paolinox/mobilenet-FT-food101
Browse files- README.md +107 -0
- config.json +43 -0
- model.safetensors +3 -0
- preprocessor_config.json +27 -0
- training_args.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
base_model: google/mobilenet_v2_1.0_224
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
datasets:
|
| 7 |
+
- food101
|
| 8 |
+
metrics:
|
| 9 |
+
- accuracy
|
| 10 |
+
model-index:
|
| 11 |
+
- name: mobilenet-finetuned-food101
|
| 12 |
+
results:
|
| 13 |
+
- task:
|
| 14 |
+
name: Image Classification
|
| 15 |
+
type: image-classification
|
| 16 |
+
dataset:
|
| 17 |
+
name: food101
|
| 18 |
+
type: food101
|
| 19 |
+
config: default
|
| 20 |
+
split: train[:5000]
|
| 21 |
+
args: default
|
| 22 |
+
metrics:
|
| 23 |
+
- name: Accuracy
|
| 24 |
+
type: accuracy
|
| 25 |
+
value: 0.821
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 29 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 30 |
+
|
| 31 |
+
# mobilenet-finetuned-food101
|
| 32 |
+
|
| 33 |
+
This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the food101 dataset.
|
| 34 |
+
It achieves the following results on the evaluation set:
|
| 35 |
+
- Loss: 0.5518
|
| 36 |
+
- Accuracy: 0.821
|
| 37 |
+
|
| 38 |
+
## Model description
|
| 39 |
+
|
| 40 |
+
More information needed
|
| 41 |
+
|
| 42 |
+
## Intended uses & limitations
|
| 43 |
+
|
| 44 |
+
More information needed
|
| 45 |
+
|
| 46 |
+
## Training and evaluation data
|
| 47 |
+
|
| 48 |
+
More information needed
|
| 49 |
+
|
| 50 |
+
## Training procedure
|
| 51 |
+
|
| 52 |
+
### Training hyperparameters
|
| 53 |
+
|
| 54 |
+
The following hyperparameters were used during training:
|
| 55 |
+
- learning_rate: 5e-05
|
| 56 |
+
- train_batch_size: 128
|
| 57 |
+
- eval_batch_size: 128
|
| 58 |
+
- seed: 42
|
| 59 |
+
- gradient_accumulation_steps: 4
|
| 60 |
+
- total_train_batch_size: 512
|
| 61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 62 |
+
- lr_scheduler_type: linear
|
| 63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 64 |
+
- num_epochs: 30
|
| 65 |
+
|
| 66 |
+
### Training results
|
| 67 |
+
|
| 68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
| 70 |
+
| No log | 1.0 | 6 | 1.9575 | 0.153 |
|
| 71 |
+
| 1.9536 | 2.0 | 12 | 1.8509 | 0.265 |
|
| 72 |
+
| 1.9536 | 3.0 | 18 | 1.7003 | 0.451 |
|
| 73 |
+
| 1.7915 | 4.0 | 24 | 1.5181 | 0.578 |
|
| 74 |
+
| 1.4994 | 5.0 | 30 | 1.3609 | 0.631 |
|
| 75 |
+
| 1.4994 | 6.0 | 36 | 1.2321 | 0.669 |
|
| 76 |
+
| 1.2203 | 7.0 | 42 | 1.0696 | 0.69 |
|
| 77 |
+
| 1.2203 | 8.0 | 48 | 0.9676 | 0.723 |
|
| 78 |
+
| 1.0215 | 9.0 | 54 | 0.8888 | 0.729 |
|
| 79 |
+
| 0.8462 | 10.0 | 60 | 0.8380 | 0.74 |
|
| 80 |
+
| 0.8462 | 11.0 | 66 | 0.7461 | 0.778 |
|
| 81 |
+
| 0.744 | 12.0 | 72 | 0.6724 | 0.792 |
|
| 82 |
+
| 0.744 | 13.0 | 78 | 0.7314 | 0.769 |
|
| 83 |
+
| 0.6496 | 14.0 | 84 | 0.6831 | 0.77 |
|
| 84 |
+
| 0.6143 | 15.0 | 90 | 0.5937 | 0.81 |
|
| 85 |
+
| 0.6143 | 16.0 | 96 | 0.6217 | 0.793 |
|
| 86 |
+
| 0.5468 | 17.0 | 102 | 0.5965 | 0.788 |
|
| 87 |
+
| 0.5468 | 18.0 | 108 | 0.5944 | 0.813 |
|
| 88 |
+
| 0.5428 | 19.0 | 114 | 0.5869 | 0.812 |
