new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

OkwuGbé: End-to-End Speech Recognition for Fon and Igbo

Language is inherent and compulsory for human communication. Whether expressed in a written or spoken way, it ensures understanding between people of the same and different regions. With the growing awareness and effort to include more low-resourced languages in NLP research, African languages have recently been a major subject of research in machine translation, and other text-based areas of NLP. However, there is still very little comparable research in speech recognition for African languages. Interestingly, some of the unique properties of African languages affecting NLP, like their diacritical and tonal complexities, have a major root in their speech, suggesting that careful speech interpretation could provide more intuition on how to deal with the linguistic complexities of African languages for text-based NLP. OkwuGb\'e is a step towards building speech recognition systems for African low-resourced languages. Using Fon and Igbo as our case study, we conduct a comprehensive linguistic analysis of each language and describe the creation of end-to-end, deep neural network-based speech recognition models for both languages. We present a state-of-art ASR model for Fon, as well as benchmark ASR model results for Igbo. Our linguistic analyses (for Fon and Igbo) provide valuable insights and guidance into the creation of speech recognition models for other African low-resourced languages, as well as guide future NLP research for Fon and Igbo. The Fon and Igbo models source code have been made publicly available.

  • 2 authors
·
Mar 13, 2021

Understanding and Improving Transformer From a Multi-Particle Dynamic System Point of View

The Transformer architecture is widely used in natural language processing. Despite its success, the design principle of the Transformer remains elusive. In this paper, we provide a novel perspective towards understanding the architecture: we show that the Transformer can be mathematically interpreted as a numerical Ordinary Differential Equation (ODE) solver for a convection-diffusion equation in a multi-particle dynamic system. In particular, how words in a sentence are abstracted into contexts by passing through the layers of the Transformer can be interpreted as approximating multiple particles' movement in the space using the Lie-Trotter splitting scheme and the Euler's method. Given this ODE's perspective, the rich literature of numerical analysis can be brought to guide us in designing effective structures beyond the Transformer. As an example, we propose to replace the Lie-Trotter splitting scheme by the Strang-Marchuk splitting scheme, a scheme that is more commonly used and with much lower local truncation errors. The Strang-Marchuk splitting scheme suggests that the self-attention and position-wise feed-forward network (FFN) sub-layers should not be treated equally. Instead, in each layer, two position-wise FFN sub-layers should be used, and the self-attention sub-layer is placed in between. This leads to a brand new architecture. Such an FFN-attention-FFN layer is "Macaron-like", and thus we call the network with this new architecture the Macaron Net. Through extensive experiments, we show that the Macaron Net is superior to the Transformer on both supervised and unsupervised learning tasks. The reproducible codes and pretrained models can be found at https://github.com/zhuohan123/macaron-net

  • 8 authors
·
Jun 6, 2019

Fann or Flop: A Multigenre, Multiera Benchmark for Arabic Poetry Understanding in LLMs

Arabic poetry is one of the richest and most culturally rooted forms of expression in the Arabic language, known for its layered meanings, stylistic diversity, and deep historical continuity. Although large language models (LLMs) have demonstrated strong performance across languages and tasks, their ability to understand Arabic poetry remains largely unexplored. In this work, we introduce Fann or Flop, the first benchmark designed to assess the comprehension of Arabic poetry by LLMs in 12 historical eras, covering 14 core poetic genres and a variety of metrical forms, from classical structures to contemporary free verse. The benchmark comprises a curated corpus of poems with explanations that assess semantic understanding, metaphor interpretation, prosodic awareness, and cultural context. We argue that poetic comprehension offers a strong indicator for testing how good the LLM understands classical Arabic through Arabic poetry. Unlike surface-level tasks, this domain demands deeper interpretive reasoning and cultural sensitivity. Our evaluation of state-of-the-art LLMs shows that most models struggle with poetic understanding despite strong results on standard Arabic benchmarks. We release "Fann or Flop" along with the evaluation suite as an open-source resource to enable rigorous evaluation and advancement for Arabic language models. Code is available at: https://github.com/mbzuai-oryx/FannOrFlop.

  • 8 authors
·
May 23

Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media

This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.

  • 2 authors
·
Feb 16, 2023

A Technical Report for Polyglot-Ko: Open-Source Large-Scale Korean Language Models

Polyglot is a pioneering project aimed at enhancing the non-English language performance of multilingual language models. Despite the availability of various multilingual models such as mBERT (Devlin et al., 2019), XGLM (Lin et al., 2022), and BLOOM (Scao et al., 2022), researchers and developers often resort to building monolingual models in their respective languages due to the dissatisfaction with the current multilingual models non-English language capabilities. Addressing this gap, we seek to develop advanced multilingual language models that offer improved performance in non-English languages. In this paper, we introduce the Polyglot Korean models, which represent a specific focus rather than being multilingual in nature. In collaboration with TUNiB, our team collected 1.2TB of Korean data meticulously curated for our research journey. We made a deliberate decision to prioritize the development of Korean models before venturing into multilingual models. This choice was motivated by multiple factors: firstly, the Korean models facilitated performance comparisons with existing multilingual models; and finally, they catered to the specific needs of Korean companies and researchers. This paper presents our work in developing the Polyglot Korean models, which propose some steps towards addressing the non-English language performance gap in multilingual language models.

  • 7 authors
·
Jun 4, 2023 1

Category Theory for Quantum Natural Language Processing

This thesis introduces quantum natural language processing (QNLP) models based on a simple yet powerful analogy between computational linguistics and quantum mechanics: grammar as entanglement. The grammatical structure of text and sentences connects the meaning of words in the same way that entanglement structure connects the states of quantum systems. Category theory allows to make this language-to-qubit analogy formal: it is a monoidal functor from grammar to vector spaces. We turn this abstract analogy into a concrete algorithm that translates the grammatical structure onto the architecture of parameterised quantum circuits. We then use a hybrid classical-quantum algorithm to train the model so that evaluating the circuits computes the meaning of sentences in data-driven tasks. The implementation of QNLP models motivated the development of DisCoPy (Distributional Compositional Python), the toolkit for applied category theory of which the first chapter gives a comprehensive overview. String diagrams are the core data structure of DisCoPy, they allow to reason about computation at a high level of abstraction. We show how they can encode both grammatical structures and quantum circuits, but also logical formulae, neural networks or arbitrary Python code. Monoidal functors allow to translate these abstract diagrams into concrete computation, interfacing with optimised task-specific libraries. The second chapter uses DisCopy to implement QNLP models as parameterised functors from grammar to quantum circuits. It gives a first proof-of-concept for the more general concept of functorial learning: generalising machine learning from functions to functors by learning from diagram-like data. In order to learn optimal functor parameters via gradient descent, we introduce the notion of diagrammatic differentiation: a graphical calculus for computing the gradients of parameterised diagrams.

  • 1 authors
·
Dec 13, 2022

Teaching a Language Model to Speak the Language of Tools

External tool integration through function-calling is essential for practical language model applications, yet most multilingual models lack reliable tool-use capabilities in non-English languages. Even state-of-the-art multilingual models struggle with determining when to use tools and generating the structured outputs required for function calls, often exhibiting language confusion when prompted in lower-resource languages. This work presents a methodology for adapting existing language models to enable robust tool use in any target language, using Bulgarian as a case study. The approach involves continued training of the BgGPT model series (2.6B, 9B, 27B parameters) on a novel bilingual dataset of 10,035 function-calling examples designed to support standardized protocols like MCP (Model Context Protocol). The research introduces TUCAN (Tool-Using Capable Assistant Navigator), which achieves up to 28.75% improvement in function-calling accuracy over base models while preserving core language understanding, as verified on established Bulgarian benchmarks. Beyond accuracy gains, TUCAN models demonstrate production-ready response formatting with clean, parsable function calls, contrasting with the verbose and inconsistent outputs of base models. The models, evaluation framework, and dataset are released to enable replication for other languages. This work demonstrates a practical approach for extending tool-augmented capabilities beyond English-centric systems.

  • 1 authors
·
Jun 29 1

Ax-to-Grind Urdu: Benchmark Dataset for Urdu Fake News Detection

Misinformation can seriously impact society, affecting anything from public opinion to institutional confidence and the political horizon of a state. Fake News (FN) proliferation on online websites and Online Social Networks (OSNs) has increased profusely. Various fact-checking websites include news in English and barely provide information about FN in regional languages. Thus the Urdu FN purveyors cannot be discerned using factchecking portals. SOTA approaches for Fake News Detection (FND) count upon appropriately labelled and large datasets. FND in regional and resource-constrained languages lags due to the lack of limited-sized datasets and legitimate lexical resources. The previous datasets for Urdu FND are limited-sized, domain-restricted, publicly unavailable and not manually verified where the news is translated from English into Urdu. In this paper, we curate and contribute the first largest publicly available dataset for Urdu FND, Ax-to-Grind Urdu, to bridge the identified gaps and limitations of existing Urdu datasets in the literature. It constitutes 10,083 fake and real news on fifteen domains collected from leading and authentic Urdu newspapers and news channel websites in Pakistan and India. FN for the Ax-to-Grind dataset is collected from websites and crowdsourcing. The dataset contains news items in Urdu from the year 2017 to the year 2023. Expert journalists annotated the dataset. We benchmark the dataset with an ensemble model of mBERT,XLNet, and XLM RoBERTa. The selected models are originally trained on multilingual large corpora. The results of the proposed model are based on performance metrics, F1-score, accuracy, precision, recall and MCC value.

  • 4 authors
·
Mar 20, 2024

FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models

Recent research has demonstrated that Feed-Forward Networks (FFNs) in Large Language Models (LLMs) play a pivotal role in storing diverse linguistic and factual knowledge. Conventional methods frequently face challenges due to knowledge confusion stemming from their monolithic and redundant architectures, which calls for more efficient solutions with minimal computational overhead, particularly for LLMs. In this paper, we explore the FFN computation paradigm in LLMs and introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications, while maintaining the same level of performance. Furthermore, we embed a router from the Mixture-of-Experts (MoE), combined with our devised Prior-Approximate (PA) loss term that facilitates the dynamic activation of experts and knowledge adaptation, thereby accelerating computational processes and enhancing performance using minimal training data and fine-tuning steps. FactorLLM thus enables efficient knowledge factorization and activates select groups of experts specifically tailored to designated tasks, emulating the interactive functional segmentation of the human brain. Extensive experiments across various benchmarks demonstrate the effectiveness of our proposed FactorLLM which achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed. Code: https://github.com/zhenwuweihe/FactorLLM.

  • 9 authors
·
Aug 15, 2024

Strategies for Improving NL-to-FOL Translation with LLMs: Data Generation, Incremental Fine-Tuning, and Verification

Logical reasoning is a fundamental task in natural language processing that presents significant challenges to Large Language Models (LLMs). The inherent characteristics of logical reasoning makes it well-suited for symbolic representations such as first-order logic (FOL). Research in symbolic logical reasoning explored FOL generation using state-of-the-art LLMs (i.e., GPT-4) to produce FOL translations of natural language (NL) statements, but errors in translation are usually not the focus. We address this by categorizing the translation errors in FOL statements generated by LLMs. To make progress towards improving the quality of FOL translations for smaller language models such as LLaMA-2 13B and Mistral 7B, we create ProofFOL, a high-quality FOL-annotated subset of ProofWriter dataset using GPT-4o. The models fine-tuned on this silver standard data achieve a significant gain in performance when compared to larger language models such as LLaMA-2 70B. In addition to improving the model using large data, we also tackle the issue of data scarcity and introduce an incremental framework encompassing of data augmentation and verification steps. In the augmentation process, a single pair of (premises, conclusion) is split into multiple new instances based on the predicates and FOLs. This data is used for fine-tuning, and the inference on this model generates FOLs with fewer errors over the model trained on the original data. Our investigation on the translation errors leads to generation of a perturbation dataset, which is used to train a verifier that corrects potential syntactic and semantic FOL translation errors. We demonstrate an efficient method for making the most of a limited existing human-annotated dataset. Our results show state-of-the-art performance for ProofWriter and ProntoQA datasets using ProofFOL on LLaMA-2 and Mistral models.

  • 4 authors
·
Sep 24, 2024

It's the same but not the same: Do LLMs distinguish Spanish varieties?

In recent years, large language models (LLMs) have demonstrated a high capacity for understanding and generating text in Spanish. However, with five hundred million native speakers, Spanish is not a homogeneous language but rather one rich in diatopic variations spanning both sides of the Atlantic. For this reason, in this study, we evaluate the ability of nine language models to identify and distinguish the morphosyntactic and lexical peculiarities of seven varieties of Spanish (Andean, Antillean, Continental Caribbean, Chilean, Peninsular, Mexican and Central American and Rioplatense) through a multiple-choice test. The results indicate that the Peninsular Spanish variety is the best identified by all models and that, among them, GPT-4o is the only model capable of recognizing the variability of the Spanish language. -- En los \'ultimos a\~nos, los grandes modelos de lenguaje (LLMs, por sus siglas en ingl\'es) han demostrado una alta capacidad para comprender y generar texto en espa\~nol. Sin embargo, con quinientos millones de hablantes nativos, la espa\~nola no es una lengua homog\'enea, sino rica en variedades diat\'opicas que se extienden a ambos lados del Atl\'antico. Por todo ello, evaluamos en este trabajo la capacidad de nueve modelos de lenguaje de identificar y discernir las peculiaridades morfosint\'acticas y l\'exicas de siete variedades de espa\~nol (andino, antillano, caribe\~no continental, chileno, espa\~nol peninsular, mexicano y centroamericano y rioplatense) mediante un test de respuesta m\'ultiple. Los resultados obtenidos indican que la variedad de espa\~nol peninsular es la mejor identificada por todos los modelos y que, de entre todos, GPT-4o es el \'unico modelo capaz de identificar la variabilidad de la lengua espa\~nola.

  • 6 authors
·
Apr 8

Flacuna: Unleashing the Problem Solving Power of Vicuna using FLAN Fine-Tuning

Recently, the release of INSTRUCTEVAL has provided valuable insights into the performance of large language models (LLMs) that utilize encoder-decoder or decoder-only architecture. Interestingly, despite being introduced four years ago, T5-based LLMs, such as FLAN-T5, continue to outperform the latest decoder-based LLMs, such as LLAMA and VICUNA, on tasks that require general problem-solving skills. This performance discrepancy can be attributed to three key factors: (1) Pre-training data, (2) Backbone architecture, and (3) Instruction dataset. In this technical report, our main focus is on investigating the impact of the third factor by leveraging VICUNA, a large language model based on LLAMA, which has undergone fine-tuning on ChatGPT conversations. To achieve this objective, we fine-tuned VICUNA using a customized instruction dataset collection called FLANMINI. This collection includes a subset of the large-scale instruction dataset known as FLAN, as well as various code-related datasets and conversational datasets derived from ChatGPT/GPT-4. This dataset comprises a large number of tasks that demand problem-solving skills. Our experimental findings strongly indicate that the enhanced problem-solving abilities of our model, FLACUNA, are obtained through fine-tuning VICUNA on the FLAN dataset, leading to significant improvements across numerous benchmark datasets in INSTRUCTEVAL. FLACUNA is publicly available at https://huggingface.co/declare-lab/flacuna-13b-v1.0.

  • 4 authors
·
Jul 5, 2023 1

Word class representations spontaneously emerge in a deep neural network trained on next word prediction

How do humans learn language, and can the first language be learned at all? These fundamental questions are still hotly debated. In contemporary linguistics, there are two major schools of thought that give completely opposite answers. According to Chomsky's theory of universal grammar, language cannot be learned because children are not exposed to sufficient data in their linguistic environment. In contrast, usage-based models of language assume a profound relationship between language structure and language use. In particular, contextual mental processing and mental representations are assumed to have the cognitive capacity to capture the complexity of actual language use at all levels. The prime example is syntax, i.e., the rules by which words are assembled into larger units such as sentences. Typically, syntactic rules are expressed as sequences of word classes. However, it remains unclear whether word classes are innate, as implied by universal grammar, or whether they emerge during language acquisition, as suggested by usage-based approaches. Here, we address this issue from a machine learning and natural language processing perspective. In particular, we trained an artificial deep neural network on predicting the next word, provided sequences of consecutive words as input. Subsequently, we analyzed the emerging activation patterns in the hidden layers of the neural network. Strikingly, we find that the internal representations of nine-word input sequences cluster according to the word class of the tenth word to be predicted as output, even though the neural network did not receive any explicit information about syntactic rules or word classes during training. This surprising result suggests, that also in the human brain, abstract representational categories such as word classes may naturally emerge as a consequence of predictive coding and processing during language acquisition.

  • 5 authors
·
Feb 15, 2023

TransliCo: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models

The world's more than 7000 languages are written in at least 293 scripts. Due to various reasons, many closely related languages use different scripts, which poses a difficulty for multilingual pretrained language models (mPLMs) in learning crosslingual knowledge through lexical overlap. As a consequence, mPLMs are faced with a script barrier: representations from different scripts are located in different subspaces, which can result in crosslingual transfer involving languages of different scripts performing suboptimally. To address this problem, we propose TransliCo, a framework that optimizes the Transliteration Contrastive Modeling (TCM) objective to fine-tune an mPLM by contrasting sentences in its training data and their transliterations in a unified script (in our case Latin), which enhances uniformity in the representation space for different scripts. Using Glot500-m, an mPLM pretrained on over 500 languages, as our source model, we fine-tune it on a small portion (5%) of its training data, and refer to the resulting model as Furina. We show that Furina not only better aligns representations from distinct scripts but also outperforms the original Glot500-m on various zero-shot crosslingual transfer tasks. Additionally, we achieve consistent improvement in a case study on the Indic group where the languages exhibit areal features but use different scripts. We make our code and models publicly available.

  • 4 authors
·
Jan 12, 2024

NorMuon: Making Muon more efficient and scalable

The choice of optimizer significantly impacts the training efficiency and computational costs of large language models (LLMs). Recently, the Muon optimizer has demonstrated promising results by orthogonalizing parameter updates, improving optimization geometry through better conditioning. Despite Muon's emergence as a candidate successor to Adam, the potential for jointly leveraging their strengths has not been systematically explored. In this work, we bridge this gap by proposing NorMuon (Neuron-wise Normalized Muon), an optimizer that synergistically combines orthogonalization with neuron-level adaptive learning rates. Our analysis reveals that while Muon effectively reduces condition numbers, the resulting updates exhibit highly non-uniform neuron norms, causing certain neurons to dominate the optimization process. NorMuon addresses this imbalance by maintaining second-order momentum statistics for each neuron and applying row-wise normalization after orthogonalization, ensuring balanced parameter utilization while preserving Muon's conditioning benefits. To enable practical deployment at scale, we develop an efficient distributed implementation under the FSDP2 framework that strategically distributes orthogonalization computations across devices. Experiments across multiple model scales demonstrate that NorMuon consistently outperforms both Adam and Muon, achieving 21.74% better training efficiency than Adam and 11.31% improvement over Muon on 1.1 B pretraining setting, while maintaining a comparable memory footprint to Muon. Our findings suggest that orthogonalization and adaptive learning rates are complementary rather than competing approaches, opening new avenues for optimizer design in large-scale deep learning.

NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian

Recent advancements in Generative Language Models (GLMs) have transformed Natural Language Processing (NLP) by showcasing the effectiveness of the "pre-train, prompt, and predict" paradigm in utilizing pre-trained GLM knowledge for diverse applications. Despite their potential, these capabilities lack adequate quantitative characterization due to the absence of comprehensive benchmarks, particularly for low-resource languages. Existing low-resource benchmarks focus on discriminative language models like BERT, neglecting the evaluation of generative language models. Moreover, current benchmarks often overlook measuring generalization performance across multiple tasks, a crucial metric for GLMs. To bridge these gaps, we introduce NLEBench, a comprehensive benchmark tailored for evaluating natural language generation capabilities in Norwegian, a low-resource language. We use Norwegian as a case study to explore whether current GLMs and benchmarks in mainstream languages like English can reveal the unique characteristics of underrepresented languages. NLEBench encompasses a suite of real-world NLP tasks ranging from news storytelling, summarization, open-domain conversation, natural language understanding, instruction fine-tuning, toxicity and bias evaluation, to self-curated Chain-of-Thought investigation. It features two high-quality, human-annotated datasets: an instruction dataset covering traditional Norwegian cultures, idioms, slang, and special expressions, and a document-grounded multi-label dataset for topic classification, question answering, and summarization. This paper also introduces foundational Norwegian Generative Language Models (NorGLMs) developed with diverse parameter scales and Transformer-based architectures. Systematic evaluations on the proposed benchmark suite provide insights into the capabilities and scalability of NorGLMs across various downstream tasks.

  • 8 authors
·
Dec 3, 2023 1

Multimodal Semantic Transfer from Text to Image. Fine-Grained Image Classification by Distributional Semantics

In the last years, image classification processes like neural networks in the area of art-history and Heritage Informatics have experienced a broad distribution (Lang and Ommer 2018). These methods face several challenges, including the handling of comparatively small amounts of data as well as high-dimensional data in the Digital Humanities. Here, a Convolutional Neural Network (CNN) is used that output is not, as usual, a series of flat text labels but a series of semantically loaded vectors. These vectors result from a Distributional Semantic Model (DSM) which is generated from an in-domain text corpus. ----- In den letzten Jahren hat die Verwendung von Bildklassifizierungsverfahren wie neuronalen Netzwerken auch im Bereich der historischen Bildwissenschaften und der Heritage Informatics weite Verbreitung gefunden (Lang und Ommer 2018). Diese Verfahren stehen dabei vor einer Reihe von Herausforderungen, darunter dem Umgangmit den vergleichsweise kleinen Datenmengen sowie zugleich hochdimensionalen Da-tenr\"aumen in den digitalen Geisteswissenschaften. Meist bilden diese Methoden dieKlassifizierung auf einen vergleichsweise flachen Raum ab. Dieser flache Zugang verliert im Bem\"uhen um ontologische Eindeutigkeit eine Reihe von relevanten Dimensionen, darunter taxonomische, mereologische und assoziative Beziehungen zwischenden Klassen beziehungsweise dem nicht formalisierten Kontext. Dabei wird ein Convolutional Neural Network (CNN) genutzt, dessen Ausgabe im Trainingsprozess, anders als herk\"ommlich, nicht auf einer Serie flacher Textlabel beruht, sondern auf einer Serie von Vektoren. Diese Vektoren resultieren aus einem Distributional Semantic Model (DSM), welches aus einem Dom\"ane-Textkorpus generiert wird.

