Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRegularizing Neural Networks via Adversarial Model Perturbation
Effective regularization techniques are highly desired in deep learning for alleviating overfitting and improving generalization. This work proposes a new regularization scheme, based on the understanding that the flat local minima of the empirical risk cause the model to generalize better. This scheme is referred to as adversarial model perturbation (AMP), where instead of directly minimizing the empirical risk, an alternative "AMP loss" is minimized via SGD. Specifically, the AMP loss is obtained from the empirical risk by applying the "worst" norm-bounded perturbation on each point in the parameter space. Comparing with most existing regularization schemes, AMP has strong theoretical justifications, in that minimizing the AMP loss can be shown theoretically to favour flat local minima of the empirical risk. Extensive experiments on various modern deep architectures establish AMP as a new state of the art among regularization schemes. Our code is available at https://github.com/hiyouga/AMP-Regularizer.
Fast Text-to-Audio Generation with Adversarial Post-Training
Text-to-audio systems, while increasingly performant, are slow at inference time, thus making their latency unpractical for many creative applications. We present Adversarial Relativistic-Contrastive (ARC) post-training, the first adversarial acceleration algorithm for diffusion/flow models not based on distillation. While past adversarial post-training methods have struggled to compare against their expensive distillation counterparts, ARC post-training is a simple procedure that (1) extends a recent relativistic adversarial formulation to diffusion/flow post-training and (2) combines it with a novel contrastive discriminator objective to encourage better prompt adherence. We pair ARC post-training with a number optimizations to Stable Audio Open and build a model capable of generating approx12s of 44.1kHz stereo audio in approx75ms on an H100, and approx7s on a mobile edge-device, the fastest text-to-audio model to our knowledge.
Generative Image Dynamics
We present an approach to modeling an image-space prior on scene dynamics. Our prior is learned from a collection of motion trajectories extracted from real video sequences containing natural, oscillating motion such as trees, flowers, candles, and clothes blowing in the wind. Given a single image, our trained model uses a frequency-coordinated diffusion sampling process to predict a per-pixel long-term motion representation in the Fourier domain, which we call a neural stochastic motion texture. This representation can be converted into dense motion trajectories that span an entire video. Along with an image-based rendering module, these trajectories can be used for a number of downstream applications, such as turning still images into seamlessly looping dynamic videos, or allowing users to realistically interact with objects in real pictures.
LoRA as a Flexible Framework for Securing Large Vision Systems
Adversarial attacks have emerged as a critical threat to autonomous driving systems. These attacks exploit the underlying neural network, allowing small -- nearly invisible -- perturbations to completely alter the behavior of such systems in potentially malicious ways. E.g., causing a traffic sign classification network to misclassify a stop sign as a speed limit sign. Prior working in hardening such systems to adversarial attacks have looked at robust training of the system or adding additional pre-processing steps to the input pipeline. Such solutions either have a hard time generalizing, require knowledge of the adversarial attacks during training, or are computationally undesirable. Instead, we propose to take insights for parameter efficient fine-tuning and use low-rank adaptation (LoRA) to train a lightweight security patch -- enabling us to dynamically patch a large preexisting vision system as new vulnerabilities are discovered. We demonstrate that our framework can patch a pre-trained model to improve classification accuracy by up to 78.01% in the presence of adversarial examples.
VirtualConductor: Music-driven Conducting Video Generation System
In this demo, we present VirtualConductor, a system that can generate conducting video from any given music and a single user's image. First, a large-scale conductor motion dataset is collected and constructed. Then, we propose Audio Motion Correspondence Network (AMCNet) and adversarial-perceptual learning to learn the cross-modal relationship and generate diverse, plausible, music-synchronized motion. Finally, we combine 3D animation rendering and a pose transfer model to synthesize conducting video from a single given user's image. Therefore, any user can become a virtual conductor through the system.
All You Need is RAW: Defending Against Adversarial Attacks with Camera Image Pipelines
Existing neural networks for computer vision tasks are vulnerable to adversarial attacks: adding imperceptible perturbations to the input images can fool these methods to make a false prediction on an image that was correctly predicted without the perturbation. Various defense methods have proposed image-to-image mapping methods, either including these perturbations in the training process or removing them in a preprocessing denoising step. In doing so, existing methods often ignore that the natural RGB images in today's datasets are not captured but, in fact, recovered from RAW color filter array captures that are subject to various degradations in the capture. In this work, we exploit this RAW data distribution as an empirical prior for adversarial defense. Specifically, we proposed a model-agnostic adversarial defensive method, which maps the input RGB images to Bayer RAW space and back to output RGB using a learned camera image signal processing (ISP) pipeline to eliminate potential adversarial patterns. The proposed method acts as an off-the-shelf preprocessing module and, unlike model-specific adversarial training methods, does not require adversarial images to train. As a result, the method generalizes to unseen tasks without additional retraining. Experiments on large-scale datasets (e.g., ImageNet, COCO) for different vision tasks (e.g., classification, semantic segmentation, object detection) validate that the method significantly outperforms existing methods across task domains.
Distracting Downpour: Adversarial Weather Attacks for Motion Estimation
Current adversarial attacks on motion estimation, or optical flow, optimize small per-pixel perturbations, which are unlikely to appear in the real world. In contrast, adverse weather conditions constitute a much more realistic threat scenario. Hence, in this work, we present a novel attack on motion estimation that exploits adversarially optimized particles to mimic weather effects like snowflakes, rain streaks or fog clouds. At the core of our attack framework is a differentiable particle rendering system that integrates particles (i) consistently over multiple time steps (ii) into the 3D space (iii) with a photo-realistic appearance. Through optimization, we obtain adversarial weather that significantly impacts the motion estimation. Surprisingly, methods that previously showed good robustness towards small per-pixel perturbations are particularly vulnerable to adversarial weather. At the same time, augmenting the training with non-optimized weather increases a method's robustness towards weather effects and improves generalizability at almost no additional cost. Our code will be available at https://github.com/cv-stuttgart/DistractingDownpour.
Motion Anything: Any to Motion Generation
Conditional motion generation has been extensively studied in computer vision, yet two critical challenges remain. First, while masked autoregressive methods have recently outperformed diffusion-based approaches, existing masking models lack a mechanism to prioritize dynamic frames and body parts based on given conditions. Second, existing methods for different conditioning modalities often fail to integrate multiple modalities effectively, limiting control and coherence in generated motion. To address these challenges, we propose Motion Anything, a multimodal motion generation framework that introduces an Attention-based Mask Modeling approach, enabling fine-grained spatial and temporal control over key frames and actions. Our model adaptively encodes multimodal conditions, including text and music, improving controllability. Additionally, we introduce Text-Music-Dance (TMD), a new motion dataset consisting of 2,153 pairs of text, music, and dance, making it twice the size of AIST++, thereby filling a critical gap in the community. Extensive experiments demonstrate that Motion Anything surpasses state-of-the-art methods across multiple benchmarks, achieving a 15% improvement in FID on HumanML3D and showing consistent performance gains on AIST++ and TMD. See our project website https://steve-zeyu-zhang.github.io/MotionAnything
Autoregressive Adversarial Post-Training for Real-Time Interactive Video Generation
Existing large-scale video generation models are computationally intensive, preventing adoption in real-time and interactive applications. In this work, we propose autoregressive adversarial post-training (AAPT) to transform a pre-trained latent video diffusion model into a real-time, interactive video generator. Our model autoregressively generates a latent frame at a time using a single neural function evaluation (1NFE). The model can stream the result to the user in real time and receive interactive responses as controls to generate the next latent frame. Unlike existing approaches, our method explores adversarial training as an effective paradigm for autoregressive generation. This not only allows us to design an architecture that is more efficient for one-step generation while fully utilizing the KV cache, but also enables training the model in a student-forcing manner that proves to be effective in reducing error accumulation during long video generation. Our experiments demonstrate that our 8B model achieves real-time, 24fps, streaming video generation at 736x416 resolution on a single H100, or 1280x720 on 8xH100 up to a minute long (1440 frames). Visit our research website at https://seaweed-apt.com/2
AdvMT: Adversarial Motion Transformer for Long-term Human Motion Prediction
To achieve seamless collaboration between robots and humans in a shared environment, accurately predicting future human movements is essential. Human motion prediction has traditionally been approached as a sequence prediction problem, leveraging historical human motion data to estimate future poses. Beginning with vanilla recurrent networks, the research community has investigated a variety of methods for learning human motion dynamics, encompassing graph-based and generative approaches. Despite these efforts, achieving accurate long-term predictions continues to be a significant challenge. In this regard, we present the Adversarial Motion Transformer (AdvMT), a novel model that integrates a transformer-based motion encoder and a temporal continuity discriminator. This combination effectively captures spatial and temporal dependencies simultaneously within frames. With adversarial training, our method effectively reduces the unwanted artifacts in predictions, thereby ensuring the learning of more realistic and fluid human motions. The evaluation results indicate that AdvMT greatly enhances the accuracy of long-term predictions while also delivering robust short-term predictions
Retrospective Motion Correction of MR Images using Prior-Assisted Deep Learning
In MRI, motion artefacts are among the most common types of artefacts. They can degrade images and render them unusable for accurate diagnosis. Traditional methods, such as prospective or retrospective motion correction, have been proposed to avoid or alleviate motion artefacts. Recently, several other methods based on deep learning approaches have been proposed to solve this problem. This work proposes to enhance the performance of existing deep learning models by the inclusion of additional information present as image priors. The proposed approach has shown promising results and will be further investigated for clinical validity.
MGMAE: Motion Guided Masking for Video Masked Autoencoding
Masked autoencoding has shown excellent performance on self-supervised video representation learning. Temporal redundancy has led to a high masking ratio and customized masking strategy in VideoMAE. In this paper, we aim to further improve the performance of video masked autoencoding by introducing a motion guided masking strategy. Our key insight is that motion is a general and unique prior in video, which should be taken into account during masked pre-training. Our motion guided masking explicitly incorporates motion information to build temporal consistent masking volume. Based on this masking volume, we can track the unmasked tokens in time and sample a set of temporal consistent cubes from videos. These temporal aligned unmasked tokens will further relieve the information leakage issue in time and encourage the MGMAE to learn more useful structure information. We implement our MGMAE with an online efficient optical flow estimator and backward masking map warping strategy. We perform experiments on the datasets of Something-Something V2 and Kinetics-400, demonstrating the superior performance of our MGMAE to the original VideoMAE. In addition, we provide the visualization analysis to illustrate that our MGMAE can sample temporal consistent cubes in a motion-adaptive manner for more effective video pre-training.
Motion-Zero: Zero-Shot Moving Object Control Framework for Diffusion-Based Video Generation
Recent large-scale pre-trained diffusion models have demonstrated a powerful generative ability to produce high-quality videos from detailed text descriptions. However, exerting control over the motion of objects in videos generated by any video diffusion model is a challenging problem. In this paper, we propose a novel zero-shot moving object trajectory control framework, Motion-Zero, to enable a bounding-box-trajectories-controlled text-to-video diffusion model. To this end, an initial noise prior module is designed to provide a position-based prior to improve the stability of the appearance of the moving object and the accuracy of position. In addition, based on the attention map of the U-net, spatial constraints are directly applied to the denoising process of diffusion models, which further ensures the positional and spatial consistency of moving objects during the inference. Furthermore, temporal consistency is guaranteed with a proposed shift temporal attention mechanism. Our method can be flexibly applied to various state-of-the-art video diffusion models without any training process. Extensive experiments demonstrate our proposed method can control the motion trajectories of objects and generate high-quality videos.
MoLA: Motion Generation and Editing with Latent Diffusion Enhanced by Adversarial Training
In motion generation, controllability as well as generation quality and speed is becoming more and more important. There are various motion editing tasks, such as in-betweening, upper body editing, and path-following, but existing methods perform motion editing with a data-space diffusion model, which is slow in inference compared to a latent diffusion model. In this paper, we propose MoLA, which provides fast and high-quality motion generation and also can deal with multiple editing tasks in a single framework. For high-quality and fast generation, we employ a variational autoencoder and latent diffusion model, and improve the performance with adversarial training. In addition, we apply a training-free guided generation framework to achieve various editing tasks with motion control inputs. We quantitatively show the effectiveness of adversarial learning in text-to-motion generation, and demonstrate the applicability of our editing framework to multiple editing tasks in the motion domain.
Neural Scene Flow Prior
Before the deep learning revolution, many perception algorithms were based on runtime optimization in conjunction with a strong prior/regularization penalty. A prime example of this in computer vision is optical and scene flow. Supervised learning has largely displaced the need for explicit regularization. Instead, they rely on large amounts of labeled data to capture prior statistics, which are not always readily available for many problems. Although optimization is employed to learn the neural network, the weights of this network are frozen at runtime. As a result, these learning solutions are domain-specific and do not generalize well to other statistically different scenarios. This paper revisits the scene flow problem that relies predominantly on runtime optimization and strong regularization. A central innovation here is the inclusion of a neural scene flow prior, which uses the architecture of neural networks as a new type of implicit regularizer. Unlike learning-based scene flow methods, optimization occurs at runtime, and our approach needs no offline datasets -- making it ideal for deployment in new environments such as autonomous driving. We show that an architecture based exclusively on multilayer perceptrons (MLPs) can be used as a scene flow prior. Our method attains competitive -- if not better -- results on scene flow benchmarks. Also, our neural prior's implicit and continuous scene flow representation allows us to estimate dense long-term correspondences across a sequence of point clouds. The dense motion information is represented by scene flow fields where points can be propagated through time by integrating motion vectors. We demonstrate such a capability by accumulating a sequence of lidar point clouds.
Latent Action Priors From a Single Gait Cycle Demonstration for Online Imitation Learning
Deep Reinforcement Learning (DRL) in simulation often results in brittle and unrealistic learning outcomes. To push the agent towards more desirable solutions, prior information can be injected in the learning process through, for instance, reward shaping, expert data, or motion primitives. We propose an additional inductive bias for robot learning: latent actions learned from expert demonstration as priors in the action space. We show that these action priors can be learned from only a single open-loop gait cycle using a simple autoencoder. Using these latent action priors combined with established style rewards for imitation in DRL achieves above expert demonstration level of performance and leads to more desirable gaits. Further, action priors substantially improve the performance on transfer tasks, even leading to gait transitions for higher target speeds. Videos and code are available at https://sites.google.com/view/latent-action-priors.
Diffusion Adversarial Post-Training for One-Step Video Generation
The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
Hard No-Box Adversarial Attack on Skeleton-Based Human Action Recognition with Skeleton-Motion-Informed Gradient
Recently, methods for skeleton-based human activity recognition have been shown to be vulnerable to adversarial attacks. However, these attack methods require either the full knowledge of the victim (i.e. white-box attacks), access to training data (i.e. transfer-based attacks) or frequent model queries (i.e. black-box attacks). All their requirements are highly restrictive, raising the question of how detrimental the vulnerability is. In this paper, we show that the vulnerability indeed exists. To this end, we consider a new attack task: the attacker has no access to the victim model or the training data or labels, where we coin the term hard no-box attack. Specifically, we first learn a motion manifold where we define an adversarial loss to compute a new gradient for the attack, named skeleton-motion-informed (SMI) gradient. Our gradient contains information of the motion dynamics, which is different from existing gradient-based attack methods that compute the loss gradient assuming each dimension in the data is independent. The SMI gradient can augment many gradient-based attack methods, leading to a new family of no-box attack methods. Extensive evaluation and comparison show that our method imposes a real threat to existing classifiers. They also show that the SMI gradient improves the transferability and imperceptibility of adversarial samples in both no-box and transfer-based black-box settings.
