--- license: apache-2.0 language: - en --- # Pretrained base-d20 This model is trained with the [nanochat recipe](https://github.com/karpathy/nanochat) by [Andrej Karpathy](https://huggingface.co/karpathy). It was trained with a depth of 20 on 2 billion tokens and corresponds to this [tokenizer](https://huggingface.co/nanochat-students/nanochat-tokenizer-2B). I will combine this repo with the tokenizer. ## Usage ```python from transformers import AutoConfig, AutoModel, AutoTokenizer import torch model_dir = "nanochat-students/base-d20" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModel.from_pretrained(model_dir, trust_remote_code=True) model = model.to(device) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) prompt = "The capital of Belgium is " input_ids = tokenizer.encode(prompt, prepend=tokenizer.get_bos_token_id()) ids = torch.tensor([input_ids], dtype=torch.long, device=device) max_new_tokens = 50 with torch.inference_mode(): for _ in range(max_new_tokens): outputs = model(input_ids=ids) logits = outputs["logits"] if isinstance(outputs, dict) else outputs.logits next_token = torch.argmax(logits[:, -1, :], dim=-1, keepdim=True) ids = torch.cat([ids, next_token], dim=1) decoded = tokenizer.decode(ids[0].tolist()) print(decoded) ``` ## Base model evaluation timestamp: 2025-10-14 16:16:53 - Model: base_model (step 21400) - CORE metric: 0.1963 - hellaswag_zeroshot: 0.2634 - jeopardy: 0.0959 - bigbench_qa_wikidata: 0.4993 - arc_easy: 0.5269 - arc_challenge: 0.1251 - copa: 0.4400 - commonsense_qa: 0.0653 - piqa: 0.3743 - openbook_qa: 0.1440 - lambada_openai: 0.3683 - hellaswag: 0.2630 - winograd: 0.2674 - winogrande: 0.0923 - bigbench_dyck_languages: 0.1050 - agi_eval_lsat_ar: 0.0326 - bigbench_cs_algorithms: 0.3674 - bigbench_operators: 0.1524 - bigbench_repeat_copy_logic: 0.0000 - squad: 0.2222 - coqa: 0.1957 - boolq: -0.4615 - bigbench_language_identification: 0.1801 ## Base model loss timestamp: 2025-10-14 16:11:41 - train bpb: 0.8147 - val bpb: 0.8121 - sample 0: <|bos|>The capital of France is Paris. It is the largest city in France and the capital of the country. - sample 1: <|bos|>The chemical symbol of gold is Au and the atomic number is 79. Gold is a soft, malleable, - sample 2: <|bos|>If yesterday was Friday, then tomorrow will be Saturday. If today is Monday, then tomorrow will be Tuesday. If today is - sample 3: <|bos|>The opposite of hot is cold. The opposite of hot is cold. The opposite of hot is cold. - sample 4: <|bos|>The planets of the solar system are: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, - sample 5: <|bos|>My favorite color is blue. I love the color blue because it is a color that is so versatile - sample 6: <|bos|>If 5*x + 3 = 13, then x is a factor of 5. If 5*x + 3 = ## Base model training timestamp: 2025-10-14 14:28:31 - run: dummy - depth: 20 - max_seq_len: 2048 - num_iterations: -1 - target_flops: -1.0000 - target_param_data_ratio: 20 - device_batch_size: 32 - total_batch_size: 524,288 - embedding_lr: 0.2000 - unembedding_lr: 0.0040 - weight_decay: 0.0000 - matrix_lr: 0.0200 - grad_clip: 1.0000 - eval_every: 250 - eval_tokens: 10,485,760 - core_metric_every: 2000 - core_metric_max_per_task: 500 - sample_every: 2000 - model_tag: - Number of parameters: 560,988,160 - Number of FLOPs per token: 3.491758e+09 - Calculated number of iterations: 21,400 - Number of training tokens: 11,219,763,200 - Tokens : Params ratio: 20.0000 - DDP world size: 8 - warmup_ratio: 0.0000 - warmdown_ratio: 0.2000 - final_lr_frac: 0.0000 - Minimum validation bpb: 0.8120 - Final validation bpb: 0.8120 - CORE metric estimate: 0.2059 - MFU %: 48.36% - Total training flops: 3.917670e+19 - Total training time: 172.18m - Peak memory usage: 75422.02MiB ## Training Logs Logs are available on the trackio space [here](https://nanochat-students-trackio.hf.space)