  • 4 authors
·
Jan 7, 2020

Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning

A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs

  • 7 authors
·
Jun 12

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

Language agents have shown some ability to interact with an external environment, e.g., a virtual world such as ScienceWorld, to perform complex tasks, e.g., growing a plant, without the startup costs of reinforcement learning. However, despite their zero-shot capabilities, these agents to date do not continually improve over time beyond performance refinement on a specific task. Here we present CLIN, the first language-based agent to achieve this, so that it continually improves over multiple trials, including when both the environment and task are varied, and without requiring parameter updates. Our approach is to use a persistent, dynamic, textual memory centered on causal abstractions (rather than general "helpful hints") that is regularly updated after each trial so that the agent gradually learns useful knowledge for new trials. In the ScienceWorld benchmark, CLIN is able to continually improve on repeated trials on the same task and environment, outperforming state-of-the-art reflective language agents like Reflexion by 23 absolute points. CLIN can also transfer its learning to new environments (or new tasks), improving its zero-shot performance by 4 points (13 for new tasks) and can further improve performance there through continual memory updates, enhancing performance by an additional 17 points (7 for new tasks). This suggests a new architecture for agents built on frozen models that can still continually and rapidly improve over time.

  • 8 authors
·
Oct 16, 2023

Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain

Research on language technology for the development of medical applications is currently a hot topic in Natural Language Understanding and Generation. Thus, a number of large language models (LLMs) have recently been adapted to the medical domain, so that they can be used as a tool for mediating in human-AI interaction. While these LLMs display competitive performance on automated medical texts benchmarks, they have been pre-trained and evaluated with a focus on a single language (English mostly). This is particularly true of text-to-text models, which typically require large amounts of domain-specific pre-training data, often not easily accessible for many languages. In this paper, we address these shortcomings by compiling, to the best of our knowledge, the largest multilingual corpus for the medical domain in four languages, namely English, French, Italian and Spanish. This new corpus has been used to train Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Additionally, we present two new evaluation benchmarks for all four languages with the aim of facilitating multilingual research in this domain. A comprehensive evaluation shows that Medical mT5 outperforms both encoders and similarly sized text-to-text models for the Spanish, French, and Italian benchmarks, while being competitive with current state-of-the-art LLMs in English.

  • 13 authors
·
Apr 11, 2024

Florenz: Scaling Laws for Systematic Generalization in Vision-Language Models

Cross-lingual transfer enables vision-language models (VLMs) to perform vision tasks in various languages with training data only in one language. Current approaches rely on large pre-trained multilingual language models. However, they face the curse of multilinguality, sacrificing downstream task performance for multilingual capabilities, struggling with lexical ambiguities, and falling behind recent advances. In this work, we study the scaling laws of systematic generalization with monolingual VLMs for multilingual tasks, focusing on the impact of model size and seen training samples. We propose Florenz, a monolingual encoder-decoder VLM with 0.4B to 11.2B parameters combining the pre-trained VLM Florence-2 and the large language model Gemma-2. Florenz is trained with varying compute budgets on a synthetic dataset that features intentionally incomplete language coverage for image captioning, thus, testing generalization from the fully covered translation task. We show that not only does indirectly learning unseen task-language pairs adhere to a scaling law, but also that with our data generation pipeline and the proposed Florenz model family, image captioning abilities can emerge in a specific language even when only data for the translation task is available. Fine-tuning on a mix of downstream datasets yields competitive performance and demonstrates promising scaling trends in multimodal machine translation (Multi30K, CoMMuTE), lexical disambiguation (CoMMuTE), and image captioning (Multi30K, XM3600, COCO Karpathy).

