RecIS: Sparse to Dense, A Unified Training Framework for Recommendation Models
Abstract
RecIS is a unified sparse-dense training framework in PyTorch that optimizes sparse components for efficiency and leverages dense components for existing optimizations, used in Alibaba for large-model enhanced recommendation tasks.
In this paper, we propose RecIS, a unified Sparse-Dense training framework designed to achieve two primary goals: 1. Unified Framework To create a Unified sparse-dense training framework based on the PyTorch ecosystem that meets the training needs of industrial-grade recommendation models that integrated with large models. 2.System Optimization To optimize the sparse component, offering superior efficiency over the TensorFlow-based recommendation models. The dense component, meanwhile, leverages existing optimization technologies within the PyTorch ecosystem. Currently, RecIS is being used in Alibaba for numerous large-model enhanced recommendation training tasks, and some traditional sparse models have also begun training in it.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper