new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

FreeZe: Training-free zero-shot 6D pose estimation with geometric and vision foundation models

Estimating the 6D pose of objects unseen during training is highly desirable yet challenging. Zero-shot object 6D pose estimation methods address this challenge by leveraging additional task-specific supervision provided by large-scale, photo-realistic synthetic datasets. However, their performance heavily depends on the quality and diversity of rendered data and they require extensive training. In this work, we show how to tackle the same task but without training on specific data. We propose FreeZe, a novel solution that harnesses the capabilities of pre-trained geometric and vision foundation models. FreeZe leverages 3D geometric descriptors learned from unrelated 3D point clouds and 2D visual features learned from web-scale 2D images to generate discriminative 3D point-level descriptors. We then estimate the 6D pose of unseen objects by 3D registration based on RANSAC. We also introduce a novel algorithm to solve ambiguous cases due to geometrically symmetric objects that is based on visual features. We comprehensively evaluate FreeZe across the seven core datasets of the BOP Benchmark, which include over a hundred 3D objects and 20,000 images captured in various scenarios. FreeZe consistently outperforms all state-of-the-art approaches, including competitors extensively trained on synthetic 6D pose estimation data. Code will be publicly available at https://andreacaraffa.github.io/freeze.

  • 4 authors
·
Dec 1, 2023

Dens3R: A Foundation Model for 3D Geometry Prediction

Recent advances in dense 3D reconstruction have led to significant progress, yet achieving accurate unified geometric prediction remains a major challenge. Most existing methods are limited to predicting a single geometry quantity from input images. However, geometric quantities such as depth, surface normals, and point maps are inherently correlated, and estimating them in isolation often fails to ensure consistency, thereby limiting both accuracy and practical applicability. This motivates us to explore a unified framework that explicitly models the structural coupling among different geometric properties to enable joint regression. In this paper, we present Dens3R, a 3D foundation model designed for joint geometric dense prediction and adaptable to a wide range of downstream tasks. Dens3R adopts a two-stage training framework to progressively build a pointmap representation that is both generalizable and intrinsically invariant. Specifically, we design a lightweight shared encoder-decoder backbone and introduce position-interpolated rotary positional encoding to maintain expressive power while enhancing robustness to high-resolution inputs. By integrating image-pair matching features with intrinsic invariance modeling, Dens3R accurately regresses multiple geometric quantities such as surface normals and depth, achieving consistent geometry perception from single-view to multi-view inputs. Additionally, we propose a post-processing pipeline that supports geometrically consistent multi-view inference. Extensive experiments demonstrate the superior performance of Dens3R across various dense 3D prediction tasks and highlight its potential for broader applications.

CADCrafter: Generating Computer-Aided Design Models from Unconstrained Images

Creating CAD digital twins from the physical world is crucial for manufacturing, design, and simulation. However, current methods typically rely on costly 3D scanning with labor-intensive post-processing. To provide a user-friendly design process, we explore the problem of reverse engineering from unconstrained real-world CAD images that can be easily captured by users of all experiences. However, the scarcity of real-world CAD data poses challenges in directly training such models. To tackle these challenges, we propose CADCrafter, an image-to-parametric CAD model generation framework that trains solely on synthetic textureless CAD data while testing on real-world images. To bridge the significant representation disparity between images and parametric CAD models, we introduce a geometry encoder to accurately capture diverse geometric features. Moreover, the texture-invariant properties of the geometric features can also facilitate the generalization to real-world scenarios. Since compiling CAD parameter sequences into explicit CAD models is a non-differentiable process, the network training inherently lacks explicit geometric supervision. To impose geometric validity constraints, we employ direct preference optimization (DPO) to fine-tune our model with the automatic code checker feedback on CAD sequence quality. Furthermore, we collected a real-world dataset, comprised of multi-view images and corresponding CAD command sequence pairs, to evaluate our method. Experimental results demonstrate that our approach can robustly handle real unconstrained CAD images, and even generalize to unseen general objects.

  • 11 authors
·
Apr 7

DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data

We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets (represented by Neural Radiance Fields) from text prompts. Unlike recent 3D generative models that rely on clean and well-aligned 3D data, limiting them to single or few-class generation, our model is directly trained on extensive noisy and unaligned `in-the-wild' 3D assets, mitigating the key challenge (i.e., data scarcity) in large-scale 3D generation. In particular, DIRECT-3D is a tri-plane diffusion model that integrates two innovations: 1) A novel learning framework where noisy data are filtered and aligned automatically during the training process. Specifically, after an initial warm-up phase using a small set of clean data, an iterative optimization is introduced in the diffusion process to explicitly estimate the 3D pose of objects and select beneficial data based on conditional density. 2) An efficient 3D representation that is achieved by disentangling object geometry and color features with two separate conditional diffusion models that are optimized hierarchically. Given a prompt input, our model generates high-quality, high-resolution, realistic, and complex 3D objects with accurate geometric details in seconds. We achieve state-of-the-art performance in both single-class generation and text-to-3D generation. We also demonstrate that DIRECT-3D can serve as a useful 3D geometric prior of objects, for example to alleviate the well-known Janus problem in 2D-lifting methods such as DreamFusion. The code and models are available for research purposes at: https://github.com/qihao067/direct3d.

  • 5 authors
·
Jun 6, 2024

Photo3D: Advancing Photorealistic 3D Generation through Structure-Aligned Detail Enhancement

Although recent 3D-native generators have made great progress in synthesizing reliable geometry, they still fall short in achieving realistic appearances. A key obstacle lies in the lack of diverse and high-quality real-world 3D assets with rich texture details, since capturing such data is intrinsically difficult due to the diverse scales of scenes, non-rigid motions of objects, and the limited precision of 3D scanners. We introduce Photo3D, a framework for advancing photorealistic 3D generation, which is driven by the image data generated by the GPT-4o-Image model. Considering that the generated images can distort 3D structures due to their lack of multi-view consistency, we design a structure-aligned multi-view synthesis pipeline and construct a detail-enhanced multi-view dataset paired with 3D geometry. Building on it, we present a realistic detail enhancement scheme that leverages perceptual feature adaptation and semantic structure matching to enforce appearance consistency with realistic details while preserving the structural consistency with the 3D-native geometry. Our scheme is general to different 3D-native generators, and we present dedicated training strategies to facilitate the optimization of geometry-texture coupled and decoupled 3D-native generation paradigms. Experiments demonstrate that Photo3D generalizes well across diverse 3D-native generation paradigms and achieves state-of-the-art photorealistic 3D generation performance.

  • 5 authors
·
Dec 9

GeoDream: Disentangling 2D and Geometric Priors for High-Fidelity and Consistent 3D Generation

Text-to-3D generation by distilling pretrained large-scale text-to-image diffusion models has shown great promise but still suffers from inconsistent 3D geometric structures (Janus problems) and severe artifacts. The aforementioned problems mainly stem from 2D diffusion models lacking 3D awareness during the lifting. In this work, we present GeoDream, a novel method that incorporates explicit generalized 3D priors with 2D diffusion priors to enhance the capability of obtaining unambiguous 3D consistent geometric structures without sacrificing diversity or fidelity. Specifically, we first utilize a multi-view diffusion model to generate posed images and then construct cost volume from the predicted image, which serves as native 3D geometric priors, ensuring spatial consistency in 3D space. Subsequently, we further propose to harness 3D geometric priors to unlock the great potential of 3D awareness in 2D diffusion priors via a disentangled design. Notably, disentangling 2D and 3D priors allows us to refine 3D geometric priors further. We justify that the refined 3D geometric priors aid in the 3D-aware capability of 2D diffusion priors, which in turn provides superior guidance for the refinement of 3D geometric priors. Our numerical and visual comparisons demonstrate that GeoDream generates more 3D consistent textured meshes with high-resolution realistic renderings (i.e., 1024 times 1024) and adheres more closely to semantic coherence.

  • 6 authors
·
Nov 29, 2023 1

3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features

We present 3DiffTection, a state-of-the-art method for 3D object detection from single images, leveraging features from a 3D-aware diffusion model. Annotating large-scale image data for 3D detection is resource-intensive and time-consuming. Recently, pretrained large image diffusion models have become prominent as effective feature extractors for 2D perception tasks. However, these features are initially trained on paired text and image data, which are not optimized for 3D tasks, and often exhibit a domain gap when applied to the target data. Our approach bridges these gaps through two specialized tuning strategies: geometric and semantic. For geometric tuning, we fine-tune a diffusion model to perform novel view synthesis conditioned on a single image, by introducing a novel epipolar warp operator. This task meets two essential criteria: the necessity for 3D awareness and reliance solely on posed image data, which are readily available (e.g., from videos) and does not require manual annotation. For semantic refinement, we further train the model on target data with detection supervision. Both tuning phases employ ControlNet to preserve the integrity of the original feature capabilities. In the final step, we harness these enhanced capabilities to conduct a test-time prediction ensemble across multiple virtual viewpoints. Through our methodology, we obtain 3D-aware features that are tailored for 3D detection and excel in identifying cross-view point correspondences. Consequently, our model emerges as a powerful 3D detector, substantially surpassing previous benchmarks, e.g., Cube-RCNN, a precedent in single-view 3D detection by 9.43\% in AP3D on the Omni3D-ARkitscene dataset. Furthermore, 3DiffTection showcases robust data efficiency and generalization to cross-domain data.

  • 4 authors
·
Nov 7, 2023

G3Reg: Pyramid Graph-based Global Registration using Gaussian Ellipsoid Model

This study introduces a novel framework, G3Reg, for fast and robust global registration of LiDAR point clouds. In contrast to conventional complex keypoints and descriptors, we extract fundamental geometric primitives, including planes, clusters, and lines (PCL) from the raw point cloud to obtain low-level semantic segments. Each segment is represented as a unified Gaussian Ellipsoid Model (GEM), using a probability ellipsoid to ensure the ground truth centers are encompassed with a certain degree of probability. Utilizing these GEMs, we present a distrust-and-verify scheme based on a Pyramid Compatibility Graph for Global Registration (PAGOR). Specifically, we establish an upper bound, which can be traversed based on the confidence level for compatibility testing to construct the pyramid graph. Then, we solve multiple maximum cliques (MAC) for each level of the pyramid graph, thus generating the corresponding transformation candidates. In the verification phase, we adopt a precise and efficient metric for point cloud alignment quality, founded on geometric primitives, to identify the optimal candidate. The algorithm's performance is validated on three publicly available datasets and a self-collected multi-session dataset. Parameter settings remained unchanged during the experiment evaluations. The results exhibit superior robustness and real-time performance of the G3Reg framework compared to state-of-the-art methods. Furthermore, we demonstrate the potential for integrating individual GEM and PAGOR components into other registration frameworks to enhance their efficacy. Code: https://github.com/HKUST-Aerial-Robotics/G3Reg

