new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 17

Surveying the Dead Minds: Historical-Psychological Text Analysis with Contextualized Construct Representation (CCR) for Classical Chinese

In this work, we develop a pipeline for historical-psychological text analysis in classical Chinese. Humans have produced texts in various languages for thousands of years; however, most of the computational literature is focused on contemporary languages and corpora. The emerging field of historical psychology relies on computational techniques to extract aspects of psychology from historical corpora using new methods developed in natural language processing (NLP). The present pipeline, called Contextualized Construct Representations (CCR), combines expert knowledge in psychometrics (i.e., psychological surveys) with text representations generated via transformer-based language models to measure psychological constructs such as traditionalism, norm strength, and collectivism in classical Chinese corpora. Considering the scarcity of available data, we propose an indirect supervised contrastive learning approach and build the first Chinese historical psychology corpus (C-HI-PSY) to fine-tune pre-trained models. We evaluate the pipeline to demonstrate its superior performance compared with other approaches. The CCR method outperforms word-embedding-based approaches across all of our tasks and exceeds prompting with GPT-4 in most tasks. Finally, we benchmark the pipeline against objective, external data to further verify its validity.

  • 4 authors
·
Mar 1, 2024

Revisiting Modeling and Evaluation Approaches in Speech Emotion Recognition: Considering Subjectivity of Annotators and Ambiguity of Emotions

Over the past two decades, speech emotion recognition (SER) has received growing attention. To train SER systems, researchers collect emotional speech databases annotated by crowdsourced or in-house raters who select emotions from predefined categories. However, disagreements among raters are common. Conventional methods treat these disagreements as noise, aggregating labels into a single consensus target. While this simplifies SER as a single-label task, it ignores the inherent subjectivity of human emotion perception. This dissertation challenges such assumptions and asks: (1) Should minority emotional ratings be discarded? (2) Should SER systems learn from only a few individuals' perceptions? (3) Should SER systems predict only one emotion per sample? Psychological studies show that emotion perception is subjective and ambiguous, with overlapping emotional boundaries. We propose new modeling and evaluation perspectives: (1) Retain all emotional ratings and represent them with soft-label distributions. Models trained on individual annotator ratings and jointly optimized with standard SER systems improve performance on consensus-labeled tests. (2) Redefine SER evaluation by including all emotional data and allowing co-occurring emotions (e.g., sad and angry). We propose an ``all-inclusive rule'' that aggregates all ratings to maximize diversity in label representation. Experiments on four English emotion databases show superior performance over majority and plurality labeling. (3) Construct a penalization matrix to discourage unlikely emotion combinations during training. Integrating it into loss functions further improves performance. Overall, embracing minority ratings, multiple annotators, and multi-emotion predictions yields more robust and human-aligned SER systems.

Evaluating and Inducing Personality in Pre-trained Language Models

Standardized and quantified evaluation of machine behaviors is a crux of understanding LLMs. In this study, we draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors. Originating as a philosophical quest for human behaviors, the study of personality delves into how individuals differ in thinking, feeling, and behaving. Toward building and understanding human-like social machines, we are motivated to ask: Can we assess machine behaviors by leveraging human psychometric tests in a principled and quantitative manner? If so, can we induce a specific personality in LLMs? To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors; MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories. By systematically evaluating LLMs with MPI, we provide the first piece of evidence demonstrating the efficacy of MPI in studying LLMs behaviors. We further devise a Personality Prompting (P^2) method to induce LLMs with specific personalities in a controllable way, capable of producing diverse and verifiable behaviors. We hope this work sheds light on future studies by adopting personality as the essential indicator for various downstream tasks, and could further motivate research into equally intriguing human-like machine behaviors.

  • 6 authors
·
May 20, 2022

Bridging the Gap Between Computational Photography and Visual Recognition

What is the current state-of-the-art for image restoration and enhancement applied to degraded images acquired under less than ideal circumstances? Can the application of such algorithms as a pre-processing step to improve image interpretability for manual analysis or automatic visual recognition to classify scene content? While there have been important advances in the area of computational photography to restore or enhance the visual quality of an image, the capabilities of such techniques have not always translated in a useful way to visual recognition tasks. Consequently, there is a pressing need for the development of algorithms that are designed for the joint problem of improving visual appearance and recognition, which will be an enabling factor for the deployment of visual recognition tools in many real-world scenarios. To address this, we introduce the UG^2 dataset as a large-scale benchmark composed of video imagery captured under challenging conditions, and two enhancement tasks designed to test algorithmic impact on visual quality and automatic object recognition. Furthermore, we propose a set of metrics to evaluate the joint improvement of such tasks as well as individual algorithmic advances, including a novel psychophysics-based evaluation regime for human assessment and a realistic set of quantitative measures for object recognition performance. We introduce six new algorithms for image restoration or enhancement, which were created as part of the IARPA sponsored UG^2 Challenge workshop held at CVPR 2018. Under the proposed evaluation regime, we present an in-depth analysis of these algorithms and a host of deep learning-based and classic baseline approaches. From the observed results, it is evident that we are in the early days of building a bridge between computational photography and visual recognition, leaving many opportunities for innovation in this area.

  • 24 authors
·
Jan 27, 2019