Towards Effective and Sparse Adversarial Attack on Spiking Neural Networks via Breaking Invisible Surrogate Gradients
Spiking neural networks (SNNs) have shown their competence in handling spatial-temporal event-based data with low energy consumption. Similar to conventional artificial neural networks (ANNs), SNNs are also vulnerable to gradient-based adversarial attacks, wherein gradients are calculated by spatial-temporal back-propagation (STBP) and surrogate gradients (SGs). However, the SGs may be invisible for an inference-only model as they do not influence the inference results, and current gradient-based attacks are ineffective for binary dynamic images captured by the dynamic vision sensor (DVS). While some approaches addressed the issue of invisible SGs through universal SGs, their SGs lack a correlation with the victim model, resulting in sub-optimal performance. Moreover, the imperceptibility of existing SNN-based binary attacks is still insufficient. In this paper, we introduce an innovative potential-dependent surrogate gradient (PDSG) method to establish a robust connection between the SG and the model, thereby enhancing the adaptability of adversarial attacks across various models with invisible SGs. Additionally, we propose the sparse dynamic attack (SDA) to effectively attack binary dynamic images. Utilizing a generation-reduction paradigm, SDA can fully optimize the sparsity of adversarial perturbations. Experimental results demonstrate that our PDSG and SDA outperform state-of-the-art SNN-based attacks across various models and datasets. Specifically, our PDSG achieves 100% attack success rate on ImageNet, and our SDA obtains 82% attack success rate by modifying only 0.24% of the pixels on CIFAR10DVS. The code is available at https://github.com/ryime/PDSG-SDA .
WorldForge: Unlocking Emergent 3D/4D Generation in Video Diffusion Model via Training-Free Guidance
Recent video diffusion models demonstrate strong potential in spatial intelligence tasks due to their rich latent world priors. However, this potential is hindered by their limited controllability and geometric inconsistency, creating a gap between their strong priors and their practical use in 3D/4D tasks. As a result, current approaches often rely on retraining or fine-tuning, which risks degrading pretrained knowledge and incurs high computational costs. To address this, we propose WorldForge, a training-free, inference-time framework composed of three tightly coupled modules. Intra-Step Recursive Refinement introduces a recursive refinement mechanism during inference, which repeatedly optimizes network predictions within each denoising step to enable precise trajectory injection. Flow-Gated Latent Fusion leverages optical flow similarity to decouple motion from appearance in the latent space and selectively inject trajectory guidance into motion-related channels. Dual-Path Self-Corrective Guidance compares guided and unguided denoising paths to adaptively correct trajectory drift caused by noisy or misaligned structural signals. Together, these components inject fine-grained, trajectory-aligned guidance without training, achieving both accurate motion control and photorealistic content generation. Extensive experiments across diverse benchmarks validate our method's superiority in realism, trajectory consistency, and visual fidelity. This work introduces a novel plug-and-play paradigm for controllable video synthesis, offering a new perspective on leveraging generative priors for spatial intelligence.
Customizing Motion in Text-to-Video Diffusion Models
We introduce an approach for augmenting text-to-video generation models with customized motions, extending their capabilities beyond the motions depicted in the original training data. By leveraging a few video samples demonstrating specific movements as input, our method learns and generalizes the input motion patterns for diverse, text-specified scenarios. Our contributions are threefold. First, to achieve our results, we finetune an existing text-to-video model to learn a novel mapping between the depicted motion in the input examples to a new unique token. To avoid overfitting to the new custom motion, we introduce an approach for regularization over videos. Second, by leveraging the motion priors in a pretrained model, our method can produce novel videos featuring multiple people doing the custom motion, and can invoke the motion in combination with other motions. Furthermore, our approach extends to the multimodal customization of motion and appearance of individualized subjects, enabling the generation of videos featuring unique characters and distinct motions. Third, to validate our method, we introduce an approach for quantitatively evaluating the learned custom motion and perform a systematic ablation study. We show that our method significantly outperforms prior appearance-based customization approaches when extended to the motion customization task.
Visual Adversarial Attack on Vision-Language Models for Autonomous Driving
Vision-language models (VLMs) have significantly advanced autonomous driving (AD) by enhancing reasoning capabilities. However, these models remain highly vulnerable to adversarial attacks. While existing research has primarily focused on general VLM attacks, the development of attacks tailored to the safety-critical AD context has been largely overlooked. In this paper, we take the first step toward designing adversarial attacks specifically targeting VLMs in AD, exposing the substantial risks these attacks pose within this critical domain. We identify two unique challenges for effective adversarial attacks on AD VLMs: the variability of textual instructions and the time-series nature of visual scenarios. To this end, we propose ADvLM, the first visual adversarial attack framework specifically designed for VLMs in AD. Our framework introduces Semantic-Invariant Induction, which uses a large language model to create a diverse prompt library of textual instructions with consistent semantic content, guided by semantic entropy. Building on this, we introduce Scenario-Associated Enhancement, an approach where attention mechanisms select key frames and perspectives within driving scenarios to optimize adversarial perturbations that generalize across the entire scenario. Extensive experiments on several AD VLMs over multiple benchmarks show that ADvLM achieves state-of-the-art attack effectiveness. Moreover, real-world attack studies further validate its applicability and potential in practice.
Searching Priors Makes Text-to-Video Synthesis Better
Significant advancements in video diffusion models have brought substantial progress to the field of text-to-video (T2V) synthesis. However, existing T2V synthesis model struggle to accurately generate complex motion dynamics, leading to a reduction in video realism. One possible solution is to collect massive data and train the model on it, but this would be extremely expensive. To alleviate this problem, in this paper, we reformulate the typical T2V generation process as a search-based generation pipeline. Instead of scaling up the model training, we employ existing videos as the motion prior database. Specifically, we divide T2V generation process into two steps: (i) For a given prompt input, we search existing text-video datasets to find videos with text labels that closely match the prompt motions. We propose a tailored search algorithm that emphasizes object motion features. (ii) Retrieved videos are processed and distilled into motion priors to fine-tune a pre-trained base T2V model, followed by generating desired videos using input prompt. By utilizing the priors gleaned from the searched videos, we enhance the realism of the generated videos' motion. All operations can be finished on a single NVIDIA RTX 4090 GPU. We validate our method against state-of-the-art T2V models across diverse prompt inputs. The code will be public.
E-MoFlow: Learning Egomotion and Optical Flow from Event Data via Implicit Regularization
The estimation of optical flow and 6-DoF ego-motion, two fundamental tasks in 3D vision, has typically been addressed independently. For neuromorphic vision (e.g., event cameras), however, the lack of robust data association makes solving the two problems separately an ill-posed challenge, especially in the absence of supervision via ground truth. Existing works mitigate this ill-posedness by either enforcing the smoothness of the flow field via an explicit variational regularizer or leveraging explicit structure-and-motion priors in the parametrization to improve event alignment. The former notably introduces bias in results and computational overhead, while the latter, which parametrizes the optical flow in terms of the scene depth and the camera motion, often converges to suboptimal local minima. To address these issues, we propose an unsupervised framework that jointly optimizes egomotion and optical flow via implicit spatial-temporal and geometric regularization. First, by modeling camera's egomotion as a continuous spline and optical flow as an implicit neural representation, our method inherently embeds spatial-temporal coherence through inductive biases. Second, we incorporate structure-and-motion priors through differential geometric constraints, bypassing explicit depth estimation while maintaining rigorous geometric consistency. As a result, our framework (called E-MoFlow) unifies egomotion and optical flow estimation via implicit regularization under a fully unsupervised paradigm. Experiments demonstrate its versatility to general 6-DoF motion scenarios, achieving state-of-the-art performance among unsupervised methods and competitive even with supervised approaches.
Learning Vision-Driven Reactive Soccer Skills for Humanoid Robots
Humanoid soccer poses a representative challenge for embodied intelligence, requiring robots to operate within a tightly coupled perception-action loop. However, existing systems typically rely on decoupled modules, resulting in delayed responses and incoherent behaviors in dynamic environments, while real-world perceptual limitations further exacerbate these issues. In this work, we present a unified reinforcement learning-based controller that enables humanoid robots to acquire reactive soccer skills through the direct integration of visual perception and motion control. Our approach extends Adversarial Motion Priors to perceptual settings in real-world dynamic environments, bridging motion imitation and visually grounded dynamic control. We introduce an encoder-decoder architecture combined with a virtual perception system that models real-world visual characteristics, allowing the policy to recover privileged states from imperfect observations and establish active coordination between perception and action. The resulting controller demonstrates strong reactivity, consistently executing coherent and robust soccer behaviors across various scenarios, including real RoboCup matches.
Extrapolating and Decoupling Image-to-Video Generation Models: Motion Modeling is Easier Than You Think
Image-to-Video (I2V) generation aims to synthesize a video clip according to a given image and condition (e.g., text). The key challenge of this task lies in simultaneously generating natural motions while preserving the original appearance of the images. However, current I2V diffusion models (I2V-DMs) often produce videos with limited motion degrees or exhibit uncontrollable motion that conflicts with the textual condition. To address these limitations, we propose a novel Extrapolating and Decoupling framework, which introduces model merging techniques to the I2V domain for the first time. Specifically, our framework consists of three separate stages: (1) Starting with a base I2V-DM, we explicitly inject the textual condition into the temporal module using a lightweight, learnable adapter and fine-tune the integrated model to improve motion controllability. (2) We introduce a training-free extrapolation strategy to amplify the dynamic range of the motion, effectively reversing the fine-tuning process to enhance the motion degree significantly. (3) With the above two-stage models excelling in motion controllability and degree, we decouple the relevant parameters associated with each type of motion ability and inject them into the base I2V-DM. Since the I2V-DM handles different levels of motion controllability and dynamics at various denoising time steps, we adjust the motion-aware parameters accordingly over time. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of our framework over existing methods.
NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior
Training a Neural Radiance Field (NeRF) without pre-computed camera poses is challenging. Recent advances in this direction demonstrate the possibility of jointly optimising a NeRF and camera poses in forward-facing scenes. However, these methods still face difficulties during dramatic camera movement. We tackle this challenging problem by incorporating undistorted monocular depth priors. These priors are generated by correcting scale and shift parameters during training, with which we are then able to constrain the relative poses between consecutive frames. This constraint is achieved using our proposed novel loss functions. Experiments on real-world indoor and outdoor scenes show that our method can handle challenging camera trajectories and outperforms existing methods in terms of novel view rendering quality and pose estimation accuracy. Our project page is https://nope-nerf.active.vision.
Adversarial robustness of amortized Bayesian inference
Bayesian inference usually requires running potentially costly inference procedures separately for every new observation. In contrast, the idea of amortized Bayesian inference is to initially invest computational cost in training an inference network on simulated data, which can subsequently be used to rapidly perform inference (i.e., to return estimates of posterior distributions) for new observations. This approach has been applied to many real-world models in the sciences and engineering, but it is unclear how robust the approach is to adversarial perturbations in the observed data. Here, we study the adversarial robustness of amortized Bayesian inference, focusing on simulation-based estimation of multi-dimensional posterior distributions. We show that almost unrecognizable, targeted perturbations of the observations can lead to drastic changes in the predicted posterior and highly unrealistic posterior predictive samples, across several benchmark tasks and a real-world example from neuroscience. We propose a computationally efficient regularization scheme based on penalizing the Fisher information of the conditional density estimator, and show how it improves the adversarial robustness of amortized Bayesian inference.
Self-Supervised Learning via Conditional Motion Propagation
Intelligent agent naturally learns from motion. Various self-supervised algorithms have leveraged motion cues to learn effective visual representations. The hurdle here is that motion is both ambiguous and complex, rendering previous works either suffer from degraded learning efficacy, or resort to strong assumptions on object motions. In this work, we design a new learning-from-motion paradigm to bridge these gaps. Instead of explicitly modeling the motion probabilities, we design the pretext task as a conditional motion propagation problem. Given an input image and several sparse flow guidance vectors on it, our framework seeks to recover the full-image motion. Compared to other alternatives, our framework has several appealing properties: (1) Using sparse flow guidance during training resolves the inherent motion ambiguity, and thus easing feature learning. (2) Solving the pretext task of conditional motion propagation encourages the emergence of kinematically-sound representations that poss greater expressive power. Extensive experiments demonstrate that our framework learns structural and coherent features; and achieves state-of-the-art self-supervision performance on several downstream tasks including semantic segmentation, instance segmentation, and human parsing. Furthermore, our framework is successfully extended to several useful applications such as semi-automatic pixel-level annotation. Project page: "http://mmlab.ie.cuhk.edu.hk/projects/CMP/".
Analyzing and Improving the Training Dynamics of Diffusion Models
Diffusion models currently dominate the field of data-driven image synthesis with their unparalleled scaling to large datasets. In this paper, we identify and rectify several causes for uneven and ineffective training in the popular ADM diffusion model architecture, without altering its high-level structure. Observing uncontrolled magnitude changes and imbalances in both the network activations and weights over the course of training, we redesign the network layers to preserve activation, weight, and update magnitudes on expectation. We find that systematic application of this philosophy eliminates the observed drifts and imbalances, resulting in considerably better networks at equal computational complexity. Our modifications improve the previous record FID of 2.41 in ImageNet-512 synthesis to 1.81, achieved using fast deterministic sampling. As an independent contribution, we present a method for setting the exponential moving average (EMA) parameters post-hoc, i.e., after completing the training run. This allows precise tuning of EMA length without the cost of performing several training runs, and reveals its surprising interactions with network architecture, training time, and guidance.
Breaking Latent Prior Bias in Detectors for Generalizable AIGC Image Detection
Current AIGC detectors often achieve near-perfect accuracy on images produced by the same generator used for training but struggle to generalize to outputs from unseen generators. We trace this failure in part to latent prior bias: detectors learn shortcuts tied to patterns stemming from the initial noise vector rather than learning robust generative artifacts. To address this, we propose On-Manifold Adversarial Training (OMAT): by optimizing the initial latent noise of diffusion models under fixed conditioning, we generate on-manifold adversarial examples that remain on the generator's output manifold-unlike pixel-space attacks, which introduce off-manifold perturbations that the generator itself cannot reproduce and that can obscure the true discriminative artifacts. To test against state-of-the-art generative models, we introduce GenImage++, a test-only benchmark of outputs from advanced generators (Flux.1, SD3) with extended prompts and diverse styles. We apply our adversarial-training paradigm to ResNet50 and CLIP baselines and evaluate across existing AIGC forensic benchmarks and recent challenge datasets. Extensive experiments show that adversarially trained detectors significantly improve cross-generator performance without any network redesign. Our findings on latent-prior bias offer valuable insights for future dataset construction and detector evaluation, guiding the development of more robust and generalizable AIGC forensic methodologies.
Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model
Diffusion models have obtained substantial progress in image-to-video (I2V) generation. However, such models are not fully understood. In this paper, we report a significant but previously overlooked issue in I2V diffusion models (I2V-DMs), namely, conditional image leakage. I2V-DMs tend to over-rely on the conditional image at large time steps, neglecting the crucial task of predicting the clean video from noisy inputs, which results in videos lacking dynamic and vivid motion. We further address this challenge from both inference and training aspects by presenting plug-and-play strategies accordingly. First, we introduce a training-free inference strategy that starts the generation process from an earlier time step to avoid the unreliable late-time steps of I2V-DMs, as well as an initial noise distribution with optimal analytic expressions (Analytic-Init) by minimizing the KL divergence between it and the actual marginal distribution to effectively bridge the training-inference gap. Second, to mitigate conditional image leakage during training, we design a time-dependent noise distribution for the conditional image, which favors high noise levels at large time steps to sufficiently interfere with the conditional image. We validate these strategies on various I2V-DMs using our collected open-domain image benchmark and the UCF101 dataset. Extensive results demonstrate that our methods outperform baselines by producing videos with more dynamic and natural motion without compromising image alignment and temporal consistency. The project page: https://cond-image-leak.github.io/.