  • 5 authors
·
Aug 22, 2023

Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer

Generating high-quality 3D assets from text and images has long been challenging, primarily due to the absence of scalable 3D representations capable of capturing intricate geometry distributions. In this work, we introduce Direct3D, a native 3D generative model scalable to in-the-wild input images, without requiring a multiview diffusion model or SDS optimization. Our approach comprises two primary components: a Direct 3D Variational Auto-Encoder (D3D-VAE) and a Direct 3D Diffusion Transformer (D3D-DiT). D3D-VAE efficiently encodes high-resolution 3D shapes into a compact and continuous latent triplane space. Notably, our method directly supervises the decoded geometry using a semi-continuous surface sampling strategy, diverging from previous methods relying on rendered images as supervision signals. D3D-DiT models the distribution of encoded 3D latents and is specifically designed to fuse positional information from the three feature maps of the triplane latent, enabling a native 3D generative model scalable to large-scale 3D datasets. Additionally, we introduce an innovative image-to-3D generation pipeline incorporating semantic and pixel-level image conditions, allowing the model to produce 3D shapes consistent with the provided conditional image input. Extensive experiments demonstrate the superiority of our large-scale pre-trained Direct3D over previous image-to-3D approaches, achieving significantly better generation quality and generalization ability, thus establishing a new state-of-the-art for 3D content creation. Project page: https://nju-3dv.github.io/projects/Direct3D/.

  • 8 authors
·
May 23, 2024

Unpaired Multi-domain Attribute Translation of 3D Facial Shapes with a Square and Symmetric Geometric Map

While impressive progress has recently been made in image-oriented facial attribute translation, shape-oriented 3D facial attribute translation remains an unsolved issue. This is primarily limited by the lack of 3D generative models and ineffective usage of 3D facial data. We propose a learning framework for 3D facial attribute translation to relieve these limitations. Firstly, we customize a novel geometric map for 3D shape representation and embed it in an end-to-end generative adversarial network. The geometric map represents 3D shapes symmetrically on a square image grid, while preserving the neighboring relationship of 3D vertices in a local least-square sense. This enables effective learning for the latent representation of data with different attributes. Secondly, we employ a unified and unpaired learning framework for multi-domain attribute translation. It not only makes effective usage of data correlation from multiple domains, but also mitigates the constraint for hardly accessible paired data. Finally, we propose a hierarchical architecture for the discriminator to guarantee robust results against both global and local artifacts. We conduct extensive experiments to demonstrate the advantage of the proposed framework over the state-of-the-art in generating high-fidelity facial shapes. Given an input 3D facial shape, the proposed framework is able to synthesize novel shapes of different attributes, which covers some downstream applications, such as expression transfer, gender translation, and aging. Code at https://github.com/NaughtyZZ/3D_facial_shape_attribute_translation_ssgmap.

  • 6 authors
·
Aug 25, 2023

Lift3D Foundation Policy: Lifting 2D Large-Scale Pretrained Models for Robust 3D Robotic Manipulation

3D geometric information is essential for manipulation tasks, as robots need to perceive the 3D environment, reason about spatial relationships, and interact with intricate spatial configurations. Recent research has increasingly focused on the explicit extraction of 3D features, while still facing challenges such as the lack of large-scale robotic 3D data and the potential loss of spatial geometry. To address these limitations, we propose the Lift3D framework, which progressively enhances 2D foundation models with implicit and explicit 3D robotic representations to construct a robust 3D manipulation policy. Specifically, we first design a task-aware masked autoencoder that masks task-relevant affordance patches and reconstructs depth information, enhancing the 2D foundation model's implicit 3D robotic representation. After self-supervised fine-tuning, we introduce a 2D model-lifting strategy that establishes a positional mapping between the input 3D points and the positional embeddings of the 2D model. Based on the mapping, Lift3D utilizes the 2D foundation model to directly encode point cloud data, leveraging large-scale pretrained knowledge to construct explicit 3D robotic representations while minimizing spatial information loss. In experiments, Lift3D consistently outperforms previous state-of-the-art methods across several simulation benchmarks and real-world scenarios.

  • 11 authors
·
Nov 27, 2024

GeoMan: Temporally Consistent Human Geometry Estimation using Image-to-Video Diffusion

Estimating accurate and temporally consistent 3D human geometry from videos is a challenging problem in computer vision. Existing methods, primarily optimized for single images, often suffer from temporal inconsistencies and fail to capture fine-grained dynamic details. To address these limitations, we present GeoMan, a novel architecture designed to produce accurate and temporally consistent depth and normal estimations from monocular human videos. GeoMan addresses two key challenges: the scarcity of high-quality 4D training data and the need for metric depth estimation to accurately model human size. To overcome the first challenge, GeoMan employs an image-based model to estimate depth and normals for the first frame of a video, which then conditions a video diffusion model, reframing video geometry estimation task as an image-to-video generation problem. This design offloads the heavy lifting of geometric estimation to the image model and simplifies the video model's role to focus on intricate details while using priors learned from large-scale video datasets. Consequently, GeoMan improves temporal consistency and generalizability while requiring minimal 4D training data. To address the challenge of accurate human size estimation, we introduce a root-relative depth representation that retains critical human-scale details and is easier to be estimated from monocular inputs, overcoming the limitations of traditional affine-invariant and metric depth representations. GeoMan achieves state-of-the-art performance in both qualitative and quantitative evaluations, demonstrating its effectiveness in overcoming longstanding challenges in 3D human geometry estimation from videos.