  • 3 authors
·
Mar 12 2

Tucano: Advancing Neural Text Generation for Portuguese

Significant advances have been made in natural language processing in recent years. However, our current deep learning approach to language modeling requires substantial resources in terms of data and computation. One of the side effects of this data-hungry paradigm is the current schism between languages, separating those considered high-resource, where most of the development happens and resources are available, and the low-resource ones, which struggle to attain the same level of performance and autonomy. This study aims to introduce a new set of resources to stimulate the future development of neural text generation in Portuguese. In this work, we document the development of GigaVerbo, a concatenation of deduplicated Portuguese text corpora amounting to 200 billion tokens. Via this corpus, we trained a series of decoder-transformers named Tucano. Our models perform equal or superior to other Portuguese and multilingual language models of similar size in several Portuguese benchmarks. The evaluation of our models also reveals that model performance on many currently available benchmarks used by the Portuguese NLP community has little to no correlation with the scaling of token ingestion during training, highlighting the limitations of such evaluations when it comes to the assessment of Portuguese generative language models. All derivatives of our study are openly released on GitHub and Hugging Face. See https://nkluge-correa.github.io/Tucano/

  • 4 authors
·
Nov 12, 2024

Adposition and Case Supersenses v2.6: Guidelines for English

This document offers a detailed linguistic description of SNACS (Semantic Network of Adposition and Case Supersenses; Schneider et al., 2018), an inventory of 52 semantic labels ("supersenses") that characterize the use of adpositions and case markers at a somewhat coarse level of granularity, as demonstrated in the STREUSLE corpus (https://github.com/nert-nlp/streusle/ ; version 4.5 tracks guidelines version 2.6). Though the SNACS inventory aspires to be universal, this document is specific to English; documentation for other languages will be published separately. Version 2 is a revision of the supersense inventory proposed for English by Schneider et al. (2015, 2016) (henceforth "v1"), which in turn was based on previous schemes. The present inventory was developed after extensive review of the v1 corpus annotations for English, plus previously unanalyzed genitive case possessives (Blodgett and Schneider, 2018), as well as consideration of adposition and case phenomena in Hebrew, Hindi, Korean, and German. Hwang et al. (2017) present the theoretical underpinnings of the v2 scheme. Schneider et al. (2018) summarize the scheme, its application to English corpus data, and an automatic disambiguation task. Liu et al. (2021) offer an English Lexical Semantic Recognition tagger that includes SNACS labels in its output. This documentation can also be browsed alongside corpus data on the Xposition website (Gessler et al., 2022): http://www.xposition.org/

  • 11 authors
·
Apr 7, 2017

Kencorpus: A Kenyan Language Corpus of Swahili, Dholuo and Luhya for Natural Language Processing Tasks

Indigenous African languages are categorized as under-served in Natural Language Processing. They therefore experience poor digital inclusivity and information access. The processing challenge with such languages has been how to use machine learning and deep learning models without the requisite data. The Kencorpus project intends to bridge this gap by collecting and storing text and speech data that is good enough for data-driven solutions in applications such as machine translation, question answering and transcription in multilingual communities. The Kencorpus dataset is a text and speech corpus for three languages predominantly spoken in Kenya: Swahili, Dholuo and Luhya. Data collection was done by researchers from communities, schools, media, and publishers. The Kencorpus' dataset has a collection of 5,594 items - 4,442 texts (5.6M words) and 1,152 speech files (177hrs). Based on this data, Part of Speech tagging sets for Dholuo and Luhya (50,000 and 93,000 words respectively) were developed. We developed 7,537 Question-Answer pairs for Swahili and created a text translation set of 13,400 sentences from Dholuo and Luhya into Swahili. The datasets are useful for downstream machine learning tasks such as model training and translation. We also developed two proof of concept systems: for Kiswahili speech-to-text and machine learning system for Question Answering task, with results of 18.87% word error rate and 80% Exact Match (EM) respectively. These initial results give great promise to the usability of Kencorpus to the machine learning community. Kencorpus is one of few public domain corpora for these three low resource languages and forms a basis of learning and sharing experiences for similar works especially for low resource languages.

  • 6 authors
·
Aug 25, 2022