A Gray-box Attack against Latent Diffusion Model-based Image Editing by Posterior Collapse
Recent advancements in Latent Diffusion Models (LDMs) have revolutionized image synthesis and manipulation, raising significant concerns about data misappropriation and intellectual property infringement. While adversarial attacks have been extensively explored as a protective measure against such misuse of generative AI, current approaches are severely limited by their heavy reliance on model-specific knowledge and substantial computational costs. Drawing inspiration from the posterior collapse phenomenon observed in VAE training, we propose the Posterior Collapse Attack (PCA), a novel framework for protecting images from unauthorized manipulation. Through comprehensive theoretical analysis and empirical validation, we identify two distinct collapse phenomena during VAE inference: diffusion collapse and concentration collapse. Based on this discovery, we design a unified loss function that can flexibly achieve both types of collapse through parameter adjustment, each corresponding to different protection objectives in preventing image manipulation. Our method significantly reduces dependence on model-specific knowledge by requiring access to only the VAE encoder, which constitutes less than 4\% of LDM parameters. Notably, PCA achieves prompt-invariant protection by operating on the VAE encoder before text conditioning occurs, eliminating the need for empty prompt optimization required by existing methods. This minimal requirement enables PCA to maintain adequate transferability across various VAE-based LDM architectures while effectively preventing unauthorized image editing. Extensive experiments show PCA outperforms existing techniques in protection effectiveness, computational efficiency (runtime and VRAM), and generalization across VAE-based LDM variants. Our code is available at https://github.com/ZhongliangGuo/PosteriorCollapseAttack.
Hi-VAE: Efficient Video Autoencoding with Global and Detailed Motion
Recent breakthroughs in video autoencoders (Video AEs) have advanced video generation, but existing methods fail to efficiently model spatio-temporal redundancies in dynamics, resulting in suboptimal compression factors. This shortfall leads to excessive training costs for downstream tasks. To address this, we introduce Hi-VAE, an efficient video autoencoding framework that hierarchically encode coarse-to-fine motion representations of video dynamics and formulate the decoding process as a conditional generation task. Specifically, Hi-VAE decomposes video dynamics into two latent spaces: Global Motion, capturing overarching motion patterns, and Detailed Motion, encoding high-frequency spatial details. Using separate self-supervised motion encoders, we compress video latents into compact motion representations to reduce redundancy significantly. A conditional diffusion decoder then reconstructs videos by combining hierarchical global and detailed motions, enabling high-fidelity video reconstructions. Extensive experiments demonstrate that Hi-VAE achieves a high compression factor of 1428times, almost 30times higher than baseline methods (e.g., Cosmos-VAE at 48times), validating the efficiency of our approach. Meanwhile, Hi-VAE maintains high reconstruction quality at such high compression rates and performs effectively in downstream generative tasks. Moreover, Hi-VAE exhibits interpretability and scalability, providing new perspectives for future exploration in video latent representation and generation.
Generalizable Implicit Motion Modeling for Video Frame Interpolation
Motion modeling is critical in flow-based Video Frame Interpolation (VFI). Existing paradigms either consider linear combinations of bidirectional flows or directly predict bilateral flows for given timestamps without exploring favorable motion priors, thus lacking the capability of effectively modeling spatiotemporal dynamics in real-world videos. To address this limitation, in this study, we introduce Generalizable Implicit Motion Modeling (GIMM), a novel and effective approach to motion modeling for VFI. Specifically, to enable GIMM as an effective motion modeling paradigm, we design a motion encoding pipeline to model spatiotemporal motion latent from bidirectional flows extracted from pre-trained flow estimators, effectively representing input-specific motion priors. Then, we implicitly predict arbitrary-timestep optical flows within two adjacent input frames via an adaptive coordinate-based neural network, with spatiotemporal coordinates and motion latent as inputs. Our GIMM can be smoothly integrated with existing flow-based VFI works without further modifications. We show that GIMM performs better than the current state of the art on the VFI benchmarks.
Nearly Zero-Cost Protection Against Mimicry by Personalized Diffusion Models
Recent advancements in diffusion models revolutionize image generation but pose risks of misuse, such as replicating artworks or generating deepfakes. Existing image protection methods, though effective, struggle to balance protection efficacy, invisibility, and latency, thus limiting practical use. We introduce perturbation pre-training to reduce latency and propose a mixture-of-perturbations approach that dynamically adapts to input images to minimize performance degradation. Our novel training strategy computes protection loss across multiple VAE feature spaces, while adaptive targeted protection at inference enhances robustness and invisibility. Experiments show comparable protection performance with improved invisibility and drastically reduced inference time. The code and demo are available at https://webtoon.github.io/impasto
LS-GAN: Human Motion Synthesis with Latent-space GANs
Human motion synthesis conditioned on textual input has gained significant attention in recent years due to its potential applications in various domains such as gaming, film production, and virtual reality. Conditioned Motion synthesis takes a text input and outputs a 3D motion corresponding to the text. While previous works have explored motion synthesis using raw motion data and latent space representations with diffusion models, these approaches often suffer from high training and inference times. In this paper, we introduce a novel framework that utilizes Generative Adversarial Networks (GANs) in the latent space to enable faster training and inference while achieving results comparable to those of the state-of-the-art diffusion methods. We perform experiments on the HumanML3D, HumanAct12 benchmarks and demonstrate that a remarkably simple GAN in the latent space achieves a FID of 0.482 with more than 91% in FLOPs reduction compared to latent diffusion model. Our work opens up new possibilities for efficient and high-quality motion synthesis using latent space GANs.
DynIBaR: Neural Dynamic Image-Based Rendering
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene. State-of-the-art methods based on temporally varying Neural Radiance Fields (aka dynamic NeRFs) have shown impressive results on this task. However, for long videos with complex object motions and uncontrolled camera trajectories, these methods can produce blurry or inaccurate renderings, hampering their use in real-world applications. Instead of encoding the entire dynamic scene within the weights of MLPs, we present a new approach that addresses these limitations by adopting a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views in a scene-motion-aware manner. Our system retains the advantages of prior methods in its ability to model complex scenes and view-dependent effects, but also enables synthesizing photo-realistic novel views from long videos featuring complex scene dynamics with unconstrained camera trajectories. We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets, and also apply our approach to in-the-wild videos with challenging camera and object motion, where prior methods fail to produce high-quality renderings. Our project webpage is at dynibar.github.io.
Adversarial Data Collection: Human-Collaborative Perturbations for Efficient and Robust Robotic Imitation Learning
The pursuit of data efficiency, where quality outweighs quantity, has emerged as a cornerstone in robotic manipulation, especially given the high costs associated with real-world data collection. We propose that maximizing the informational density of individual demonstrations can dramatically reduce reliance on large-scale datasets while improving task performance. To this end, we introduce Adversarial Data Collection, a Human-in-the-Loop (HiL) framework that redefines robotic data acquisition through real-time, bidirectional human-environment interactions. Unlike conventional pipelines that passively record static demonstrations, ADC adopts a collaborative perturbation paradigm: during a single episode, an adversarial operator dynamically alters object states, environmental conditions, and linguistic commands, while the tele-operator adaptively adjusts actions to overcome these evolving challenges. This process compresses diverse failure-recovery behaviors, compositional task variations, and environmental perturbations into minimal demonstrations. Our experiments demonstrate that ADC-trained models achieve superior compositional generalization to unseen task instructions, enhanced robustness to perceptual perturbations, and emergent error recovery capabilities. Strikingly, models trained with merely 20% of the demonstration volume collected through ADC significantly outperform traditional approaches using full datasets. These advances bridge the gap between data-centric learning paradigms and practical robotic deployment, demonstrating that strategic data acquisition, not merely post-hoc processing, is critical for scalable, real-world robot learning. Additionally, we are curating a large-scale ADC-Robotics dataset comprising real-world manipulation tasks with adversarial perturbations. This benchmark will be open-sourced to facilitate advancements in robotic imitation learning.
AdvCLIP: Downstream-agnostic Adversarial Examples in Multimodal Contrastive Learning
Multimodal contrastive learning aims to train a general-purpose feature extractor, such as CLIP, on vast amounts of raw, unlabeled paired image-text data. This can greatly benefit various complex downstream tasks, including cross-modal image-text retrieval and image classification. Despite its promising prospect, the security issue of cross-modal pre-trained encoder has not been fully explored yet, especially when the pre-trained encoder is publicly available for commercial use. In this work, we propose AdvCLIP, the first attack framework for generating downstream-agnostic adversarial examples based on cross-modal pre-trained encoders. AdvCLIP aims to construct a universal adversarial patch for a set of natural images that can fool all the downstream tasks inheriting the victim cross-modal pre-trained encoder. To address the challenges of heterogeneity between different modalities and unknown downstream tasks, we first build a topological graph structure to capture the relevant positions between target samples and their neighbors. Then, we design a topology-deviation based generative adversarial network to generate a universal adversarial patch. By adding the patch to images, we minimize their embeddings similarity to different modality and perturb the sample distribution in the feature space, achieving unviersal non-targeted attacks. Our results demonstrate the excellent attack performance of AdvCLIP on two types of downstream tasks across eight datasets. We also tailor three popular defenses to mitigate AdvCLIP, highlighting the need for new defense mechanisms to defend cross-modal pre-trained encoders.
EVEREST: Efficient Masked Video Autoencoder by Removing Redundant Spatiotemporal Tokens
Masked Video Autoencoder (MVA) approaches have demonstrated their potential by significantly outperforming previous video representation learning methods. However, they waste an excessive amount of computations and memory in predicting uninformative tokens/frames due to random masking strategies. (e.g., over 16 nodes with 128 NVIDIA A100 GPUs). To resolve this issue, we exploit the unequal information density among the patches in videos and propose EVEREST, a surprisingly efficient MVA approach for video representation learning that finds tokens containing rich motion features and discards uninformative ones during both pre-training and fine-tuning. We further present an information-intensive frame selection strategy that allows the model to focus on informative and causal frames with minimal redundancy. Our method significantly reduces the computation and memory requirements of MVA, enabling the pre-training and fine-tuning on a single machine with 8 GPUs while achieving comparable performance to computation- and memory-heavy baselines on multiple benchmarks and the uncurated Ego4D dataset. We hope that our work contributes to reducing the barrier to further research on video understanding.
MotionAug: Augmentation with Physical Correction for Human Motion Prediction
This paper presents a motion data augmentation scheme incorporating motion synthesis encouraging diversity and motion correction imposing physical plausibility. This motion synthesis consists of our modified Variational AutoEncoder (VAE) and Inverse Kinematics (IK). In this VAE, our proposed sampling-near-samples method generates various valid motions even with insufficient training motion data. Our IK-based motion synthesis method allows us to generate a variety of motions semi-automatically. Since these two schemes generate unrealistic artifacts in the synthesized motions, our motion correction rectifies them. This motion correction scheme consists of imitation learning with physics simulation and subsequent motion debiasing. For this imitation learning, we propose the PD-residual force that significantly accelerates the training process. Furthermore, our motion debiasing successfully offsets the motion bias induced by imitation learning to maximize the effect of augmentation. As a result, our method outperforms previous noise-based motion augmentation methods by a large margin on both Recurrent Neural Network-based and Graph Convolutional Network-based human motion prediction models. The code is available at https://github.com/meaten/MotionAug.
Video Prediction with Appearance and Motion Conditions
Video prediction aims to generate realistic future frames by learning dynamic visual patterns. One fundamental challenge is to deal with future uncertainty: How should a model behave when there are multiple correct, equally probable future? We propose an Appearance-Motion Conditional GAN to address this challenge. We provide appearance and motion information as conditions that specify how the future may look like, reducing the level of uncertainty. Our model consists of a generator, two discriminators taking charge of appearance and motion pathways, and a perceptual ranking module that encourages videos of similar conditions to look similar. To train our model, we develop a novel conditioning scheme that consists of different combinations of appearance and motion conditions. We evaluate our model using facial expression and human action datasets and report favorable results compared to existing methods.
KTPFormer: Kinematics and Trajectory Prior Knowledge-Enhanced Transformer for 3D Human Pose Estimation
This paper presents a novel Kinematics and Trajectory Prior Knowledge-Enhanced Transformer (KTPFormer), which overcomes the weakness in existing transformer-based methods for 3D human pose estimation that the derivation of Q, K, V vectors in their self-attention mechanisms are all based on simple linear mapping. We propose two prior attention modules, namely Kinematics Prior Attention (KPA) and Trajectory Prior Attention (TPA) to take advantage of the known anatomical structure of the human body and motion trajectory information, to facilitate effective learning of global dependencies and features in the multi-head self-attention. KPA models kinematic relationships in the human body by constructing a topology of kinematics, while TPA builds a trajectory topology to learn the information of joint motion trajectory across frames. Yielding Q, K, V vectors with prior knowledge, the two modules enable KTPFormer to model both spatial and temporal correlations simultaneously. Extensive experiments on three benchmarks (Human3.6M, MPI-INF-3DHP and HumanEva) show that KTPFormer achieves superior performance in comparison to state-of-the-art methods. More importantly, our KPA and TPA modules have lightweight plug-and-play designs and can be integrated into various transformer-based networks (i.e., diffusion-based) to improve the performance with only a very small increase in the computational overhead. The code is available at: https://github.com/JihuaPeng/KTPFormer.
Adversarial Bayesian Augmentation for Single-Source Domain Generalization
Generalizing to unseen image domains is a challenging problem primarily due to the lack of diverse training data, inaccessible target data, and the large domain shift that may exist in many real-world settings. As such data augmentation is a critical component of domain generalization methods that seek to address this problem. We present Adversarial Bayesian Augmentation (ABA), a novel algorithm that learns to generate image augmentations in the challenging single-source domain generalization setting. ABA draws on the strengths of adversarial learning and Bayesian neural networks to guide the generation of diverse data augmentations -- these synthesized image domains aid the classifier in generalizing to unseen domains. We demonstrate the strength of ABA on several types of domain shift including style shift, subpopulation shift, and shift in the medical imaging setting. ABA outperforms all previous state-of-the-art methods, including pre-specified augmentations, pixel-based and convolutional-based augmentations.
Still-Moving: Customized Video Generation without Customized Video Data
Customizing text-to-image (T2I) models has seen tremendous progress recently, particularly in areas such as personalization, stylization, and conditional generation. However, expanding this progress to video generation is still in its infancy, primarily due to the lack of customized video data. In this work, we introduce Still-Moving, a novel generic framework for customizing a text-to-video (T2V) model, without requiring any customized video data. The framework applies to the prominent T2V design where the video model is built over a text-to-image (T2I) model (e.g., via inflation). We assume access to a customized version of the T2I model, trained only on still image data (e.g., using DreamBooth or StyleDrop). Naively plugging in the weights of the customized T2I model into the T2V model often leads to significant artifacts or insufficient adherence to the customization data. To overcome this issue, we train lightweight Spatial Adapters that adjust the features produced by the injected T2I layers. Importantly, our adapters are trained on "frozen videos" (i.e., repeated images), constructed from image samples generated by the customized T2I model. This training is facilitated by a novel Motion Adapter module, which allows us to train on such static videos while preserving the motion prior of the video model. At test time, we remove the Motion Adapter modules and leave in only the trained Spatial Adapters. This restores the motion prior of the T2V model while adhering to the spatial prior of the customized T2I model. We demonstrate the effectiveness of our approach on diverse tasks including personalized, stylized, and conditional generation. In all evaluated scenarios, our method seamlessly integrates the spatial prior of the customized T2I model with a motion prior supplied by the T2V model.