  • 8 authors
·
May 29

EdgeGaussians -- 3D Edge Mapping via Gaussian Splatting

With their meaningful geometry and their omnipresence in the 3D world, edges are extremely useful primitives in computer vision. 3D edges comprise of lines and curves, and methods to reconstruct them use either multi-view images or point clouds as input. State-of-the-art image-based methods first learn a 3D edge point cloud then fit 3D edges to it. The edge point cloud is obtained by learning a 3D neural implicit edge field from which the 3D edge points are sampled on a specific level set (0 or 1). However, such methods present two important drawbacks: i) it is not realistic to sample points on exact level sets due to float imprecision and training inaccuracies. Instead, they are sampled within a range of levels so the points do not lie accurately on the 3D edges and require further processing. ii) Such implicit representations are computationally expensive and require long training times. In this paper, we address these two limitations and propose a 3D edge mapping that is simpler, more efficient, and preserves accuracy. Our method learns explicitly the 3D edge points and their edge direction hence bypassing the need for point sampling. It casts a 3D edge point as the center of a 3D Gaussian and the edge direction as the principal axis of the Gaussian. Such a representation has the advantage of being not only geometrically meaningful but also compatible with the efficient training optimization defined in Gaussian Splatting. Results show that the proposed method produces edges as accurate and complete as the state-of-the-art while being an order of magnitude faster. Code is released at https://github.com/kunalchelani/EdgeGaussians.

  • 4 authors
·
Sep 19, 2024

Mosaic-SDF for 3D Generative Models

Current diffusion or flow-based generative models for 3D shapes divide to two: distilling pre-trained 2D image diffusion models, and training directly on 3D shapes. When training a diffusion or flow models on 3D shapes a crucial design choice is the shape representation. An effective shape representation needs to adhere three design principles: it should allow an efficient conversion of large 3D datasets to the representation form; it should provide a good tradeoff of approximation power versus number of parameters; and it should have a simple tensorial form that is compatible with existing powerful neural architectures. While standard 3D shape representations such as volumetric grids and point clouds do not adhere to all these principles simultaneously, we advocate in this paper a new representation that does. We introduce Mosaic-SDF (M-SDF): a simple 3D shape representation that approximates the Signed Distance Function (SDF) of a given shape by using a set of local grids spread near the shape's boundary. The M-SDF representation is fast to compute for each shape individually making it readily parallelizable; it is parameter efficient as it only covers the space around the shape's boundary; and it has a simple matrix form, compatible with Transformer-based architectures. We demonstrate the efficacy of the M-SDF representation by using it to train a 3D generative flow model including class-conditioned generation with the 3D Warehouse dataset, and text-to-3D generation using a dataset of about 600k caption-shape pairs.

  • 5 authors
·
Dec 14, 2023 4

GeoMVD: Geometry-Enhanced Multi-View Generation Model Based on Geometric Information Extraction

Multi-view image generation holds significant application value in computer vision, particularly in domains like 3D reconstruction, virtual reality, and augmented reality. Most existing methods, which rely on extending single images, face notable computational challenges in maintaining cross-view consistency and generating high-resolution outputs. To address these issues, we propose the Geometry-guided Multi-View Diffusion Model, which incorporates mechanisms for extracting multi-view geometric information and adjusting the intensity of geometric features to generate images that are both consistent across views and rich in detail. Specifically, we design a multi-view geometry information extraction module that leverages depth maps, normal maps, and foreground segmentation masks to construct a shared geometric structure, ensuring shape and structural consistency across different views. To enhance consistency and detail restoration during generation, we develop a decoupled geometry-enhanced attention mechanism that strengthens feature focus on key geometric details, thereby improving overall image quality and detail preservation. Furthermore, we apply an adaptive learning strategy that fine-tunes the model to better capture spatial relationships and visual coherence between the generated views, ensuring realistic results. Our model also incorporates an iterative refinement process that progressively improves the output quality through multiple stages of image generation. Finally, a dynamic geometry information intensity adjustment mechanism is proposed to adaptively regulate the influence of geometric data, optimizing overall quality while ensuring the naturalness of generated images. More details can be found on the project page: https://sobeymil.github.io/GeoMVD.com.

  • 3 authors
·
Nov 15

FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models

3D scene reconstruction is a long-standing vision task. Existing approaches can be categorized into geometry-based and learning-based methods. The former leverages multi-view geometry but can face catastrophic failures due to the reliance on accurate pixel correspondence across views. The latter was proffered to mitigate these issues by learning 2D or 3D representation directly. However, without a large-scale video or 3D training data, it can hardly generalize to diverse real-world scenarios due to the presence of tens of millions or even billions of optimization parameters in the deep network. Recently, robust monocular depth estimation models trained with large-scale datasets have been proven to possess weak 3D geometry prior, but they are insufficient for reconstruction due to the unknown camera parameters, the affine-invariant property, and inter-frame inconsistency. Here, we propose a novel test-time optimization approach that can transfer the robustness of affine-invariant depth models such as LeReS to challenging diverse scenes while ensuring inter-frame consistency, with only dozens of parameters to optimize per video frame. Specifically, our approach involves freezing the pre-trained affine-invariant depth model's depth predictions, rectifying them by optimizing the unknown scale-shift values with a geometric consistency alignment module, and employing the resulting scale-consistent depth maps to robustly obtain camera poses and achieve dense scene reconstruction, even in low-texture regions. Experiments show that our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.

  • 6 authors
·
Aug 10, 2023

Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields

3D Gaussian splatting (3DGS) has recently emerged as an alternative representation that leverages a 3D Gaussian-based representation and introduces an approximated volumetric rendering, achieving very fast rendering speed and promising image quality. Furthermore, subsequent studies have successfully extended 3DGS to dynamic 3D scenes, demonstrating its wide range of applications. However, a significant drawback arises as 3DGS and its following methods entail a substantial number of Gaussians to maintain the high fidelity of the rendered images, which requires a large amount of memory and storage. To address this critical issue, we place a specific emphasis on two key objectives: reducing the number of Gaussian points without sacrificing performance and compressing the Gaussian attributes, such as view-dependent color and covariance. To this end, we propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance. In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field rather than relying on spherical harmonics. Finally, we learn codebooks to compactly represent the geometric and temporal attributes by residual vector quantization. With model compression techniques such as quantization and entropy coding, we consistently show over 25x reduced storage and enhanced rendering speed compared to 3DGS for static scenes, while maintaining the quality of the scene representation. For dynamic scenes, our approach achieves more than 12x storage efficiency and retains a high-quality reconstruction compared to the existing state-of-the-art methods. Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering. Our project page is available at https://maincold2.github.io/c3dgs/.