|
| 89 |
+
| 0.5193 | 20.0 | 120 | 0.5565 | 0.82 |
|
| 90 |
+
| 0.5193 | 21.0 | 126 | 0.6155 | 0.803 |
|
| 91 |
+
| 0.4902 | 22.0 | 132 | 0.5685 | 0.817 |
|
| 92 |
+
| 0.4902 | 23.0 | 138 | 0.6097 | 0.789 |
|
| 93 |
+
| 0.4869 | 24.0 | 144 | 0.6002 | 0.8 |
|
| 94 |
+
| 0.4745 | 25.0 | 150 | 0.5569 | 0.814 |
|
| 95 |
+
| 0.4745 | 26.0 | 156 | 0.5414 | 0.821 |
|
| 96 |
+
| 0.4653 | 27.0 | 162 | 0.5806 | 0.807 |
|
| 97 |
+
| 0.4653 | 28.0 | 168 | 0.5663 | 0.807 |
|
| 98 |
+
| 0.4543 | 29.0 | 174 | 0.5412 | 0.825 |
|
| 99 |
+
| 0.4575 | 30.0 | 180 | 0.5518 | 0.821 |
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
### Framework versions
|
| 103 |
+
|
| 104 |
+
- Transformers 4.35.2
|
| 105 |
+
- Pytorch 2.1.0+cu118
|
| 106 |
+
- Datasets 2.15.0
|
| 107 |
+
- Tokenizers 0.15.0
|
config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "google/mobilenet_v2_1.0_224",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MobileNetV2ForImageClassification"
|
| 5 |
+
],
|
| 6 |
+
"classifier_dropout_prob": 0.2,
|
| 7 |
+
"depth_divisible_by": 8,
|
| 8 |
+
"depth_multiplier": 1.0,
|
| 9 |
+
"expand_ratio": 6,
|
| 10 |
+
"finegrained_output": true,
|
| 11 |
+
"first_layer_is_expansion": true,
|
| 12 |
+
"hidden_act": "relu6",
|
| 13 |
+
"id2label": {
|
| 14 |
+
"0": "beignets",
|
| 15 |
+
"1": "bruschetta",
|
| 16 |
+
"2": "chicken_wings",
|
| 17 |
+
"3": "hamburger",
|
| 18 |
+
"4": "pork_chop",
|
| 19 |
+
"5": "prime_rib",
|
| 20 |
+
"6": "ramen"
|
| 21 |
+
},
|
| 22 |
+
"image_size": 224,
|
| 23 |
+
"initializer_range": 0.02,
|
| 24 |
+
"label2id": {
|
| 25 |
+
"beignets": 0,
|
| 26 |
+
"bruschetta": 1,
|
| 27 |
+
"chicken_wings": 2,
|
| 28 |
+
"hamburger": 3,
|
| 29 |
+
"pork_chop": 4,
|
| 30 |
+
"prime_rib": 5,
|
| 31 |
+
"ramen": 6
|
| 32 |
+
},
|
| 33 |
+
"layer_norm_eps": 0.001,
|
| 34 |
+
"min_depth": 8,
|
| 35 |
+
"model_type": "mobilenet_v2",
|
| 36 |
+
"num_channels": 3,
|
| 37 |
+
"output_stride": 32,
|
| 38 |
+
"problem_type": "single_label_classification",
|
| 39 |
+
"semantic_loss_ignore_index": 255,
|
| 40 |
+
"tf_padding": true,
|
| 41 |
+
"torch_dtype": "float32",
|
| 42 |
+
"transformers_version": "4.35.2"
|
| 43 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ce7b82d2fd228b55d70a63370bb3468087cfdfee4d5ea0e06344e6a1c605bdb4
|
| 3 |
+
size 9105836
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": {
|
| 3 |
+
"height": 224,
|
| 4 |
+
"width": 224
|
| 5 |
+
},
|
| 6 |
+
"do_center_crop": true,
|
| 7 |
+
"do_normalize": true,
|
| 8 |
+
"do_rescale": true,
|
| 9 |
+
"do_resize": true,
|
| 10 |
+
"image_mean": [
|
| 11 |
+
0.5,
|
| 12 |
+
0.5,
|
| 13 |
+
0.5
|
| 14 |
+
],
|
| 15 |
+
"image_processor_type": "MobileNetV2ImageProcessor",
|
| 16 |
+
"image_std": [
|
| 17 |
+
0.5,
|
| 18 |
+
0.5,
|
| 19 |
+
0.5
|
| 20 |
+
],
|
| 21 |
+
"resample": 2,
|
| 22 |
+
"rescale_factor": 0.00392156862745098,
|
| 23 |
+
"size": {
|
| 24 |
+
"shortest_edge": 256
|
| 25 |
+
},
|
| 26 |
+
"use_square_size": false
|
| 27 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4203d7b2f4ed0167633d8dfdc236108a64820595d999f93debac4848b22adb03
|
| 3 |
+
size 4600
|