MoCoGAN: Decomposing Motion and Content for Video Generation
Visual signals in a video can be divided into content and motion. While content specifies which objects are in the video, motion describes their dynamics. Based on this prior, we propose the Motion and Content decomposed Generative Adversarial Network (MoCoGAN) framework for video generation. The proposed framework generates a video by mapping a sequence of random vectors to a sequence of video frames. Each random vector consists of a content part and a motion part. While the content part is kept fixed, the motion part is realized as a stochastic process. To learn motion and content decomposition in an unsupervised manner, we introduce a novel adversarial learning scheme utilizing both image and video discriminators. Extensive experimental results on several challenging datasets with qualitative and quantitative comparison to the state-of-the-art approaches, verify effectiveness of the proposed framework. In addition, we show that MoCoGAN allows one to generate videos with same content but different motion as well as videos with different content and same motion.
HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian Splatting
We have recently seen tremendous progress in photo-real human modeling and rendering. Yet, efficiently rendering realistic human performance and integrating it into the rasterization pipeline remains challenging. In this paper, we present HiFi4G, an explicit and compact Gaussian-based approach for high-fidelity human performance rendering from dense footage. Our core intuition is to marry the 3D Gaussian representation with non-rigid tracking, achieving a compact and compression-friendly representation. We first propose a dual-graph mechanism to obtain motion priors, with a coarse deformation graph for effective initialization and a fine-grained Gaussian graph to enforce subsequent constraints. Then, we utilize a 4D Gaussian optimization scheme with adaptive spatial-temporal regularizers to effectively balance the non-rigid prior and Gaussian updating. We also present a companion compression scheme with residual compensation for immersive experiences on various platforms. It achieves a substantial compression rate of approximately 25 times, with less than 2MB of storage per frame. Extensive experiments demonstrate the effectiveness of our approach, which significantly outperforms existing approaches in terms of optimization speed, rendering quality, and storage overhead.
MotionRAG: Motion Retrieval-Augmented Image-to-Video Generation
Image-to-video generation has made remarkable progress with the advancements in diffusion models, yet generating videos with realistic motion remains highly challenging. This difficulty arises from the complexity of accurately modeling motion, which involves capturing physical constraints, object interactions, and domain-specific dynamics that are not easily generalized across diverse scenarios. To address this, we propose MotionRAG, a retrieval-augmented framework that enhances motion realism by adapting motion priors from relevant reference videos through Context-Aware Motion Adaptation (CAMA). The key technical innovations include: (i) a retrieval-based pipeline extracting high-level motion features using video encoder and specialized resamplers to distill semantic motion representations; (ii) an in-context learning approach for motion adaptation implemented through a causal transformer architecture; (iii) an attention-based motion injection adapter that seamlessly integrates transferred motion features into pretrained video diffusion models. Extensive experiments demonstrate that our method achieves significant improvements across multiple domains and various base models, all with negligible computational overhead during inference. Furthermore, our modular design enables zero-shot generalization to new domains by simply updating the retrieval database without retraining any components. This research enhances the core capability of video generation systems by enabling the effective retrieval and transfer of motion priors, facilitating the synthesis of realistic motion dynamics.
MimicMotion: High-Quality Human Motion Video Generation with Confidence-aware Pose Guidance
In recent years, generative artificial intelligence has achieved significant advancements in the field of image generation, spawning a variety of applications. However, video generation still faces considerable challenges in various aspects, such as controllability, video length, and richness of details, which hinder the application and popularization of this technology. In this work, we propose a controllable video generation framework, dubbed MimicMotion, which can generate high-quality videos of arbitrary length mimicking specific motion guidance. Compared with previous methods, our approach has several highlights. Firstly, we introduce confidence-aware pose guidance that ensures high frame quality and temporal smoothness. Secondly, we introduce regional loss amplification based on pose confidence, which significantly reduces image distortion. Lastly, for generating long and smooth videos, we propose a progressive latent fusion strategy. By this means, we can produce videos of arbitrary length with acceptable resource consumption. With extensive experiments and user studies, MimicMotion demonstrates significant improvements over previous approaches in various aspects. Detailed results and comparisons are available on our project page: https://tencent.github.io/MimicMotion .
Pixel is All You Need: Adversarial Trajectory-Ensemble Active Learning for Salient Object Detection
Although weakly-supervised techniques can reduce the labeling effort, it is unclear whether a saliency model trained with weakly-supervised data (e.g., point annotation) can achieve the equivalent performance of its fully-supervised version. This paper attempts to answer this unexplored question by proving a hypothesis: there is a point-labeled dataset where saliency models trained on it can achieve equivalent performance when trained on the densely annotated dataset. To prove this conjecture, we proposed a novel yet effective adversarial trajectory-ensemble active learning (ATAL). Our contributions are three-fold: 1) Our proposed adversarial attack triggering uncertainty can conquer the overconfidence of existing active learning methods and accurately locate these uncertain pixels. {2)} Our proposed trajectory-ensemble uncertainty estimation method maintains the advantages of the ensemble networks while significantly reducing the computational cost. {3)} Our proposed relationship-aware diversity sampling algorithm can conquer oversampling while boosting performance. Experimental results show that our ATAL can find such a point-labeled dataset, where a saliency model trained on it obtained 97% -- 99% performance of its fully-supervised version with only ten annotated points per image.
Simple and Efficient Hard Label Black-box Adversarial Attacks in Low Query Budget Regimes
We focus on the problem of black-box adversarial attacks, where the aim is to generate adversarial examples for deep learning models solely based on information limited to output label~(hard label) to a queried data input. We propose a simple and efficient Bayesian Optimization~(BO) based approach for developing black-box adversarial attacks. Issues with BO's performance in high dimensions are avoided by searching for adversarial examples in a structured low-dimensional subspace. We demonstrate the efficacy of our proposed attack method by evaluating both ell_infty and ell_2 norm constrained untargeted and targeted hard label black-box attacks on three standard datasets - MNIST, CIFAR-10 and ImageNet. Our proposed approach consistently achieves 2x to 10x higher attack success rate while requiring 10x to 20x fewer queries compared to the current state-of-the-art black-box adversarial attacks.
Individual Content and Motion Dynamics Preserved Pruning for Video Diffusion Models
The high computational cost and slow inference time are major obstacles to deploying the video diffusion model (VDM) in practical applications. To overcome this, we introduce a new Video Diffusion Model Compression approach using individual content and motion dynamics preserved pruning and consistency loss. First, we empirically observe that deeper VDM layers are crucial for maintaining the quality of motion dynamics e.g., coherence of the entire video, while shallower layers are more focused on individual content e.g., individual frames. Therefore, we prune redundant blocks from the shallower layers while preserving more of the deeper layers, resulting in a lightweight VDM variant called VDMini. Additionally, we propose an Individual Content and Motion Dynamics (ICMD) Consistency Loss to gain comparable generation performance as larger VDM, i.e., the teacher to VDMini i.e., the student. Particularly, we first use the Individual Content Distillation (ICD) Loss to ensure consistency in the features of each generated frame between the teacher and student models. Next, we introduce a Multi-frame Content Adversarial (MCA) Loss to enhance the motion dynamics across the generated video as a whole. This method significantly accelerates inference time while maintaining high-quality video generation. Extensive experiments demonstrate the effectiveness of our VDMini on two important video generation tasks, Text-to-Video (T2V) and Image-to-Video (I2V), where we respectively achieve an average 2.5 times and 1.4 times speed up for the I2V method SF-V and the T2V method T2V-Turbo-v2, while maintaining the quality of the generated videos on two benchmarks, i.e., UCF101 and VBench.
LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors
Single-image 3D reconstruction remains a fundamental challenge in computer vision due to inherent geometric ambiguities and limited viewpoint information. Recent advances in Latent Video Diffusion Models (LVDMs) offer promising 3D priors learned from large-scale video data. However, leveraging these priors effectively faces three key challenges: (1) degradation in quality across large camera motions, (2) difficulties in achieving precise camera control, and (3) geometric distortions inherent to the diffusion process that damage 3D consistency. We address these challenges by proposing LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency. Specifically, we design an articulated trajectory strategy to generate video frames, which decomposes video sequences with large camera motions into ones with controllable small motions. Then we use robust neural matching models, i.e. MASt3R, to calibrate the camera poses of generated frames and produce corresponding point clouds. Finally, we propose a distortion-aware 3D Gaussian splatting representation, which can learn independent distortions between frames and output undistorted canonical Gaussians. Extensive experiments demonstrate that LiftImage3D achieves state-of-the-art performance on two challenging datasets, i.e. LLFF, DL3DV, and Tanks and Temples, and generalizes well to diverse in-the-wild images, from cartoon illustrations to complex real-world scenes.
Deep Ensemble Learning with Frame Skipping for Face Anti-Spoofing
Face presentation attacks (PA), also known as spoofing attacks, pose a substantial threat to biometric systems that rely on facial recognition systems, such as access control systems, mobile payments, and identity verification systems. To mitigate the spoofing risk, several video-based methods have been presented in the literature that analyze facial motion in successive video frames. However, estimating the motion between adjacent frames is a challenging task and requires high computational cost. In this paper, we rephrase the face anti-spoofing task as a motion prediction problem and introduce a deep ensemble learning model with a frame skipping mechanism. In particular, the proposed frame skipping adopts a uniform sampling approach by dividing the original video into video clips of fixed size. By doing so, every nth frame of the clip is selected to ensure that the temporal patterns can easily be perceived during the training of three different recurrent neural networks (RNNs). Motivated by the performance of individual RNNs, a meta-model is developed to improve the overall detection performance by combining the prediction of individual RNNs. Extensive experiments were performed on four datasets, and state-of-the-art performance is reported on MSU-MFSD (3.12%), Replay-Attack (11.19%), and OULU-NPU (12.23%) databases by using half total error rates (HTERs) in the most challenging cross-dataset testing scenario.
ExposureDiffusion: Learning to Expose for Low-light Image Enhancement
Previous raw image-based low-light image enhancement methods predominantly relied on feed-forward neural networks to learn deterministic mappings from low-light to normally-exposed images. However, they failed to capture critical distribution information, leading to visually undesirable results. This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model. Different from a vanilla diffusion model that has to perform Gaussian denoising, with the injected physics-based exposure model, our restoration process can directly start from a noisy image instead of pure noise. As such, our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models. To make full use of the advantages of different intermediate steps, we further propose an adaptive residual layer that effectively screens out the side-effect in the iterative refinement when the intermediate results have been already well-exposed. The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks. Note that, the proposed framework is compatible with real-paired datasets, real/synthetic noise models, and different backbone networks. We evaluate the proposed method on various public benchmarks, achieving promising results with consistent improvements using different exposure models and backbones. Besides, the proposed method achieves better generalization capacity for unseen amplifying ratios and better performance than a larger feedforward neural model when few parameters are adopted.
Preserve Your Own Correlation: A Noise Prior for Video Diffusion Models
Despite tremendous progress in generating high-quality images using diffusion models, synthesizing a sequence of animated frames that are both photorealistic and temporally coherent is still in its infancy. While off-the-shelf billion-scale datasets for image generation are available, collecting similar video data of the same scale is still challenging. Also, training a video diffusion model is computationally much more expensive than its image counterpart. In this work, we explore finetuning a pretrained image diffusion model with video data as a practical solution for the video synthesis task. We find that naively extending the image noise prior to video noise prior in video diffusion leads to sub-optimal performance. Our carefully designed video noise prior leads to substantially better performance. Extensive experimental validation shows that our model, Preserve Your Own Correlation (PYoCo), attains SOTA zero-shot text-to-video results on the UCF-101 and MSR-VTT benchmarks. It also achieves SOTA video generation quality on the small-scale UCF-101 benchmark with a 10times smaller model using significantly less computation than the prior art.
Animate124: Animating One Image to 4D Dynamic Scene
We introduce Animate124 (Animate-one-image-to-4D), the first work to animate a single in-the-wild image into 3D video through textual motion descriptions, an underexplored problem with significant applications. Our 4D generation leverages an advanced 4D grid dynamic Neural Radiance Field (NeRF) model, optimized in three distinct stages using multiple diffusion priors. Initially, a static model is optimized using the reference image, guided by 2D and 3D diffusion priors, which serves as the initialization for the dynamic NeRF. Subsequently, a video diffusion model is employed to learn the motion specific to the subject. However, the object in the 3D videos tends to drift away from the reference image over time. This drift is mainly due to the misalignment between the text prompt and the reference image in the video diffusion model. In the final stage, a personalized diffusion prior is therefore utilized to address the semantic drift. As the pioneering image-text-to-4D generation framework, our method demonstrates significant advancements over existing baselines, evidenced by comprehensive quantitative and qualitative assessments.
Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models
The availability of large-scale multimodal datasets and advancements in diffusion models have significantly accelerated progress in 4D content generation. Most prior approaches rely on multiple image or video diffusion models, utilizing score distillation sampling for optimization or generating pseudo novel views for direct supervision. However, these methods are hindered by slow optimization speeds and multi-view inconsistency issues. Spatial and temporal consistency in 4D geometry has been extensively explored respectively in 3D-aware diffusion models and traditional monocular video diffusion models. Building on this foundation, we propose a strategy to migrate the temporal consistency in video diffusion models to the spatial-temporal consistency required for 4D generation. Specifically, we present a novel framework, Diffusion4D, for efficient and scalable 4D content generation. Leveraging a meticulously curated dynamic 3D dataset, we develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets. To control the dynamic strength of these assets, we introduce a 3D-to-4D motion magnitude metric as guidance. Additionally, we propose a novel motion magnitude reconstruction loss and 3D-aware classifier-free guidance to refine the learning and generation of motion dynamics. After obtaining orbital views of the 4D asset, we perform explicit 4D construction with Gaussian splatting in a coarse-to-fine manner. The synthesized multi-view consistent 4D image set enables us to swiftly generate high-fidelity and diverse 4D assets within just several minutes. Extensive experiments demonstrate that our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency across various prompt modalities.
Taming Diffusion Models for Music-driven Conducting Motion Generation
Generating the motion of orchestral conductors from a given piece of symphony music is a challenging task since it requires a model to learn semantic music features and capture the underlying distribution of real conducting motion. Prior works have applied Generative Adversarial Networks (GAN) to this task, but the promising diffusion model, which recently showed its advantages in terms of both training stability and output quality, has not been exploited in this context. This paper presents Diffusion-Conductor, a novel DDIM-based approach for music-driven conducting motion generation, which integrates the diffusion model to a two-stage learning framework. We further propose a random masking strategy to improve the feature robustness, and use a pair of geometric loss functions to impose additional regularizations and increase motion diversity. We also design several novel metrics, including Frechet Gesture Distance (FGD) and Beat Consistency Score (BC) for a more comprehensive evaluation of the generated motion. Experimental results demonstrate the advantages of our model.