  • 5 authors
·
Aug 7, 2024 3

Point-PRC: A Prompt Learning Based Regulation Framework for Generalizable Point Cloud Analysis

This paper investigates the 3D domain generalization (3DDG) ability of large 3D models based on prevalent prompt learning. Recent works demonstrate the performances of 3D point cloud recognition can be boosted remarkably by parameter-efficient prompt tuning. However, we observe that the improvement on downstream tasks comes at the expense of a severe drop in 3D domain generalization. To resolve this challenge, we present a comprehensive regulation framework that allows the learnable prompts to actively interact with the well-learned general knowledge in large 3D models to maintain good generalization. Specifically, the proposed framework imposes multiple explicit constraints on the prompt learning trajectory by maximizing the mutual agreement between task-specific predictions and task-agnostic knowledge. We design the regulation framework as a plug-and-play module to embed into existing representative large 3D models. Surprisingly, our method not only realizes consistently increasing generalization ability but also enhances task-specific 3D recognition performances across various 3DDG benchmarks by a clear margin. Considering the lack of study and evaluation on 3DDG, we also create three new benchmarks, namely base-to-new, cross-dataset and few-shot generalization benchmarks, to enrich the field and inspire future research. Code and benchmarks are available at https://github.com/auniquesun/Point-PRC.

  • 7 authors
·
Oct 27, 2024

CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design

Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.

  • 5 authors
·
Jul 13

ImGeoNet: Image-induced Geometry-aware Voxel Representation for Multi-view 3D Object Detection

We propose ImGeoNet, a multi-view image-based 3D object detection framework that models a 3D space by an image-induced geometry-aware voxel representation. Unlike previous methods which aggregate 2D features into 3D voxels without considering geometry, ImGeoNet learns to induce geometry from multi-view images to alleviate the confusion arising from voxels of free space, and during the inference phase, only images from multiple views are required. Besides, a powerful pre-trained 2D feature extractor can be leveraged by our representation, leading to a more robust performance. To evaluate the effectiveness of ImGeoNet, we conduct quantitative and qualitative experiments on three indoor datasets, namely ARKitScenes, ScanNetV2, and ScanNet200. The results demonstrate that ImGeoNet outperforms the current state-of-the-art multi-view image-based method, ImVoxelNet, on all three datasets in terms of detection accuracy. In addition, ImGeoNet shows great data efficiency by achieving results comparable to ImVoxelNet with 100 views while utilizing only 40 views. Furthermore, our studies indicate that our proposed image-induced geometry-aware representation can enable image-based methods to attain superior detection accuracy than the seminal point cloud-based method, VoteNet, in two practical scenarios: (1) scenarios where point clouds are sparse and noisy, such as in ARKitScenes, and (2) scenarios involve diverse object classes, particularly classes of small objects, as in the case in ScanNet200.

  • 8 authors
·
Aug 17, 2023

Yes, we CANN: Constrained Approximate Nearest Neighbors for local feature-based visual localization

Large-scale visual localization systems continue to rely on 3D point clouds built from image collections using structure-from-motion. While the 3D points in these models are represented using local image features, directly matching a query image's local features against the point cloud is challenging due to the scale of the nearest-neighbor search problem. Many recent approaches to visual localization have thus proposed a hybrid method, where first a global (per image) embedding is used to retrieve a small subset of database images, and local features of the query are matched only against those. It seems to have become common belief that global embeddings are critical for said image-retrieval in visual localization, despite the significant downside of having to compute two feature types for each query image. In this paper, we take a step back from this assumption and propose Constrained Approximate Nearest Neighbors (CANN), a joint solution of k-nearest-neighbors across both the geometry and appearance space using only local features. We first derive the theoretical foundation for k-nearest-neighbor retrieval across multiple metrics and then showcase how CANN improves visual localization. Our experiments on public localization benchmarks demonstrate that our method significantly outperforms both state-of-the-art global feature-based retrieval and approaches using local feature aggregation schemes. Moreover, it is an order of magnitude faster in both index and query time than feature aggregation schemes for these datasets. Code will be released.

  • 3 authors
·
Jun 15, 2023

From an Image to a Scene: Learning to Imagine the World from a Million 360 Videos

Three-dimensional (3D) understanding of objects and scenes play a key role in humans' ability to interact with the world and has been an active area of research in computer vision, graphics, and robotics. Large scale synthetic and object-centric 3D datasets have shown to be effective in training models that have 3D understanding of objects. However, applying a similar approach to real-world objects and scenes is difficult due to a lack of large-scale data. Videos are a potential source for real-world 3D data, but finding diverse yet corresponding views of the same content has shown to be difficult at scale. Furthermore, standard videos come with fixed viewpoints, determined at the time of capture. This restricts the ability to access scenes from a variety of more diverse and potentially useful perspectives. We argue that large scale 360 videos can address these limitations to provide: scalable corresponding frames from diverse views. In this paper, we introduce 360-1M, a 360 video dataset, and a process for efficiently finding corresponding frames from diverse viewpoints at scale. We train our diffusion-based model, Odin, on 360-1M. Empowered by the largest real-world, multi-view dataset to date, Odin is able to freely generate novel views of real-world scenes. Unlike previous methods, Odin can move the camera through the environment, enabling the model to infer the geometry and layout of the scene. Additionally, we show improved performance on standard novel view synthesis and 3D reconstruction benchmarks.

