- 1st Place Solutions for the UVO Challenge 2022 This paper describes the approach we have taken in the challenge. We still adopted the two-stage scheme same as the last champion, that is, detection first and segmentation followed. We trained more powerful detector and segmentor separately. Besides, we also perform pseudo-label training on the test set, based on student-teacher framework and end-to-end transformer based object detection. The method ranks first on the 2nd Unidentified Video Objects (UVO) challenge, achieving AR@100 of 46.8, 64.7 and 32.2 in the limited data frame track, unlimited data frame track and video track respectively. 5 authors · Oct 18, 2022
- OleSpeech-IV: A Large-Scale Multispeaker and Multilingual Conversational Speech Dataset with Diverse Topics OleSpeech-IV dataset is a large-scale multispeaker and multilingual conversational speech dataset with diverse topics. The audio content comes from publicly-available English podcasts, talk shows, teleconferences, and other conversations. Speaker names, turns, and transcripts are human-sourced and refined by a proprietary pipeline, while additional information such as timestamps and confidence scores is derived from the pipeline. The IV denotes its position as Tier IV in the Olewave dataset series. In addition, we have open-sourced a subset, OleSpeech-IV-2025-EN-AR-100, for non-commercial research use. 10 authors · Sep 4
10 UnSAMv2: Self-Supervised Learning Enables Segment Anything at Any Granularity The Segment Anything Model (SAM) family has become a widely adopted vision foundation model, but its ability to control segmentation granularity remains limited. Users often need to refine results manually - by adding more prompts or selecting from pre-generated masks - to achieve the desired level of detail. This process can be ambiguous, as the same prompt may correspond to several plausible masks, and collecting dense annotations across all granularities is prohibitively expensive, making supervised solutions infeasible. To address this limitation, we introduce UnSAMv2, which enables segment anything at any granularity without human annotations. UnSAMv2 extends the divide-and-conquer strategy of UnSAM by discovering abundant mask-granularity pairs and introducing a novel granularity control embedding that enables precise, continuous control over segmentation scale. Remarkably, with only 6K unlabeled images and 0.02% additional parameters, UnSAMv2 substantially enhances SAM-2, achieving segment anything at any granularity across interactive, whole-image, and video segmentation tasks. Evaluated on over 11 benchmarks, UnSAMv2 improves NoC_{90} (5.69 rightarrow 4.75), 1-IoU (58.0 rightarrow 73.1), and AR_{1000} (49.6 rightarrow 68.3), showing that small amounts of unlabeled data with a granularity-aware self-supervised learning method can unlock the potential of vision foundation models. University of California, Berkeley · Nov 17 2
77 LLaDA2.0: Scaling Up Diffusion Language Models to 100B This paper presents LLaDA2.0 -- a tuple of discrete diffusion large language models (dLLM) scaling up to 100B total parameters through systematic conversion from auto-regressive (AR) models -- establishing a new paradigm for frontier-scale deployment. Instead of costly training from scratch, LLaDA2.0 upholds knowledge inheritance, progressive adaption and efficiency-aware design principle, and seamless converts a pre-trained AR model into dLLM with a novel 3-phase block-level WSD based training scheme: progressive increasing block-size in block diffusion (warm-up), large-scale full-sequence diffusion (stable) and reverting back to compact-size block diffusion (decay). Along with post-training alignment with SFT and DPO, we obtain LLaDA2.0-mini (16B) and LLaDA2.0-flash (100B), two instruction-tuned Mixture-of-Experts (MoE) variants optimized for practical deployment. By preserving the advantages of parallel decoding, these models deliver superior performance and efficiency at the frontier scale. Both models were open-sourced. Ant Group · Dec 10 2
- Neural source-filter-based waveform model for statistical parametric speech synthesis Neural waveform models such as the WaveNet are used in many recent text-to-speech systems, but the original WaveNet is quite slow in waveform generation because of its autoregressive (AR) structure. Although faster non-AR models were recently reported, they may be prohibitively complicated due to the use of a distilling training method and the blend of other disparate training criteria. This study proposes a non-AR neural source-filter waveform model that can be directly trained using spectrum-based training criteria and the stochastic gradient descent method. Given the input acoustic features, the proposed model first uses a source module to generate a sine-based excitation signal and then uses a filter module to transform the excitation signal into the output speech waveform. Our experiments demonstrated that the proposed model generated waveforms at least 100 times faster than the AR WaveNet and the quality of its synthetic speech is close to that of speech generated by the AR WaveNet. Ablation test results showed that both the sine-wave excitation signal and the spectrum-based training criteria were essential to the performance of the proposed model. 3 authors · Oct 29, 2018