Adv-BMT: Bidirectional Motion Transformer for Safety-Critical Traffic Scenario Generation
Scenario-based testing is essential for validating the performance of autonomous driving (AD) systems. However, such testing is limited by the scarcity of long-tailed, safety-critical scenarios in existing datasets collected in the real world. To tackle the data issue, we propose the Adv-BMT framework, which augments real-world scenarios with diverse and realistic adversarial traffic interactions. The core component of Adv-BMT is a bidirectional motion transformer (BMT) model to perform inverse traffic motion predictions, which takes agent information in the last time step of the scenario as input, and reconstructs the traffic in the inverse of chronological order until the initial time step. The Adv-BMT framework is a two-staged pipeline: it first conducts adversarial initializations and then inverse motion predictions. Different from previous work, we do not need any collision data for pretraining, and are able to generate realistic and diverse collision interactions. Our experimental results validate the quality of generated collision scenarios by Adv-BMT: training in our augmented dataset would reduce episode collision rates by 20%. Demo and code are available at: https://metadriverse.github.io/adv-bmt/.
Adversarial Generation of Hierarchical Gaussians for 3D Generative Model
Most advances in 3D Generative Adversarial Networks (3D GANs) largely depend on ray casting-based volume rendering, which incurs demanding rendering costs. One promising alternative is rasterization-based 3D Gaussian Splatting (3D-GS), providing a much faster rendering speed and explicit 3D representation. In this paper, we exploit Gaussian as a 3D representation for 3D GANs by leveraging its efficient and explicit characteristics. However, in an adversarial framework, we observe that a na\"ive generator architecture suffers from training instability and lacks the capability to adjust the scale of Gaussians. This leads to model divergence and visual artifacts due to the absence of proper guidance for initialized positions of Gaussians and densification to manage their scales adaptively. To address these issues, we introduce a generator architecture with a hierarchical multi-scale Gaussian representation that effectively regularizes the position and scale of generated Gaussians. Specifically, we design a hierarchy of Gaussians where finer-level Gaussians are parameterized by their coarser-level counterparts; the position of finer-level Gaussians would be located near their coarser-level counterparts, and the scale would monotonically decrease as the level becomes finer, modeling both coarse and fine details of the 3D scene. Experimental results demonstrate that ours achieves a significantly faster rendering speed (x100) compared to state-of-the-art 3D consistent GANs with comparable 3D generation capability. Project page: https://hse1032.github.io/gsgan.
T2M-GPT: Generating Human Motion from Textual Descriptions with Discrete Representations
In this work, we investigate a simple and must-known conditional generative framework based on Vector Quantised-Variational AutoEncoder (VQ-VAE) and Generative Pre-trained Transformer (GPT) for human motion generation from textural descriptions. We show that a simple CNN-based VQ-VAE with commonly used training recipes (EMA and Code Reset) allows us to obtain high-quality discrete representations. For GPT, we incorporate a simple corruption strategy during the training to alleviate training-testing discrepancy. Despite its simplicity, our T2M-GPT shows better performance than competitive approaches, including recent diffusion-based approaches. For example, on HumanML3D, which is currently the largest dataset, we achieve comparable performance on the consistency between text and generated motion (R-Precision), but with FID 0.116 largely outperforming MotionDiffuse of 0.630. Additionally, we conduct analyses on HumanML3D and observe that the dataset size is a limitation of our approach. Our work suggests that VQ-VAE still remains a competitive approach for human motion generation.
Concurrent Adversarial Learning for Large-Batch Training
Large-batch training has become a commonly used technique when training neural networks with a large number of GPU/TPU processors. As batch size increases, stochastic optimizers tend to converge to sharp local minima, leading to degraded test performance. Current methods usually use extensive data augmentation to increase the batch size, but we found the performance gain with data augmentation decreases as batch size increases, and data augmentation will become insufficient after certain point. In this paper, we propose to use adversarial learning to increase the batch size in large-batch training. Despite being a natural choice for smoothing the decision surface and biasing towards a flat region, adversarial learning has not been successfully applied in large-batch training since it requires at least two sequential gradient computations at each step, which will at least double the running time compared with vanilla training even with a large number of processors. To overcome this issue, we propose a novel Concurrent Adversarial Learning (ConAdv) method that decouple the sequential gradient computations in adversarial learning by utilizing staled parameters. Experimental results demonstrate that ConAdv can successfully increase the batch size on ResNet-50 training on ImageNet while maintaining high accuracy. In particular, we show ConAdv along can achieve 75.3\% top-1 accuracy on ImageNet ResNet-50 training with 96K batch size, and the accuracy can be further improved to 76.2\% when combining ConAdv with data augmentation. This is the first work successfully scales ResNet-50 training batch size to 96K.
MoMaps: Semantics-Aware Scene Motion Generation with Motion Maps
This paper addresses the challenge of learning semantically and functionally meaningful 3D motion priors from real-world videos, in order to enable prediction of future 3D scene motion from a single input image. We propose a novel pixel-aligned Motion Map (MoMap) representation for 3D scene motion, which can be generated from existing generative image models to facilitate efficient and effective motion prediction. To learn meaningful distributions over motion, we create a large-scale database of MoMaps from over 50,000 real videos and train a diffusion model on these representations. Our motion generation not only synthesizes trajectories in 3D but also suggests a new pipeline for 2D video synthesis: first generate a MoMap, then warp an image accordingly and complete the warped point-based renderings. Experimental results demonstrate that our approach generates plausible and semantically consistent 3D scene motion.
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Predicting the trajectories of surrounding objects is a critical task for self-driving vehicles and many other autonomous systems. Recent works demonstrate that adversarial attacks on trajectory prediction, where small crafted perturbations are introduced to history trajectories, may significantly mislead the prediction of future trajectories and induce unsafe planning. However, few works have addressed enhancing the robustness of this important safety-critical task.In this paper, we present a novel adversarial training method for trajectory prediction. Compared with typical adversarial training on image tasks, our work is challenged by more random input with rich context and a lack of class labels. To address these challenges, we propose a method based on a semi-supervised adversarial autoencoder, which models disentangled semantic features with domain knowledge and provides additional latent labels for the adversarial training. Extensive experiments with different types of attacks demonstrate that our Semisupervised Semantics-guided Adversarial Training (SSAT) method can effectively mitigate the impact of adversarial attacks by up to 73% and outperform other popular defense methods. In addition, experiments show that our method can significantly improve the system's robust generalization to unseen patterns of attacks. We believe that such semantics-guided architecture and advancement on robust generalization is an important step for developing robust prediction models and enabling safe decision-making.
AAMDM: Accelerated Auto-regressive Motion Diffusion Model
Interactive motion synthesis is essential in creating immersive experiences in entertainment applications, such as video games and virtual reality. However, generating animations that are both high-quality and contextually responsive remains a challenge. Traditional techniques in the game industry can produce high-fidelity animations but suffer from high computational costs and poor scalability. Trained neural network models alleviate the memory and speed issues, yet fall short on generating diverse motions. Diffusion models offer diverse motion synthesis with low memory usage, but require expensive reverse diffusion processes. This paper introduces the Accelerated Auto-regressive Motion Diffusion Model (AAMDM), a novel motion synthesis framework designed to achieve quality, diversity, and efficiency all together. AAMDM integrates Denoising Diffusion GANs as a fast Generation Module, and an Auto-regressive Diffusion Model as a Polishing Module. Furthermore, AAMDM operates in a lower-dimensional embedded space rather than the full-dimensional pose space, which reduces the training complexity as well as further improves the performance. We show that AAMDM outperforms existing methods in motion quality, diversity, and runtime efficiency, through comprehensive quantitative analyses and visual comparisons. We also demonstrate the effectiveness of each algorithmic component through ablation studies.
MotionMatcher: Motion Customization of Text-to-Video Diffusion Models via Motion Feature Matching
Text-to-video (T2V) diffusion models have shown promising capabilities in synthesizing realistic videos from input text prompts. However, the input text description alone provides limited control over the precise objects movements and camera framing. In this work, we tackle the motion customization problem, where a reference video is provided as motion guidance. While most existing methods choose to fine-tune pre-trained diffusion models to reconstruct the frame differences of the reference video, we observe that such strategy suffer from content leakage from the reference video, and they cannot capture complex motion accurately. To address this issue, we propose MotionMatcher, a motion customization framework that fine-tunes the pre-trained T2V diffusion model at the feature level. Instead of using pixel-level objectives, MotionMatcher compares high-level, spatio-temporal motion features to fine-tune diffusion models, ensuring precise motion learning. For the sake of memory efficiency and accessibility, we utilize a pre-trained T2V diffusion model, which contains considerable prior knowledge about video motion, to compute these motion features. In our experiments, we demonstrate state-of-the-art motion customization performances, validating the design of our framework.
Adversarial Examples Improve Image Recognition
Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [28] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%), Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [20] which is trained with 3.5B Instagram images (~3000X more than ImageNet) and ~9.4X more parameters. Models are available at https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet.
MotionTTT: 2D Test-Time-Training Motion Estimation for 3D Motion Corrected MRI
A major challenge of the long measurement times in magnetic resonance imaging (MRI), an important medical imaging technology, is that patients may move during data acquisition. This leads to severe motion artifacts in the reconstructed images and volumes. In this paper, we propose a deep learning-based test-time-training method for accurate motion estimation. The key idea is that a neural network trained for motion-free reconstruction has a small loss if there is no motion, thus optimizing over motion parameters passed through the reconstruction network enables accurate estimation of motion. The estimated motion parameters enable to correct for the motion and to reconstruct accurate motion-corrected images. Our method uses 2D reconstruction networks to estimate rigid motion in 3D, and constitutes the first deep learning based method for 3D rigid motion estimation towards 3D-motion-corrected MRI. We show that our method can provably reconstruct motion parameters for a simple signal and neural network model. We demonstrate the effectiveness of our method for both retrospectively simulated motion and prospectively collected real motion-corrupted data.
Visual Prompting for Adversarial Robustness
In this work, we leverage visual prompting (VP) to improve adversarial robustness of a fixed, pre-trained model at testing time. Compared to conventional adversarial defenses, VP allows us to design universal (i.e., data-agnostic) input prompting templates, which have plug-and-play capabilities at testing time to achieve desired model performance without introducing much computation overhead. Although VP has been successfully applied to improving model generalization, it remains elusive whether and how it can be used to defend against adversarial attacks. We investigate this problem and show that the vanilla VP approach is not effective in adversarial defense since a universal input prompt lacks the capacity for robust learning against sample-specific adversarial perturbations. To circumvent it, we propose a new VP method, termed Class-wise Adversarial Visual Prompting (C-AVP), to generate class-wise visual prompts so as to not only leverage the strengths of ensemble prompts but also optimize their interrelations to improve model robustness. Our experiments show that C-AVP outperforms the conventional VP method, with 2.1X standard accuracy gain and 2X robust accuracy gain. Compared to classical test-time defenses, C-AVP also yields a 42X inference time speedup.
Wan-Move: Motion-controllable Video Generation via Latent Trajectory Guidance
We present Wan-Move, a simple and scalable framework that brings motion control to video generative models. Existing motion-controllable methods typically suffer from coarse control granularity and limited scalability, leaving their outputs insufficient for practical use. We narrow this gap by achieving precise and high-quality motion control. Our core idea is to directly make the original condition features motion-aware for guiding video synthesis. To this end, we first represent object motions with dense point trajectories, allowing fine-grained control over the scene. We then project these trajectories into latent space and propagate the first frame's features along each trajectory, producing an aligned spatiotemporal feature map that tells how each scene element should move. This feature map serves as the updated latent condition, which is naturally integrated into the off-the-shelf image-to-video model, e.g., Wan-I2V-14B, as motion guidance without any architecture change. It removes the need for auxiliary motion encoders and makes fine-tuning base models easily scalable. Through scaled training, Wan-Move generates 5-second, 480p videos whose motion controllability rivals Kling 1.5 Pro's commercial Motion Brush, as indicated by user studies. To support comprehensive evaluation, we further design MoveBench, a rigorously curated benchmark featuring diverse content categories and hybrid-verified annotations. It is distinguished by larger data volume, longer video durations, and high-quality motion annotations. Extensive experiments on MoveBench and the public dataset consistently show Wan-Move's superior motion quality. Code, models, and benchmark data are made publicly available.
Loopy: Taming Audio-Driven Portrait Avatar with Long-Term Motion Dependency
With the introduction of diffusion-based video generation techniques, audio-conditioned human video generation has recently achieved significant breakthroughs in both the naturalness of motion and the synthesis of portrait details. Due to the limited control of audio signals in driving human motion, existing methods often add auxiliary spatial signals to stabilize movements, which may compromise the naturalness and freedom of motion. In this paper, we propose an end-to-end audio-only conditioned video diffusion model named Loopy. Specifically, we designed an inter- and intra-clip temporal module and an audio-to-latents module, enabling the model to leverage long-term motion information from the data to learn natural motion patterns and improving audio-portrait movement correlation. This method removes the need for manually specified spatial motion templates used in existing methods to constrain motion during inference. Extensive experiments show that Loopy outperforms recent audio-driven portrait diffusion models, delivering more lifelike and high-quality results across various scenarios.
BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
Enhancing low-resolution, low-frame-rate videos to high-resolution, high-frame-rate quality is essential for a seamless user experience, motivating advancements in Continuous Spatial-Temporal Video Super Resolution (C-STVSR). While prior methods employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow network for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve-and even degrade performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art PSNR and SSIM performance, showing enhanced spatial details and natural temporal consistency.
Consistent Video Depth Estimation
We present an algorithm for reconstructing dense, geometrically consistent depth for all pixels in a monocular video. We leverage a conventional structure-from-motion reconstruction to establish geometric constraints on pixels in the video. Unlike the ad-hoc priors in classical reconstruction, we use a learning-based prior, i.e., a convolutional neural network trained for single-image depth estimation. At test time, we fine-tune this network to satisfy the geometric constraints of a particular input video, while retaining its ability to synthesize plausible depth details in parts of the video that are less constrained. We show through quantitative validation that our method achieves higher accuracy and a higher degree of geometric consistency than previous monocular reconstruction methods. Visually, our results appear more stable. Our algorithm is able to handle challenging hand-held captured input videos with a moderate degree of dynamic motion. The improved quality of the reconstruction enables several applications, such as scene reconstruction and advanced video-based visual effects.
SCP-Diff: Spatial-Categorical Joint Prior for Diffusion Based Semantic Image Synthesis
Semantic image synthesis (SIS) shows good promises for sensor simulation. However, current best practices in this field, based on GANs, have not yet reached the desired level of quality. As latent diffusion models make significant strides in image generation, we are prompted to evaluate ControlNet, a notable method for its dense control capabilities. Our investigation uncovered two primary issues with its results: the presence of weird sub-structures within large semantic areas and the misalignment of content with the semantic mask. Through empirical study, we pinpointed the cause of these problems as a mismatch between the noised training data distribution and the standard normal prior applied at the inference stage. To address this challenge, we developed specific noise priors for SIS, encompassing spatial, categorical, and a novel spatial-categorical joint prior for inference. This approach, which we have named SCP-Diff, has set new state-of-the-art results in SIS on Cityscapes, ADE20K and COCO-Stuff, yielding a FID as low as 10.53 on Cityscapes. The code and models can be accessed via the project page.