  • 10 authors
·
Dec 10, 2024

LoRA3D: Low-Rank Self-Calibration of 3D Geometric Foundation Models

Emerging 3D geometric foundation models, such as DUSt3R, offer a promising approach for in-the-wild 3D vision tasks. However, due to the high-dimensional nature of the problem space and scarcity of high-quality 3D data, these pre-trained models still struggle to generalize to many challenging circumstances, such as limited view overlap or low lighting. To address this, we propose LoRA3D, an efficient self-calibration pipeline to specialize the pre-trained models to target scenes using their own multi-view predictions. Taking sparse RGB images as input, we leverage robust optimization techniques to refine multi-view predictions and align them into a global coordinate frame. In particular, we incorporate prediction confidence into the geometric optimization process, automatically re-weighting the confidence to better reflect point estimation accuracy. We use the calibrated confidence to generate high-quality pseudo labels for the calibrating views and use low-rank adaptation (LoRA) to fine-tune the models on the pseudo-labeled data. Our method does not require any external priors or manual labels. It completes the self-calibration process on a single standard GPU within just 5 minutes. Each low-rank adapter requires only 18MB of storage. We evaluated our method on more than 160 scenes from the Replica, TUM and Waymo Open datasets, achieving up to 88% performance improvement on 3D reconstruction, multi-view pose estimation and novel-view rendering.

  • 7 authors
·
Dec 10, 2024

Zero-Shot 3D Shape Correspondence

We propose a novel zero-shot approach to computing correspondences between 3D shapes. Existing approaches mainly focus on isometric and near-isometric shape pairs (e.g., human vs. human), but less attention has been given to strongly non-isometric and inter-class shape matching (e.g., human vs. cow). To this end, we introduce a fully automatic method that exploits the exceptional reasoning capabilities of recent foundation models in language and vision to tackle difficult shape correspondence problems. Our approach comprises multiple stages. First, we classify the 3D shapes in a zero-shot manner by feeding rendered shape views to a language-vision model (e.g., BLIP2) to generate a list of class proposals per shape. These proposals are unified into a single class per shape by employing the reasoning capabilities of ChatGPT. Second, we attempt to segment the two shapes in a zero-shot manner, but in contrast to the co-segmentation problem, we do not require a mutual set of semantic regions. Instead, we propose to exploit the in-context learning capabilities of ChatGPT to generate two different sets of semantic regions for each shape and a semantic mapping between them. This enables our approach to match strongly non-isometric shapes with significant differences in geometric structure. Finally, we employ the generated semantic mapping to produce coarse correspondences that can further be refined by the functional maps framework to produce dense point-to-point maps. Our approach, despite its simplicity, produces highly plausible results in a zero-shot manner, especially between strongly non-isometric shapes.

  • 4 authors
·
Jun 5, 2023

MonoDGP: Monocular 3D Object Detection with Decoupled-Query and Geometry-Error Priors

Perspective projection has been extensively utilized in monocular 3D object detection methods. It introduces geometric priors from 2D bounding boxes and 3D object dimensions to reduce the uncertainty of depth estimation. However, due to depth errors originating from the object's visual surface, the height of the bounding box often fails to represent the actual projected central height, which undermines the effectiveness of geometric depth. Direct prediction for the projected height unavoidably results in a loss of 2D priors, while multi-depth prediction with complex branches does not fully leverage geometric depth. This paper presents a Transformer-based monocular 3D object detection method called MonoDGP, which adopts perspective-invariant geometry errors to modify the projection formula. We also try to systematically discuss and explain the mechanisms and efficacy behind geometry errors, which serve as a simple but effective alternative to multi-depth prediction. Additionally, MonoDGP decouples the depth-guided decoder and constructs a 2D decoder only dependent on visual features, providing 2D priors and initializing object queries without the disturbance of 3D detection. To further optimize and fine-tune input tokens of the transformer decoder, we also introduce a Region Segment Head (RSH) that generates enhanced features and segment embeddings. Our monocular method demonstrates state-of-the-art performance on the KITTI benchmark without extra data. Code is available at https://github.com/PuFanqi23/MonoDGP.

  • 4 authors
·
Oct 25, 2024

Deep Implicit Surface Point Prediction Networks

Deep neural representations of 3D shapes as implicit functions have been shown to produce high fidelity models surpassing the resolution-memory trade-off faced by the explicit representations using meshes and point clouds. However, most such approaches focus on representing closed shapes. Unsigned distance function (UDF) based approaches have been proposed recently as a promising alternative to represent both open and closed shapes. However, since the gradients of UDFs vanish on the surface, it is challenging to estimate local (differential) geometric properties like the normals and tangent planes which are needed for many downstream applications in vision and graphics. There are additional challenges in computing these properties efficiently with a low-memory footprint. This paper presents a novel approach that models such surfaces using a new class of implicit representations called the closest surface-point (CSP) representation. We show that CSP allows us to represent complex surfaces of any topology (open or closed) with high fidelity. It also allows for accurate and efficient computation of local geometric properties. We further demonstrate that it leads to efficient implementation of downstream algorithms like sphere-tracing for rendering the 3D surface as well as to create explicit mesh-based representations. Extensive experimental evaluation on the ShapeNet dataset validate the above contributions with results surpassing the state-of-the-art.

