getattr(args, 'device', 'cuda'), |
|
|
dist_backend=getattr(args, 'dist_backend', None), |
|
|
dist_url=getattr(args, 'dist_url', None), |
|
|
horovod=getattr(args, 'horovod', False), |
|
|
no_set_device_rank=getattr(args, 'no_set_device_rank', False), |
|
|
) |
|
|
args.device = result['device'] |
|
|
args.world_size = result['world_size'] |
|
|
args.rank = result['global_rank'] |
|
|
args.local_rank = result['local_rank'] |
|
|
args.distributed = result['distributed'] |
|
|
device = torch.device(args.device) |
|
|
return device |
|
|
|
|
|
|
|
|
def init_distributed_device_so( |
|
|
device: str = 'cuda', |
|
|
dist_backend: Optional[str] = None, |
|
|
dist_url: Optional[str] = None, |
|
|
horovod: bool = False, |
|
|
no_set_device_rank: bool = False, |
|
|
): |
|
|
|
|
|
|
|
|
distributed = False |
|
|
world_size = 1 |
|
|
global_rank = 0 |
|
|
local_rank = 0 |
|
|
device_type, *device_idx = device.split(':', maxsplit=1) |
|
|
is_avail, is_known = is_device_available(device_type) |
|
|
if not is_known: |
|
|
warnings.warn(f"Device {device} was not known and checked for availability, trying anyways.") |
|
|
elif not is_avail: |
|
|
warnings.warn(f"Device {device} was not available, falling back to CPU.") |
|
|
device_type = device = 'cpu' |
|
|
|
|
|
if horovod: |
|
|
import horovod.torch as hvd |
|
|
assert hvd is not None, "Horovod is not installed" |
|
|
hvd.init() |
|
|
local_rank = int(hvd.local_rank()) |
|
|
global_rank = hvd.rank() |
|
|
world_size = hvd.size() |
|
|
distributed = True |
|
|
elif is_using_distributed(): |
|
|
if dist_backend is None: |
|
|
dist_backends = { |
|
|
"cuda": "nccl", |
|
|
"hpu": "hccl", |
|
|
"npu": "hccl", |
|
|
"xpu": "ccl", |
|
|
} |
|
|
dist_backend = dist_backends.get(device_type, 'gloo') |
|
|
|
|
|
dist_url = dist_url or 'env://' |
|
|
|
|
|
if 'SLURM_PROCID' in os.environ: |
|
|
|
|
|
local_rank, global_rank, world_size = world_info_from_env() |
|
|
|
|
|
os.environ['LOCAL_RANK'] = str(local_rank) |
|
|
os.environ['RANK'] = str(global_rank) |
|
|
os.environ['WORLD_SIZE'] = str(world_size) |
|
|
torch.distributed.init_process_group( |
|
|
backend=dist_backend, |
|
|
init_method=dist_url, |
|
|
world_size=world_size, |
|
|
rank=global_rank, |
|
|
) |
|
|
else: |
|
|
|
|
|
local_rank, _, _ = world_info_from_env() |
|
|
torch.distributed.init_process_group( |
|
|
backend=dist_backend, |
|
|
init_method=dist_url, |
|
|
) |
|
|
world_size = torch.distributed.get_world_size() |
|
|
global_rank = torch.distributed.get_rank() |
|
|
distributed = True |
|
|
|
|
|
if distributed and not no_set_device_rank and device_type not in ('cpu', 'mps'): |
|
|
|
|
|
|
|
|
if device_idx: |
|
|
warnings.warn(f'device index {device_idx[0]} removed from specified ({device}).') |
|
|
device = f'{device_type}:{local_rank}' |
|
|
set_device(device) |
|
|
|
|
|
return dict( |
|
|
device=device, |
|
|
global_rank=global_rank, |
|
|
local_rank=local_rank, |
|
|
world_size=world_size, |
|
|
distributed=distributed, |
|
|
) |
|
|
|
|
|
|
|
|
def broadcast_object(args, obj, src=0): |
|
|
|
|
|
if args.horovod: |
|
|
return hvd.broadcast_object(obj, root_rank=src) |
|
|
else: |
|
|
if args.rank == src: |
|
|
objects = [obj] |
|
|
else: |
|
|
objects = [None] |
|
|
dist.broadcast_object_list(objects, src=src) |
|
|
return objects[0] |
|
|
|
|
|
|
|
|
def all_gather_object(args, obj, dst=0): |
|
|
|
|
|
if args.horovod: |
|
|
return hvd.allgather_object(obj) |
|
|
else: |
|
|
objects = [None for _ in range(args.world_size)] |
|
|
dist.all_gather_object(objects, obj) |
|
|
return objects |
|
|
|