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models
In deep learning, different kinds of deep networks typically need different optimizers, which have to be chosen after multiple trials, making the training process inefficient. To relieve this issue and consistently improve the model training speed across deep networks, we propose the ADAptive Nesterov momentum algorithm, Adan for short. Adan first reformulates the vanilla Nesterov acceleration to develop a new Nesterov momentum estimation (NME) method, which avoids the extra overhead of computing gradient at the extrapolation point. Then Adan adopts NME to estimate the gradient's first- and second-order moments in adaptive gradient algorithms for convergence acceleration. Besides, we prove that Adan finds an epsilon-approximate first-order stationary point within O(epsilon^{-3.5}) stochastic gradient complexity on the non-convex stochastic problems (e.g., deep learning problems), matching the best-known lower bound. Extensive experimental results show that Adan consistently surpasses the corresponding SoTA optimizers on vision, language, and RL tasks and sets new SoTAs for many popular networks and frameworks, e.g., ResNet, ConvNext, ViT, Swin, MAE, DETR, GPT-2, Transformer-XL, and BERT. More surprisingly, Adan can use half of the training cost (epochs) of SoTA optimizers to achieve higher or comparable performance on ViT, GPT-2, MAE, e.t.c., and also shows great tolerance to a large range of minibatch size, e.g., from 1k to 32k. Code is released at https://github.com/sail-sg/Adan, and has been used in multiple popular deep learning frameworks or projects.
Physics-Driven Spatiotemporal Modeling for AI-Generated Video Detection
AI-generated videos have achieved near-perfect visual realism (e.g., Sora), urgently necessitating reliable detection mechanisms. However, detecting such videos faces significant challenges in modeling high-dimensional spatiotemporal dynamics and identifying subtle anomalies that violate physical laws. In this paper, we propose a physics-driven AI-generated video detection paradigm based on probability flow conservation principles. Specifically, we propose a statistic called Normalized Spatiotemporal Gradient (NSG), which quantifies the ratio of spatial probability gradients to temporal density changes, explicitly capturing deviations from natural video dynamics. Leveraging pre-trained diffusion models, we develop an NSG estimator through spatial gradients approximation and motion-aware temporal modeling without complex motion decomposition while preserving physical constraints. Building on this, we propose an NSG-based video detection method (NSG-VD) that computes the Maximum Mean Discrepancy (MMD) between NSG features of the test and real videos as a detection metric. Last, we derive an upper bound of NSG feature distances between real and generated videos, proving that generated videos exhibit amplified discrepancies due to distributional shifts. Extensive experiments confirm that NSG-VD outperforms state-of-the-art baselines by 16.00% in Recall and 10.75% in F1-Score, validating the superior performance of NSG-VD. The source code is available at https://github.com/ZSHsh98/NSG-VD.
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression
This work studies training instabilities of behavior cloning with deep neural networks. We observe that minibatch SGD updates to the policy network during training result in sharp oscillations in long-horizon rewards, despite negligibly affecting the behavior cloning loss. We empirically disentangle the statistical and computational causes of these oscillations, and find them to stem from the chaotic propagation of minibatch SGD noise through unstable closed-loop dynamics. While SGD noise is benign in the single-step action prediction objective, it results in catastrophic error accumulation over long horizons, an effect we term gradient variance amplification (GVA). We show that many standard mitigation techniques do not alleviate GVA, but find an exponential moving average (EMA) of iterates to be surprisingly effective at doing so. We illustrate the generality of this phenomenon by showing the existence of GVA and its amelioration by EMA in both continuous control and autoregressive language generation. Finally, we provide theoretical vignettes that highlight the benefits of EMA in alleviating GVA and shed light on the extent to which classical convex models can help in understanding the benefits of iterate averaging in deep learning.
BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation
Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.
Motion-I2V: Consistent and Controllable Image-to-Video Generation with Explicit Motion Modeling
We introduce Motion-I2V, a novel framework for consistent and controllable image-to-video generation (I2V). In contrast to previous methods that directly learn the complicated image-to-video mapping, Motion-I2V factorizes I2V into two stages with explicit motion modeling. For the first stage, we propose a diffusion-based motion field predictor, which focuses on deducing the trajectories of the reference image's pixels. For the second stage, we propose motion-augmented temporal attention to enhance the limited 1-D temporal attention in video latent diffusion models. This module can effectively propagate reference image's feature to synthesized frames with the guidance of predicted trajectories from the first stage. Compared with existing methods, Motion-I2V can generate more consistent videos even at the presence of large motion and viewpoint variation. By training a sparse trajectory ControlNet for the first stage, Motion-I2V can support users to precisely control motion trajectories and motion regions with sparse trajectory and region annotations. This offers more controllability of the I2V process than solely relying on textual instructions. Additionally, Motion-I2V's second stage naturally supports zero-shot video-to-video translation. Both qualitative and quantitative comparisons demonstrate the advantages of Motion-I2V over prior approaches in consistent and controllable image-to-video generation.
ActFormer: A GAN-based Transformer towards General Action-Conditioned 3D Human Motion Generation
We present a GAN-based Transformer for general action-conditioned 3D human motion generation, including not only single-person actions but also multi-person interactive actions. Our approach consists of a powerful Action-conditioned motion TransFormer (ActFormer) under a GAN training scheme, equipped with a Gaussian Process latent prior. Such a design combines the strong spatio-temporal representation capacity of Transformer, superiority in generative modeling of GAN, and inherent temporal correlations from the latent prior. Furthermore, ActFormer can be naturally extended to multi-person motions by alternately modeling temporal correlations and human interactions with Transformer encoders. To further facilitate research on multi-person motion generation, we introduce a new synthetic dataset of complex multi-person combat behaviors. Extensive experiments on NTU-13, NTU RGB+D 120, BABEL and the proposed combat dataset show that our method can adapt to various human motion representations and achieve superior performance over the state-of-the-art methods on both single-person and multi-person motion generation tasks, demonstrating a promising step towards a general human motion generator.
Score Priors Guided Deep Variational Inference for Unsupervised Real-World Single Image Denoising
Real-world single image denoising is crucial and practical in computer vision. Bayesian inversions combined with score priors now have proven effective for single image denoising but are limited to white Gaussian noise. Moreover, applying existing score-based methods for real-world denoising requires not only the explicit train of score priors on the target domain but also the careful design of sampling procedures for posterior inference, which is complicated and impractical. To address these limitations, we propose a score priors-guided deep variational inference, namely ScoreDVI, for practical real-world denoising. By considering the deep variational image posterior with a Gaussian form, score priors are extracted based on easily accessible minimum MSE Non-i.i.d Gaussian denoisers and variational samples, which in turn facilitate optimizing the variational image posterior. Such a procedure adaptively applies cheap score priors to denoising. Additionally, we exploit a Non-i.i.d Gaussian mixture model and variational noise posterior to model the real-world noise. This scheme also enables the pixel-wise fusion of multiple image priors and variational image posteriors. Besides, we develop a noise-aware prior assignment strategy that dynamically adjusts the weight of image priors in the optimization. Our method outperforms other single image-based real-world denoising methods and achieves comparable performance to dataset-based unsupervised methods.
Periodic Vibration Gaussian: Dynamic Urban Scene Reconstruction and Real-time Rendering
Modeling dynamic, large-scale urban scenes is challenging due to their highly intricate geometric structures and unconstrained dynamics in both space and time. Prior methods often employ high-level architectural priors, separating static and dynamic elements, resulting in suboptimal capture of their synergistic interactions. To address this challenge, we present a unified representation model, called Periodic Vibration Gaussian (PVG). PVG builds upon the efficient 3D Gaussian splatting technique, originally designed for static scene representation, by introducing periodic vibration-based temporal dynamics. This innovation enables PVG to elegantly and uniformly represent the characteristics of various objects and elements in dynamic urban scenes. To enhance temporally coherent representation learning with sparse training data, we introduce a novel flow-based temporal smoothing mechanism and a position-aware adaptive control strategy. Extensive experiments on Waymo Open Dataset and KITTI benchmarks demonstrate that PVG surpasses state-of-the-art alternatives in both reconstruction and novel view synthesis for both dynamic and static scenes. Notably, PVG achieves this without relying on manually labeled object bounding boxes or expensive optical flow estimation. Moreover, PVG exhibits 50/6000-fold acceleration in training/rendering over the best alternative.
ASAG: Building Strong One-Decoder-Layer Sparse Detectors via Adaptive Sparse Anchor Generation
Recent sparse detectors with multiple, e.g. six, decoder layers achieve promising performance but much inference time due to complex heads. Previous works have explored using dense priors as initialization and built one-decoder-layer detectors. Although they gain remarkable acceleration, their performance still lags behind their six-decoder-layer counterparts by a large margin. In this work, we aim to bridge this performance gap while retaining fast speed. We find that the architecture discrepancy between dense and sparse detectors leads to feature conflict, hampering the performance of one-decoder-layer detectors. Thus we propose Adaptive Sparse Anchor Generator (ASAG) which predicts dynamic anchors on patches rather than grids in a sparse way so that it alleviates the feature conflict problem. For each image, ASAG dynamically selects which feature maps and which locations to predict, forming a fully adaptive way to generate image-specific anchors. Further, a simple and effective Query Weighting method eases the training instability from adaptiveness. Extensive experiments show that our method outperforms dense-initialized ones and achieves a better speed-accuracy trade-off. The code is available at https://github.com/iSEE-Laboratory/ASAG.
AnyAttack: Targeted Adversarial Attacks on Vision-Language Models toward Any Images
Due to their multimodal capabilities, Vision-Language Models (VLMs) have found numerous impactful applications in real-world scenarios. However, recent studies have revealed that VLMs are vulnerable to image-based adversarial attacks, particularly targeted adversarial images that manipulate the model to generate harmful content specified by the adversary. Current attack methods rely on predefined target labels to create targeted adversarial attacks, which limits their scalability and applicability for large-scale robustness evaluations. In this paper, we propose AnyAttack, a self-supervised framework that generates targeted adversarial images for VLMs without label supervision, allowing any image to serve as a target for the attack. Our framework employs the pre-training and fine-tuning paradigm, with the adversarial noise generator pre-trained on the large-scale LAION-400M dataset. This large-scale pre-training endows our method with powerful transferability across a wide range of VLMs. Extensive experiments on five mainstream open-source VLMs (CLIP, BLIP, BLIP2, InstructBLIP, and MiniGPT-4) across three multimodal tasks (image-text retrieval, multimodal classification, and image captioning) demonstrate the effectiveness of our attack. Additionally, we successfully transfer AnyAttack to multiple commercial VLMs, including Google Gemini, Claude Sonnet, Microsoft Copilot and OpenAI GPT. These results reveal an unprecedented risk to VLMs, highlighting the need for effective countermeasures.
Beyond Uncertainty: Evidential Deep Learning for Robust Video Temporal Grounding
Existing Video Temporal Grounding (VTG) models excel in accuracy but often overlook open-world challenges posed by open-vocabulary queries and untrimmed videos. This leads to unreliable predictions for noisy, corrupted, and out-of-distribution data. Adapting VTG models to dynamically estimate uncertainties based on user input can address this issue. To this end, we introduce SRAM, a robust network module that benefits from a two-stage cross-modal alignment task. More importantly, it integrates Deep Evidential Regression (DER) to explicitly and thoroughly quantify uncertainty during training, thus allowing the model to say "I do not know" in scenarios beyond its handling capacity. However, the direct application of traditional DER theory and its regularizer reveals structural flaws, leading to unintended constraints in VTG tasks. In response, we develop a simple yet effective Geom-regularizer that enhances the uncertainty learning framework from the ground up. To the best of our knowledge, this marks the first successful attempt of DER in VTG. Our extensive quantitative and qualitative results affirm the effectiveness, robustness, and interpretability of our modules and the uncertainty learning paradigm in VTG tasks. The code will be made available.
SF-V: Single Forward Video Generation Model
Diffusion-based video generation models have demonstrated remarkable success in obtaining high-fidelity videos through the iterative denoising process. However, these models require multiple denoising steps during sampling, resulting in high computational costs. In this work, we propose a novel approach to obtain single-step video generation models by leveraging adversarial training to fine-tune pre-trained video diffusion models. We show that, through the adversarial training, the multi-steps video diffusion model, i.e., Stable Video Diffusion (SVD), can be trained to perform single forward pass to synthesize high-quality videos, capturing both temporal and spatial dependencies in the video data. Extensive experiments demonstrate that our method achieves competitive generation quality of synthesized videos with significantly reduced computational overhead for the denoising process (i.e., around 23times speedup compared with SVD and 6times speedup compared with existing works, with even better generation quality), paving the way for real-time video synthesis and editing. More visualization results are made publicly available at https://snap-research.github.io/SF-V.
ARTcdotV: Auto-Regressive Text-to-Video Generation with Diffusion Models
We present ARTcdotV, an efficient framework for auto-regressive video generation with diffusion models. Unlike existing methods that generate entire videos in one-shot, ARTcdotV generates a single frame at a time, conditioned on the previous ones. The framework offers three distinct advantages. First, it only learns simple continual motions between adjacent frames, therefore avoiding modeling complex long-range motions that require huge training data. Second, it preserves the high-fidelity generation ability of the pre-trained image diffusion models by making only minimal network modifications. Third, it can generate arbitrarily long videos conditioned on a variety of prompts such as text, image or their combinations, making it highly versatile and flexible. To combat the common drifting issue in AR models, we propose masked diffusion model which implicitly learns which information can be drawn from reference images rather than network predictions, in order to reduce the risk of generating inconsistent appearances that cause drifting. Moreover, we further enhance generation coherence by conditioning it on the initial frame, which typically contains minimal noise. This is particularly useful for long video generation. When trained for only two weeks on four GPUs, ARTcdotV already can generate videos with natural motions, rich details and a high level of aesthetic quality. Besides, it enables various appealing applications, e.g., composing a long video from multiple text prompts.
Articulate That Object Part (ATOP): 3D Part Articulation via Text and Motion Personalization
We present ATOP (Articulate That Object Part), a novel few-shot method based on motion personalization to articulate a static 3D object with respect to a part and its motion as prescribed in a text prompt. Given the scarcity of available datasets with motion attribute annotations, existing methods struggle to generalize well in this task. In our work, the text input allows us to tap into the power of modern-day diffusion models to generate plausible motion samples for the right object category and part. In turn, the input 3D object provides image prompting to personalize the generated video to that very object we wish to articulate. Our method starts with a few-shot finetuning for category-specific motion generation, a key first step to compensate for the lack of articulation awareness by current diffusion models. For this, we finetune a pre-trained multi-view image generation model for controllable multi-view video generation, using a small collection of video samples obtained for the target object category. This is followed by motion video personalization that is realized by multi-view rendered images of the target 3D object. At last, we transfer the personalized video motion to the target 3D object via differentiable rendering to optimize part motion parameters by a score distillation sampling loss. Experimental results on PartNet-Sapien and ACD datasets show that our method is capable of generating realistic motion videos and predicting 3D motion parameters in a more accurate and generalizable way, compared to prior works in the few-shot setting.
MetaCap: Meta-learning Priors from Multi-View Imagery for Sparse-view Human Performance Capture and Rendering
Faithful human performance capture and free-view rendering from sparse RGB observations is a long-standing problem in Vision and Graphics. The main challenges are the lack of observations and the inherent ambiguities of the setting, e.g. occlusions and depth ambiguity. As a result, radiance fields, which have shown great promise in capturing high-frequency appearance and geometry details in dense setups, perform poorly when naively supervising them on sparse camera views, as the field simply overfits to the sparse-view inputs. To address this, we propose MetaCap, a method for efficient and high-quality geometry recovery and novel view synthesis given very sparse or even a single view of the human. Our key idea is to meta-learn the radiance field weights solely from potentially sparse multi-view videos, which can serve as a prior when fine-tuning them on sparse imagery depicting the human. This prior provides a good network weight initialization, thereby effectively addressing ambiguities in sparse-view capture. Due to the articulated structure of the human body and motion-induced surface deformations, learning such a prior is non-trivial. Therefore, we propose to meta-learn the field weights in a pose-canonicalized space, which reduces the spatial feature range and makes feature learning more effective. Consequently, one can fine-tune our field parameters to quickly generalize to unseen poses, novel illumination conditions as well as novel and sparse (even monocular) camera views. For evaluating our method under different scenarios, we collect a new dataset, WildDynaCap, which contains subjects captured in, both, a dense camera dome and in-the-wild sparse camera rigs, and demonstrate superior results compared to recent state-of-the-art methods on, both, public and WildDynaCap dataset.
SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device
We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.
Markovian Gaussian Process Variational Autoencoders
Sequential VAEs have been successfully considered for many high-dimensional time series modelling problems, with many variant models relying on discrete-time mechanisms such as recurrent neural networks (RNNs). On the other hand, continuous-time methods have recently gained attraction, especially in the context of irregularly-sampled time series, where they can better handle the data than discrete-time methods. One such class are Gaussian process variational autoencoders (GPVAEs), where the VAE prior is set as a Gaussian process (GP). However, a major limitation of GPVAEs is that it inherits the cubic computational cost as GPs, making it unattractive to practioners. In this work, we leverage the equivalent discrete state space representation of Markovian GPs to enable linear time GPVAE training via Kalman filtering and smoothing. We show on a variety of high-dimensional temporal and spatiotemporal tasks that our method performs favourably compared to existing approaches whilst being computationally highly scalable.
VEnhancer: Generative Space-Time Enhancement for Video Generation
We present VEnhancer, a generative space-time enhancement framework that improves the existing text-to-video results by adding more details in spatial domain and synthetic detailed motion in temporal domain. Given a generated low-quality video, our approach can increase its spatial and temporal resolution simultaneously with arbitrary up-sampling space and time scales through a unified video diffusion model. Furthermore, VEnhancer effectively removes generated spatial artifacts and temporal flickering of generated videos. To achieve this, basing on a pretrained video diffusion model, we train a video ControlNet and inject it to the diffusion model as a condition on low frame-rate and low-resolution videos. To effectively train this video ControlNet, we design space-time data augmentation as well as video-aware conditioning. Benefiting from the above designs, VEnhancer yields to be stable during training and shares an elegant end-to-end training manner. Extensive experiments show that VEnhancer surpasses existing state-of-the-art video super-resolution and space-time super-resolution methods in enhancing AI-generated videos. Moreover, with VEnhancer, exisiting open-source state-of-the-art text-to-video method, VideoCrafter-2, reaches the top one in video generation benchmark -- VBench.
SOAR: Scene-debiasing Open-set Action Recognition
Deep learning models have a risk of utilizing spurious clues to make predictions, such as recognizing actions based on the background scene. This issue can severely degrade the open-set action recognition performance when the testing samples have different scene distributions from the training samples. To mitigate this problem, we propose a novel method, called Scene-debiasing Open-set Action Recognition (SOAR), which features an adversarial scene reconstruction module and an adaptive adversarial scene classification module. The former prevents the decoder from reconstructing the video background given video features, and thus helps reduce the background information in feature learning. The latter aims to confuse scene type classification given video features, with a specific emphasis on the action foreground, and helps to learn scene-invariant information. In addition, we design an experiment to quantify the scene bias. The results indicate that the current open-set action recognizers are biased toward the scene, and our proposed SOAR method better mitigates such bias. Furthermore, our extensive experiments demonstrate that our method outperforms state-of-the-art methods, and the ablation studies confirm the effectiveness of our proposed modules.
BroadWay: Boost Your Text-to-Video Generation Model in a Training-free Way
The text-to-video (T2V) generation models, offering convenient visual creation, have recently garnered increasing attention. Despite their substantial potential, the generated videos may present artifacts, including structural implausibility, temporal inconsistency, and a lack of motion, often resulting in near-static video. In this work, we have identified a correlation between the disparity of temporal attention maps across different blocks and the occurrence of temporal inconsistencies. Additionally, we have observed that the energy contained within the temporal attention maps is directly related to the magnitude of motion amplitude in the generated videos. Based on these observations, we present BroadWay, a training-free method to improve the quality of text-to-video generation without introducing additional parameters, augmenting memory or sampling time. Specifically, BroadWay is composed of two principal components: 1) Temporal Self-Guidance improves the structural plausibility and temporal consistency of generated videos by reducing the disparity between the temporal attention maps across various decoder blocks. 2) Fourier-based Motion Enhancement enhances the magnitude and richness of motion by amplifying the energy of the map. Extensive experiments demonstrate that BroadWay significantly improves the quality of text-to-video generation with negligible additional cost.
Quantifying Uncertainty in Motion Prediction with Variational Bayesian Mixture
Safety and robustness are crucial factors in developing trustworthy autonomous vehicles. One essential aspect of addressing these factors is to equip vehicles with the capability to predict future trajectories for all moving objects in the surroundings and quantify prediction uncertainties. In this paper, we propose the Sequential Neural Variational Agent (SeNeVA), a generative model that describes the distribution of future trajectories for a single moving object. Our approach can distinguish Out-of-Distribution data while quantifying uncertainty and achieving competitive performance compared to state-of-the-art methods on the Argoverse 2 and INTERACTION datasets. Specifically, a 0.446 meters minimum Final Displacement Error, a 0.203 meters minimum Average Displacement Error, and a 5.35% Miss Rate are achieved on the INTERACTION test set. Extensive qualitative and quantitative analysis is also provided to evaluate the proposed model. Our open-source code is available at https://github.com/PurdueDigitalTwin/seneva.
Splatter a Video: Video Gaussian Representation for Versatile Processing
Video representation is a long-standing problem that is crucial for various down-stream tasks, such as tracking,depth prediction,segmentation,view synthesis,and editing. However, current methods either struggle to model complex motions due to the absence of 3D structure or rely on implicit 3D representations that are ill-suited for manipulation tasks. To address these challenges, we introduce a novel explicit 3D representation-video Gaussian representation -- that embeds a video into 3D Gaussians. Our proposed representation models video appearance in a 3D canonical space using explicit Gaussians as proxies and associates each Gaussian with 3D motions for video motion. This approach offers a more intrinsic and explicit representation than layered atlas or volumetric pixel matrices. To obtain such a representation, we distill 2D priors, such as optical flow and depth, from foundation models to regularize learning in this ill-posed setting. Extensive applications demonstrate the versatility of our new video representation. It has been proven effective in numerous video processing tasks, including tracking, consistent video depth and feature refinement, motion and appearance editing, and stereoscopic video generation. Project page: https://sunyangtian.github.io/spatter_a_video_web/
SMF: Template-free and Rig-free Animation Transfer using Kinetic Codes
Animation retargetting applies sparse motion description (e.g., keypoint sequences) to a character mesh to produce a semantically plausible and temporally coherent full-body mesh sequence. Existing approaches come with restrictions -- they require access to template-based shape priors or artist-designed deformation rigs, suffer from limited generalization to unseen motion and/or shapes, or exhibit motion jitter. We propose Self-supervised Motion Fields (SMF), a self-supervised framework that is trained with only sparse motion representations, without requiring dataset-specific annotations, templates, or rigs. At the heart of our method are Kinetic Codes, a novel autoencoder-based sparse motion encoding, that exposes a semantically rich latent space, simplifying large-scale training. Our architecture comprises dedicated spatial and temporal gradient predictors, which are jointly trained in an end-to-end fashion. The combined network, regularized by the Kinetic Codes' latent space, has good generalization across both unseen shapes and new motions. We evaluated our method on unseen motion sampled from AMASS, D4D, Mixamo, and raw monocular video for animation transfer on various characters with varying shapes and topology. We report a new SoTA on the AMASS dataset in the context of generalization to unseen motion. Code, weights, and supplementary are available on the project webpage at https://motionfields.github.io/
VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models
Despite tremendous recent progress, generative video models still struggle to capture real-world motion, dynamics, and physics. We show that this limitation arises from the conventional pixel reconstruction objective, which biases models toward appearance fidelity at the expense of motion coherence. To address this, we introduce VideoJAM, a novel framework that instills an effective motion prior to video generators, by encouraging the model to learn a joint appearance-motion representation. VideoJAM is composed of two complementary units. During training, we extend the objective to predict both the generated pixels and their corresponding motion from a single learned representation. During inference, we introduce Inner-Guidance, a mechanism that steers the generation toward coherent motion by leveraging the model's own evolving motion prediction as a dynamic guidance signal. Notably, our framework can be applied to any video model with minimal adaptations, requiring no modifications to the training data or scaling of the model. VideoJAM achieves state-of-the-art performance in motion coherence, surpassing highly competitive proprietary models while also enhancing the perceived visual quality of the generations. These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation. Project website: https://hila-chefer.github.io/videojam-paper.github.io/
ASAM: Boosting Segment Anything Model with Adversarial Tuning
In the evolving landscape of computer vision, foundation models have emerged as pivotal tools, exhibiting exceptional adaptability to a myriad of tasks. Among these, the Segment Anything Model (SAM) by Meta AI has distinguished itself in image segmentation. However, SAM, like its counterparts, encounters limitations in specific niche applications, prompting a quest for enhancement strategies that do not compromise its inherent capabilities. This paper introduces ASAM, a novel methodology that amplifies SAM's performance through adversarial tuning. We harness the potential of natural adversarial examples, inspired by their successful implementation in natural language processing. By utilizing a stable diffusion model, we augment a subset (1%) of the SA-1B dataset, generating adversarial instances that are more representative of natural variations rather than conventional imperceptible perturbations. Our approach maintains the photorealism of adversarial examples and ensures alignment with original mask annotations, thereby preserving the integrity of the segmentation task. The fine-tuned ASAM demonstrates significant improvements across a diverse range of segmentation tasks without necessitating additional data or architectural modifications. The results of our extensive evaluations confirm that ASAM establishes new benchmarks in segmentation tasks, thereby contributing to the advancement of foundational models in computer vision. Our project page is in https://asam2024.github.io/.
X-MoGen: Unified Motion Generation across Humans and Animals
Text-driven motion generation has attracted increasing attention due to its broad applications in virtual reality, animation, and robotics. While existing methods typically model human and animal motion separately, a joint cross-species approach offers key advantages, such as a unified representation and improved generalization. However, morphological differences across species remain a key challenge, often compromising motion plausibility. To address this, we propose X-MoGen, the first unified framework for cross-species text-driven motion generation covering both humans and animals. X-MoGen adopts a two-stage architecture. First, a conditional graph variational autoencoder learns canonical T-pose priors, while an autoencoder encodes motion into a shared latent space regularized by morphological loss. In the second stage, we perform masked motion modeling to generate motion embeddings conditioned on textual descriptions. During training, a morphological consistency module is employed to promote skeletal plausibility across species. To support unified modeling, we construct UniMo4D, a large-scale dataset of 115 species and 119k motion sequences, which integrates human and animal motions under a shared skeletal topology for joint training. Extensive experiments on UniMo4D demonstrate that X-MoGen outperforms state-of-the-art methods on both seen and unseen species.
CanvasMAR: Improving Masked Autoregressive Video Generation With Canvas
Masked autoregressive models (MAR) have recently emerged as a powerful paradigm for image and video generation, combining the flexibility of masked modeling with the potential of continuous tokenizer. However, video MAR models suffer from two major limitations: the slow-start problem, caused by the lack of a structured global prior at early sampling stages, and error accumulation across the autoregression in both spatial and temporal dimensions. In this work, we propose CanvasMAR, a novel video MAR model that mitigates these issues by introducing a canvas mechanism--a blurred, global prediction of the next frame, used as the starting point for masked generation. The canvas provides global structure early in sampling, enabling faster and more coherent frame synthesis. Furthermore, we introduce compositional classifier-free guidance that jointly enlarges spatial (canvas) and temporal conditioning, and employ noise-based canvas augmentation to enhance robustness. Experiments on the BAIR and Kinetics-600 benchmarks demonstrate that CanvasMAR produces high-quality videos with fewer autoregressive steps. Our approach achieves remarkable performance among autoregressive models on Kinetics-600 dataset and rivals diffusion-based methods.
GaussianVideo: Efficient Video Representation via Hierarchical Gaussian Splatting
Efficient neural representations for dynamic video scenes are critical for applications ranging from video compression to interactive simulations. Yet, existing methods often face challenges related to high memory usage, lengthy training times, and temporal consistency. To address these issues, we introduce a novel neural video representation that combines 3D Gaussian splatting with continuous camera motion modeling. By leveraging Neural ODEs, our approach learns smooth camera trajectories while maintaining an explicit 3D scene representation through Gaussians. Additionally, we introduce a spatiotemporal hierarchical learning strategy, progressively refining spatial and temporal features to enhance reconstruction quality and accelerate convergence. This memory-efficient approach achieves high-quality rendering at impressive speeds. Experimental results show that our hierarchical learning, combined with robust camera motion modeling, captures complex dynamic scenes with strong temporal consistency, achieving state-of-the-art performance across diverse video datasets in both high- and low-motion scenarios.
Space-Time Diffusion Features for Zero-Shot Text-Driven Motion Transfer
We present a new method for text-driven motion transfer - synthesizing a video that complies with an input text prompt describing the target objects and scene while maintaining an input video's motion and scene layout. Prior methods are confined to transferring motion across two subjects within the same or closely related object categories and are applicable for limited domains (e.g., humans). In this work, we consider a significantly more challenging setting in which the target and source objects differ drastically in shape and fine-grained motion characteristics (e.g., translating a jumping dog into a dolphin). To this end, we leverage a pre-trained and fixed text-to-video diffusion model, which provides us with generative and motion priors. The pillar of our method is a new space-time feature loss derived directly from the model. This loss guides the generation process to preserve the overall motion of the input video while complying with the target object in terms of shape and fine-grained motion traits.
ANO : Faster is Better in Noisy Landscape
Stochastic optimizers are central to deep learning, yet widely used methods such as Adam and Adan can degrade in non-stationary or noisy environments, partly due to their reliance on momentum-based magnitude estimates. We introduce Ano, a novel optimizer that decouples direction and magnitude: momentum is used for directional smoothing, while instantaneous gradient magnitudes determine step size. This design improves robustness to gradient noise while retaining the simplicity and efficiency of first-order methods. We further propose Anolog, which removes sensitivity to the momentum coefficient by expanding its window over time via a logarithmic schedule. We establish non-convex convergence guarantees with a convergence rate similar to other sign-based methods, and empirically show that Ano provides substantial gains in noisy and non-stationary regimes such as reinforcement learning, while remaining competitive on low-noise tasks such as standard computer vision benchmarks.
QVGen: Pushing the Limit of Quantized Video Generative Models
Video diffusion models (DMs) have enabled high-quality video synthesis. Yet, their substantial computational and memory demands pose serious challenges to real-world deployment, even on high-end GPUs. As a commonly adopted solution, quantization has proven notable success in reducing cost for image DMs, while its direct application to video DMs remains ineffective. In this paper, we present QVGen, a novel quantization-aware training (QAT) framework tailored for high-performance and inference-efficient video DMs under extremely low-bit quantization (e.g., 4-bit or below). We begin with a theoretical analysis demonstrating that reducing the gradient norm is essential to facilitate convergence for QAT. To this end, we introduce auxiliary modules (Phi) to mitigate large quantization errors, leading to significantly enhanced convergence. To eliminate the inference overhead of Phi, we propose a rank-decay strategy that progressively eliminates Phi. Specifically, we repeatedly employ singular value decomposition (SVD) and a proposed rank-based regularization gamma to identify and decay low-contributing components. This strategy retains performance while zeroing out inference overhead. Extensive experiments across 4 state-of-the-art (SOTA) video DMs, with parameter sizes ranging from 1.3B sim14B, show that QVGen is the first to reach full-precision comparable quality under 4-bit settings. Moreover, it significantly outperforms existing methods. For instance, our 3-bit CogVideoX-2B achieves improvements of +25.28 in Dynamic Degree and +8.43 in Scene Consistency on VBench.