  • 7 authors
·
Jun 10, 2021

GeoBench: Benchmarking and Analyzing Monocular Geometry Estimation Models

Recent advances in discriminative and generative pretraining have yielded geometry estimation models with strong generalization capabilities. While discriminative monocular geometry estimation methods rely on large-scale fine-tuning data to achieve zero-shot generalization, several generative-based paradigms show the potential of achieving impressive generalization performance on unseen scenes by leveraging pre-trained diffusion models and fine-tuning on even a small scale of synthetic training data. Frustratingly, these models are trained with different recipes on different datasets, making it hard to find out the critical factors that determine the evaluation performance. Besides, current geometry evaluation benchmarks have two main drawbacks that may prevent the development of the field, i.e., limited scene diversity and unfavorable label quality. To resolve the above issues, (1) we build fair and strong baselines in a unified codebase for evaluating and analyzing the geometry estimation models; (2) we evaluate monocular geometry estimators on more challenging benchmarks for geometry estimation task with diverse scenes and high-quality annotations. Our results reveal that pre-trained using large data, discriminative models such as DINOv2, can outperform generative counterparts with a small amount of high-quality synthetic data under the same training configuration, which suggests that fine-tuning data quality is a more important factor than the data scale and model architecture. Our observation also raises a question: if simply fine-tuning a general vision model such as DINOv2 using a small amount of synthetic depth data produces SOTA results, do we really need complex generative models for depth estimation? We believe this work can propel advancements in geometry estimation tasks as well as a wide range of downstream applications.

  • 8 authors
·
Jun 18, 2024

En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D Synthetic Data

We present En3D, an enhanced generative scheme for sculpting high-quality 3D human avatars. Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalanced viewing angles and imprecise pose priors, our approach aims to develop a zero-shot 3D generative scheme capable of producing visually realistic, geometrically accurate and content-wise diverse 3D humans without relying on pre-existing 3D or 2D assets. To address this challenge, we introduce a meticulously crafted workflow that implements accurate physical modeling to learn the enhanced 3D generative model from synthetic 2D data. During inference, we integrate optimization modules to bridge the gap between realistic appearances and coarse 3D shapes. Specifically, En3D comprises three modules: a 3D generator that accurately models generalizable 3D humans with realistic appearance from synthesized balanced, diverse, and structured human images; a geometry sculptor that enhances shape quality using multi-view normal constraints for intricate human anatomy; and a texturing module that disentangles explicit texture maps with fidelity and editability, leveraging semantical UV partitioning and a differentiable rasterizer. Experimental results show that our approach significantly outperforms prior works in terms of image quality, geometry accuracy and content diversity. We also showcase the applicability of our generated avatars for animation and editing, as well as the scalability of our approach for content-style free adaptation.

  • 6 authors
·
Jan 2, 2024 9

Perspective from a Higher Dimension: Can 3D Geometric Priors Help Visual Floorplan Localization?

Since a building's floorplans are easily accessible, consistent over time, and inherently robust to changes in visual appearance, self-localization within the floorplan has attracted researchers' interest. However, since floorplans are minimalist representations of a building's structure, modal and geometric differences between visual perceptions and floorplans pose challenges to this task. While existing methods cleverly utilize 2D geometric features and pose filters to achieve promising performance, they fail to address the localization errors caused by frequent visual changes and view occlusions due to variously shaped 3D objects. To tackle these issues, this paper views the 2D Floorplan Localization (FLoc) problem from a higher dimension by injecting 3D geometric priors into the visual FLoc algorithm. For the 3D geometric prior modeling, we first model geometrically aware view invariance using multi-view constraints, i.e., leveraging imaging geometric principles to provide matching constraints between multiple images that see the same points. Then, we further model the view-scene aligned geometric priors, enhancing the cross-modal geometry-color correspondences by associating the scene's surface reconstruction with the RGB frames of the sequence. Both 3D priors are modeled through self-supervised contrastive learning, thus no additional geometric or semantic annotations are required. These 3D priors summarized in extensive realistic scenes bridge the modal gap while improving localization success without increasing the computational burden on the FLoc algorithm. Sufficient comparative studies demonstrate that our method significantly outperforms state-of-the-art methods and substantially boosts the FLoc accuracy. All data and code will be released after the anonymous review.

  • 5 authors
·
Jul 24

A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions

Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets.

FantasyWorld: Geometry-Consistent World Modeling via Unified Video and 3D Prediction

High-quality 3D world models are pivotal for embodied intelligence and Artificial General Intelligence (AGI), underpinning applications such as AR/VR content creation and robotic navigation. Despite the established strong imaginative priors, current video foundation models lack explicit 3D grounding capabilities, thus being limited in both spatial consistency and their utility for downstream 3D reasoning tasks. In this work, we present FantasyWorld, a geometry-enhanced framework that augments frozen video foundation models with a trainable geometric branch, enabling joint modeling of video latents and an implicit 3D field in a single forward pass. Our approach introduces cross-branch supervision, where geometry cues guide video generation and video priors regularize 3D prediction, thus yielding consistent and generalizable 3D-aware video representations. Notably, the resulting latents from the geometric branch can potentially serve as versatile representations for downstream 3D tasks such as novel view synthesis and navigation, without requiring per-scene optimization or fine-tuning. Extensive experiments show that FantasyWorld effectively bridges video imagination and 3D perception, outperforming recent geometry-consistent baselines in multi-view coherence and style consistency. Ablation studies further confirm that these gains stem from the unified backbone and cross-branch information exchange.

