# -*- coding: utf-8 -*- #Author: Lart Pang (https://github.com/lartpang) import torch import torch.nn.functional as F def rescale_2x(x: torch.Tensor, scale_factor=2): return F.interpolate(x, scale_factor=scale_factor, mode="bilinear", align_corners=False) def resize_to(x: torch.Tensor, tgt_hw: tuple): return F.interpolate(x, size=tgt_hw, mode="bilinear", align_corners=False) def clip_grad(params, mode, clip_cfg: dict): if mode == "norm": if "max_norm" not in clip_cfg: raise ValueError("`clip_cfg` must contain `max_norm`.") torch.nn.utils.clip_grad_norm_( params, max_norm=clip_cfg.get("max_norm"), norm_type=clip_cfg.get("norm_type", 2.0), ) elif mode == "value": if "clip_value" not in clip_cfg: raise ValueError("`clip_cfg` must contain `clip_value`.") torch.nn.utils.clip_grad_value_(params, clip_value=clip_cfg.get("clip_value")) else: raise NotImplementedError