PUSA V1.0: Surpassing Wan-I2V with $500 Training Cost by Vectorized Timestep Adaptation
The rapid advancement of video diffusion models has been hindered by fundamental limitations in temporal modeling, particularly the rigid synchronization of frame evolution imposed by conventional scalar timestep variables. While task-specific adaptations and autoregressive models have sought to address these challenges, they remain constrained by computational inefficiency, catastrophic forgetting, or narrow applicability. In this work, we present Pusa, a groundbreaking paradigm that leverages vectorized timestep adaptation (VTA) to enable fine-grained temporal control within a unified video diffusion framework. Besides, VTA is a non-destructive adaptation, which means it fully preserves the capabilities of the base model. By finetuning the SOTA Wan2.1-T2V-14B model with VTA, we achieve unprecedented efficiency -- surpassing the performance of Wan-I2V-14B with leq 1/200 of the training cost (\500 vs. \geq 100,000) and leq 1/2500 of the dataset size (4K vs. geq 10M samples). Pusa not only sets a new standard for image-to-video (I2V) generation, achieving a VBench-I2V total score of 87.32\% (vs. 86.86\% of Wan-I2V-14B), but also unlocks many zero-shot multi-task capabilities such as start-end frames and video extension -- all without task-specific training. Meanwhile, Pusa can still perform text-to-video generation. Mechanistic analyses reveal that our approach preserves the foundation model's generative priors while surgically injecting temporal dynamics, avoiding the combinatorial explosion inherent to vectorized timesteps. This work establishes a scalable, efficient, and versatile paradigm for next-generation video synthesis, democratizing high-fidelity video generation for research and industry alike. Code is open-sourced at https://github.com/Yaofang-Liu/Pusa-VidGen
Eliminating Catastrophic Overfitting Via Abnormal Adversarial Examples Regularization
Single-step adversarial training (SSAT) has demonstrated the potential to achieve both efficiency and robustness. However, SSAT suffers from catastrophic overfitting (CO), a phenomenon that leads to a severely distorted classifier, making it vulnerable to multi-step adversarial attacks. In this work, we observe that some adversarial examples generated on the SSAT-trained network exhibit anomalous behaviour, that is, although these training samples are generated by the inner maximization process, their associated loss decreases instead, which we named abnormal adversarial examples (AAEs). Upon further analysis, we discover a close relationship between AAEs and classifier distortion, as both the number and outputs of AAEs undergo a significant variation with the onset of CO. Given this observation, we re-examine the SSAT process and uncover that before the occurrence of CO, the classifier already displayed a slight distortion, indicated by the presence of few AAEs. Furthermore, the classifier directly optimizing these AAEs will accelerate its distortion, and correspondingly, the variation of AAEs will sharply increase as a result. In such a vicious circle, the classifier rapidly becomes highly distorted and manifests as CO within a few iterations. These observations motivate us to eliminate CO by hindering the generation of AAEs. Specifically, we design a novel method, termed Abnormal Adversarial Examples Regularization (AAER), which explicitly regularizes the variation of AAEs to hinder the classifier from becoming distorted. Extensive experiments demonstrate that our method can effectively eliminate CO and further boost adversarial robustness with negligible additional computational overhead.
SIGMA: Sinkhorn-Guided Masked Video Modeling
Video-based pretraining offers immense potential for learning strong visual representations on an unprecedented scale. Recently, masked video modeling methods have shown promising scalability, yet fall short in capturing higher-level semantics due to reconstructing predefined low-level targets such as pixels. To tackle this, we present Sinkhorn-guided Masked Video Modelling (SIGMA), a novel video pretraining method that jointly learns the video model in addition to a target feature space using a projection network. However, this simple modification means that the regular L2 reconstruction loss will lead to trivial solutions as both networks are jointly optimized. As a solution, we distribute features of space-time tubes evenly across a limited number of learnable clusters. By posing this as an optimal transport problem, we enforce high entropy in the generated features across the batch, infusing semantic and temporal meaning into the feature space. The resulting cluster assignments are used as targets for a symmetric prediction task where the video model predicts cluster assignment of the projection network and vice versa. Experimental results on ten datasets across three benchmarks validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations improving upon state-of-the-art methods. Our project website with code is available at: https://quva-lab.github.io/SIGMA.
AccEar: Accelerometer Acoustic Eavesdropping with Unconstrained Vocabulary
With the increasing popularity of voice-based applications, acoustic eavesdropping has become a serious threat to users' privacy. While on smartphones the access to microphones needs an explicit user permission, acoustic eavesdropping attacks can rely on motion sensors (such as accelerometer and gyroscope), which access is unrestricted. However, previous instances of such attacks can only recognize a limited set of pre-trained words or phrases. In this paper, we present AccEar, an accelerometerbased acoustic eavesdropping attack that can reconstruct any audio played on the smartphone's loudspeaker with unconstrained vocabulary. We show that an attacker can employ a conditional Generative Adversarial Network (cGAN) to reconstruct highfidelity audio from low-frequency accelerometer signals. The presented cGAN model learns to recreate high-frequency components of the user's voice from low-frequency accelerometer signals through spectrogram enhancement. We assess the feasibility and effectiveness of AccEar attack in a thorough set of experiments using audio from 16 public personalities. As shown by the results in both objective and subjective evaluations, AccEar successfully reconstructs user speeches from accelerometer signals in different scenarios including varying sampling rate, audio volume, device model, etc.
Hand-Object Interaction Pretraining from Videos
We present an approach to learn general robot manipulation priors from 3D hand-object interaction trajectories. We build a framework to use in-the-wild videos to generate sensorimotor robot trajectories. We do so by lifting both the human hand and the manipulated object in a shared 3D space and retargeting human motions to robot actions. Generative modeling on this data gives us a task-agnostic base policy. This policy captures a general yet flexible manipulation prior. We empirically demonstrate that finetuning this policy, with both reinforcement learning (RL) and behavior cloning (BC), enables sample-efficient adaptation to downstream tasks and simultaneously improves robustness and generalizability compared to prior approaches. Qualitative experiments are available at: https://hgaurav2k.github.io/hop/.
Adversarial Style Augmentation for Domain Generalization
It is well-known that the performance of well-trained deep neural networks may degrade significantly when they are applied to data with even slightly shifted distributions. Recent studies have shown that introducing certain perturbation on feature statistics (\eg, mean and standard deviation) during training can enhance the cross-domain generalization ability. Existing methods typically conduct such perturbation by utilizing the feature statistics within a mini-batch, limiting their representation capability. Inspired by the domain generalization objective, we introduce a novel Adversarial Style Augmentation (ASA) method, which explores broader style spaces by generating more effective statistics perturbation via adversarial training. Specifically, we first search for the most sensitive direction and intensity for statistics perturbation by maximizing the task loss. By updating the model against the adversarial statistics perturbation during training, we allow the model to explore the worst-case domain and hence improve its generalization performance. To facilitate the application of ASA, we design a simple yet effective module, namely AdvStyle, which instantiates the ASA method in a plug-and-play manner. We justify the efficacy of AdvStyle on tasks of cross-domain classification and instance retrieval. It achieves higher mean accuracy and lower performance fluctuation. Especially, our method significantly outperforms its competitors on the PACS dataset under the single source generalization setting, \eg, boosting the classification accuracy from 61.2\% to 67.1\% with a ResNet50 backbone. Our code will be available at https://github.com/YBZh/AdvStyle.
EMDM: Efficient Motion Diffusion Model for Fast and High-Quality Motion Generation
We introduce Efficient Motion Diffusion Model (EMDM) for fast and high-quality human motion generation. Current state-of-the-art generative diffusion models have produced impressive results but struggle to achieve fast generation without sacrificing quality. On the one hand, previous works, like motion latent diffusion, conduct diffusion within a latent space for efficiency, but learning such a latent space can be a non-trivial effort. On the other hand, accelerating generation by naively increasing the sampling step size, e.g., DDIM, often leads to quality degradation as it fails to approximate the complex denoising distribution. To address these issues, we propose EMDM, which captures the complex distribution during multiple sampling steps in the diffusion model, allowing for much fewer sampling steps and significant acceleration in generation. This is achieved by a conditional denoising diffusion GAN to capture multimodal data distributions among arbitrary (and potentially larger) step sizes conditioned on control signals, enabling fewer-step motion sampling with high fidelity and diversity. To minimize undesired motion artifacts, geometric losses are imposed during network learning. As a result, EMDM achieves real-time motion generation and significantly improves the efficiency of motion diffusion models compared to existing methods while achieving high-quality motion generation. Our code will be publicly available upon publication.
OneVAE: Joint Discrete and Continuous Optimization Helps Discrete Video VAE Train Better
Encoding videos into discrete tokens could align with text tokens to facilitate concise and unified multi-modal LLMs, yet introducing significant spatiotemporal compression compared to continuous video representation. Previous discrete video VAEs experienced unstable training, long training time, and degraded reconstruction quality. Given the easier training and superior performance of continuous VAEs, an intuitive idea is to enhance discrete video VAEs by leveraging continuous VAEs. After rethinking the intrinsic link between discrete and continuous representations, we found that FSQ could effectively preserve pre-trained continuous VAE priors compared to other quantization methods. By leveraging continuous VAE priors, it converges several times faster than training from scratch and achieves superior performance at convergence. Meanwhile, two structural improvements are proposed. First, inspired by how continuous VAEs enhance reconstruction via enlarged latent dimensions, we introduce a multi-token quantization mechanism, which achieves nearly a 1 dB improvement in PSNR without compromising the token compression ratio. Second, to tackle reconstruction challenges in high-compression video VAEs, we strengthen first-frame reconstruction, enabling the causal VAE to leverage this information in subsequent frames and markedly improving the performance of 4 x 16 x 16 discrete VAEs. Furthermore, we propose a joint discrete-continuous optimization scheme that unifies the two paradigms and, for the first time, achieves competitive performance on both continuous and discrete representations within a single network. We name our method OneVAE to reflect this connection.
INTACT: Inducing Noise Tolerance through Adversarial Curriculum Training for LiDAR-based Safety-Critical Perception and Autonomy
In this work, we present INTACT, a novel two-phase framework designed to enhance the robustness of deep neural networks (DNNs) against noisy LiDAR data in safety-critical perception tasks. INTACT combines meta-learning with adversarial curriculum training (ACT) to systematically address challenges posed by data corruption and sparsity in 3D point clouds. The meta-learning phase equips a teacher network with task-agnostic priors, enabling it to generate robust saliency maps that identify critical data regions. The ACT phase leverages these saliency maps to progressively expose a student network to increasingly complex noise patterns, ensuring targeted perturbation and improved noise resilience. INTACT's effectiveness is demonstrated through comprehensive evaluations on object detection, tracking, and classification benchmarks using diverse datasets, including KITTI, Argoverse, and ModelNet40. Results indicate that INTACT improves model robustness by up to 20% across all tasks, outperforming standard adversarial and curriculum training methods. This framework not only addresses the limitations of conventional training strategies but also offers a scalable and efficient solution for real-world deployment in resource-constrained safety-critical systems. INTACT's principled integration of meta-learning and adversarial training establishes a new paradigm for noise-tolerant 3D perception in safety-critical applications. INTACT improved KITTI Multiple Object Tracking Accuracy (MOTA) by 9.6% (64.1% -> 75.1%) and by 12.4% under Gaussian noise (52.5% -> 73.7%). Similarly, KITTI mean Average Precision (mAP) rose from 59.8% to 69.8% (50% point drop) and 49.3% to 70.9% (Gaussian noise), highlighting the framework's ability to enhance deep learning model resilience in safety-critical object tracking scenarios.
GENMO: A GENeralist Model for Human MOtion
Human motion modeling traditionally separates motion generation and estimation into distinct tasks with specialized models. Motion generation models focus on creating diverse, realistic motions from inputs like text, audio, or keyframes, while motion estimation models aim to reconstruct accurate motion trajectories from observations like videos. Despite sharing underlying representations of temporal dynamics and kinematics, this separation limits knowledge transfer between tasks and requires maintaining separate models. We present GENMO, a unified Generalist Model for Human Motion that bridges motion estimation and generation in a single framework. Our key insight is to reformulate motion estimation as constrained motion generation, where the output motion must precisely satisfy observed conditioning signals. Leveraging the synergy between regression and diffusion, GENMO achieves accurate global motion estimation while enabling diverse motion generation. We also introduce an estimation-guided training objective that exploits in-the-wild videos with 2D annotations and text descriptions to enhance generative diversity. Furthermore, our novel architecture handles variable-length motions and mixed multimodal conditions (text, audio, video) at different time intervals, offering flexible control. This unified approach creates synergistic benefits: generative priors improve estimated motions under challenging conditions like occlusions, while diverse video data enhances generation capabilities. Extensive experiments demonstrate GENMO's effectiveness as a generalist framework that successfully handles multiple human motion tasks within a single model.
Density Modeling of Images using a Generalized Normalization Transformation
We introduce a parametric nonlinear transformation that is well-suited for Gaussianizing data from natural images. The data are linearly transformed, and each component is then normalized by a pooled activity measure, computed by exponentiating a weighted sum of rectified and exponentiated components and a constant. We optimize the parameters of the full transformation (linear transform, exponents, weights, constant) over a database of natural images, directly minimizing the negentropy of the responses. The optimized transformation substantially Gaussianizes the data, achieving a significantly smaller mutual information between transformed components than alternative methods including ICA and radial Gaussianization. The transformation is differentiable and can be efficiently inverted, and thus induces a density model on images. We show that samples of this model are visually similar to samples of natural image patches. We demonstrate the use of the model as a prior probability density that can be used to remove additive noise. Finally, we show that the transformation can be cascaded, with each layer optimized using the same Gaussianization objective, thus offering an unsupervised method of optimizing a deep network architecture.
AdvWeb: Controllable Black-box Attacks on VLM-powered Web Agents
Vision Language Models (VLMs) have revolutionized the creation of generalist web agents, empowering them to autonomously complete diverse tasks on real-world websites, thereby boosting human efficiency and productivity. However, despite their remarkable capabilities, the safety and security of these agents against malicious attacks remain critically underexplored, raising significant concerns about their safe deployment. To uncover and exploit such vulnerabilities in web agents, we provide AdvWeb, a novel black-box attack framework designed against web agents. AdvWeb trains an adversarial prompter model that generates and injects adversarial prompts into web pages, misleading web agents into executing targeted adversarial actions such as inappropriate stock purchases or incorrect bank transactions, actions that could lead to severe real-world consequences. With only black-box access to the web agent, we train and optimize the adversarial prompter model using DPO, leveraging both successful and failed attack strings against the target agent. Unlike prior approaches, our adversarial string injection maintains stealth and control: (1) the appearance of the website remains unchanged before and after the attack, making it nearly impossible for users to detect tampering, and (2) attackers can modify specific substrings within the generated adversarial string to seamlessly change the attack objective (e.g., purchasing stocks from a different company), enhancing attack flexibility and efficiency. We conduct extensive evaluations, demonstrating that AdvWeb achieves high success rates in attacking SOTA GPT-4V-based VLM agent across various web tasks. Our findings expose critical vulnerabilities in current LLM/VLM-based agents, emphasizing the urgent need for developing more reliable web agents and effective defenses. Our code and data are available at https://ai-secure.github.io/AdvWeb/ .