  • 5 authors
·
Sep 25

Surface Representation for Point Clouds

Most prior work represents the shapes of point clouds by coordinates. However, it is insufficient to describe the local geometry directly. In this paper, we present RepSurf (representative surfaces), a novel representation of point clouds to explicitly depict the very local structure. We explore two variants of RepSurf, Triangular RepSurf and Umbrella RepSurf inspired by triangle meshes and umbrella curvature in computer graphics. We compute the representations of RepSurf by predefined geometric priors after surface reconstruction. RepSurf can be a plug-and-play module for most point cloud models thanks to its free collaboration with irregular points. Based on a simple baseline of PointNet++ (SSG version), Umbrella RepSurf surpasses the previous state-of-the-art by a large margin for classification, segmentation and detection on various benchmarks in terms of performance and efficiency. With an increase of around 0.008M number of parameters, 0.04G FLOPs, and 1.12ms inference time, our method achieves 94.7\% (+0.5\%) on ModelNet40, and 84.6\% (+1.8\%) on ScanObjectNN for classification, while 74.3\% (+0.8\%) mIoU on S3DIS 6-fold, and 70.0\% (+1.6\%) mIoU on ScanNet for segmentation. For detection, previous state-of-the-art detector with our RepSurf obtains 71.2\% (+2.1\%) mAP_{25}, 54.8\% (+2.0\%) mAP_{50} on ScanNetV2, and 64.9\% (+1.9\%) mAP_{25}, 47.7\% (+2.5\%) mAP_{50} on SUN RGB-D. Our lightweight Triangular RepSurf performs its excellence on these benchmarks as well. The code is publicly available at https://github.com/hancyran/RepSurf.

  • 3 authors
·
May 11, 2022

CoDA: Collaborative Novel Box Discovery and Cross-modal Alignment for Open-vocabulary 3D Object Detection

Open-vocabulary 3D Object Detection (OV-3DDet) aims to detect objects from an arbitrary list of categories within a 3D scene, which remains seldom explored in the literature. There are primarily two fundamental problems in OV-3DDet, i.e., localizing and classifying novel objects. This paper aims at addressing the two problems simultaneously via a unified framework, under the condition of limited base categories. To localize novel 3D objects, we propose an effective 3D Novel Object Discovery strategy, which utilizes both the 3D box geometry priors and 2D semantic open-vocabulary priors to generate pseudo box labels of the novel objects. To classify novel object boxes, we further develop a cross-modal alignment module based on discovered novel boxes, to align feature spaces between 3D point cloud and image/text modalities. Specifically, the alignment process contains a class-agnostic and a class-discriminative alignment, incorporating not only the base objects with annotations but also the increasingly discovered novel objects, resulting in an iteratively enhanced alignment. The novel box discovery and crossmodal alignment are jointly learned to collaboratively benefit each other. The novel object discovery can directly impact the cross-modal alignment, while a better feature alignment can, in turn, boost the localization capability, leading to a unified OV-3DDet framework, named CoDA, for simultaneous novel object localization and classification. Extensive experiments on two challenging datasets (i.e., SUN-RGBD and ScanNet) demonstrate the effectiveness of our method and also show a significant mAP improvement upon the best-performing alternative method by 80%. Codes and pre-trained models are released on the project page.

  • 4 authors
·
Oct 4, 2023 1

Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions

Multimodal large language models (MLLMs) have made rapid progress in recent years, yet continue to struggle with low-level visual perception (LLVP) -- particularly the ability to accurately describe the geometric details of an image. This capability is crucial for applications in areas such as robotics, medical image analysis, and manufacturing. In this paper, we first introduce Geoperception, a benchmark designed to evaluate an MLLM's ability to accurately transcribe 2D geometric information from an image. Using this benchmark, we demonstrate the limitations of leading MLLMs, and then conduct a comprehensive empirical study to explore strategies for improving their performance on geometric tasks. Our findings highlight the benefits of certain model architectures, training techniques, and data strategies, including the use of high-fidelity synthetic data and multi-stage training with a data curriculum. Notably, we find that a data curriculum enables models to learn challenging geometry understanding tasks which they fail to learn from scratch. Leveraging these insights, we develop Euclid, a family of models specifically optimized for strong low-level geometric perception. Although purely trained on synthetic multimodal data, Euclid shows strong generalization ability to novel geometry shapes. For instance, Euclid outperforms the best closed-source model, Gemini-1.5-Pro, by up to 58.56% on certain Geoperception benchmark tasks and 10.65% on average across all tasks.

  • 5 authors
·
Dec 11, 2024 2

IGGT: Instance-Grounded Geometry Transformer for Semantic 3D Reconstruction

Humans naturally perceive the geometric structure and semantic content of a 3D world as intertwined dimensions, enabling coherent and accurate understanding of complex scenes. However, most prior approaches prioritize training large geometry models for low-level 3D reconstruction and treat high-level spatial understanding in isolation, overlooking the crucial interplay between these two fundamental aspects of 3D-scene analysis, thereby limiting generalization and leading to poor performance in downstream 3D understanding tasks. Recent attempts have mitigated this issue by simply aligning 3D models with specific language models, thus restricting perception to the aligned model's capacity and limiting adaptability to downstream tasks. In this paper, we propose InstanceGrounded Geometry Transformer (IGGT), an end-to-end large unified transformer to unify the knowledge for both spatial reconstruction and instance-level contextual understanding. Specifically, we design a 3D-Consistent Contrastive Learning strategy that guides IGGT to encode a unified representation with geometric structures and instance-grounded clustering through only 2D visual inputs. This representation supports consistent lifting of 2D visual inputs into a coherent 3D scene with explicitly distinct object instances. To facilitate this task, we further construct InsScene-15K, a large-scale dataset with high-quality RGB images, poses, depth maps, and 3D-consistent instance-level mask annotations with a novel data curation pipeline.