new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 17

Mélange: Cost Efficient Large Language Model Serving by Exploiting GPU Heterogeneity

Large language models (LLMs) are increasingly integrated into many online services. However, a major challenge in deploying LLMs is their high cost, due primarily to the use of expensive GPU instances. To address this problem, we find that the significant heterogeneity of GPU types presents an opportunity to increase GPU cost efficiency and reduce deployment costs. The broad and growing market of GPUs creates a diverse option space with varying costs and hardware specifications. Within this space, we show that there is not a linear relationship between GPU cost and performance, and identify three key LLM service characteristics that significantly affect which GPU type is the most cost effective: model request size, request rate, and latency service-level objective (SLO). We then present M\'elange, a framework for navigating the diversity of GPUs and LLM service specifications to derive the most cost-efficient set of GPUs for a given LLM service. We frame the task of GPU selection as a cost-aware bin-packing problem, where GPUs are bins with a capacity and cost, and items are request slices defined by a request size and rate. Upon solution, M\'elange derives the minimal-cost GPU allocation that adheres to a configurable latency SLO. Our evaluations across both real-world and synthetic datasets demonstrate that M\'elange can reduce deployment costs by up to 77% as compared to utilizing only a single GPU type, highlighting the importance of making heterogeneity-aware GPU provisioning decisions for LLM serving. Our source code is publicly available at https://github.com/tyler-griggs/melange-release.

  • 7 authors
·
Apr 22, 2024

ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference

Sparse Mixture of Experts (MoE) models, while outperforming dense Large Language Models (LLMs) in terms of performance, face significant deployment challenges during inference due to their high memory demands. Existing offloading techniques, which involve swapping activated and idle experts between the GPU and CPU, often suffer from rigid expert caching mechanisms. These mechanisms fail to adapt to dynamic routing, leading to inefficient cache utilization, or incur prohibitive costs for prediction training. To tackle these inference-specific challenges, we introduce ExpertFlow, a comprehensive system specifically designed to enhance inference efficiency by accommodating flexible routing and enabling efficient expert scheduling between CPU and GPU. This reduces overhead and boosts system performance. Central to our approach is a predictive routing path-based offloading mechanism that utilizes a lightweight predictor to accurately forecast routing paths before computation begins. This proactive strategy allows for real-time error correction in expert caching, significantly increasing cache hit ratios and reducing the frequency of expert transfers, thereby minimizing I/O overhead. Additionally, we implement a dynamic token scheduling strategy that optimizes MoE inference by rearranging input tokens across different batches. This method not only reduces the number of activated experts per batch but also improves computational efficiency. Our extensive experiments demonstrate that ExpertFlow achieves up to 93.72\% GPU memory savings and enhances inference speed by 2 to 10 times compared to baseline methods, highlighting its effectiveness and utility as a robust solution for resource-constrained inference scenarios.

  • 10 authors
·
Oct 23, 2024

Nexus:Proactive Intra-GPU Disaggregation of Prefill and Decode in LLM Serving

Monolithic serving with chunked prefill improves GPU utilization by batching prefill and decode together, but suffers from fine-grained phase interference. Engine-level prefill-decode (PD) disaggregation avoids interference but incurs higher hardware and coordination overhead. Prior intra-GPU disaggregation approaches multiplex prefill and decode within a single GPU, using SLO-based tuning guided by heuristics from offline profiling or reactive feedback loops. However, these methods respond reactively to performance issues rather than anticipating them, limiting adaptability under dynamic workloads. We ask: can we achieve proactive intra-GPU disaggregation that adapts effectively to dynamic workloads? The key challenge lies in managing the conflicting resource demands of prefill and decode under varying conditions. We first show that GPU resources exhibit diminishing returns -- beyond a saturation point, more allocation yields minimal latency benefit. Second, we observe that memory bandwidth contention becomes a critical bottleneck. These insights motivate a design that dynamically partitions GPU resources across prefill and decode phases, while jointly considering compute capacity, memory footprint, and bandwidth contention. Evaluated on diverse LLMs and workloads, our system Nexus achieves up to 2.2x higher throughput, 20x lower TTFT, and 2.5x lower TBT than vLLM; outperforms SGLang by up to 2x; and matches or exceeds disaggregated vLLM.

  • 4 authors
·
Jul 9

Analysis and Optimized CXL-Attached Memory Allocation for Long-Context LLM Fine-Tuning

The growing prevalence of Large Language Models (LLMs) and their substantial memory requirements have prompted renewed interest in CPU offloading as a method to compensate for limited GPU memory. In particular, when CPU memory is leveraged to temporarily store intermediate states of LLMs, CPU memory becomes a new bottleneck and soon reaches the capacity limitation of commodity CPUs. In this work, we investigate the effectiveness of Compute Express Link (CXL) add-in card (AIC) memory as an extension to CPU memory, enabling larger model sizes and longer context lengths during fine-tuning. Through extensive benchmarking, this study quantifies the performance overhead introduced by transferring data between CXL memory, CPU, and GPUs, focusing on how concurrency and data volume influence bandwidth utilization and latency. This study also compares CPUbased optimizer steps when model parameters, gradients, and optimizer states reside in local memory versus CXL memory, revealing that naive adoption of CXL often degrades performance during the optimizer phase. To overcome these challenges, this study proposes a CXL-aware allocation to strategically partition CPU offloading workloads across both local and CXL memory. This study further demonstrates that employing multiple AICs significantly reduces bandwidth contention, thus improving scalability. Experimental results show that these optimizations enable efficient long-context LLM fine-tuning, underscoring CXL as a promising avenue for unlocking the full potential of CPU offloading in long-context LLM fine-tuning.

  • 2 authors
·
Jul 4

AIBrix: Towards Scalable, Cost-Effective Large Language Model Inference Infrastructure

We introduce AIBrix, a cloud-native, open-source framework designed to optimize and simplify large-scale LLM deployment in cloud environments. Unlike traditional cloud-native stacks, AIBrix follows a co-design philosophy, ensuring every layer of the infrastructure is purpose-built for seamless integration with inference engines like vLLM. AIBrix introduces several key innovations to reduce inference costs and enhance performance including high-density LoRA management for dynamic adapter scheduling, LLM-specific autoscalers, and prefix-aware, load-aware routing. To further improve efficiency, AIBrix incorporates a distributed KV cache, boosting token reuse across nodes, leading to a 50% increase in throughput and a 70% reduction in inference latency. AIBrix also supports unified AI runtime which streamlines model management while maintaining vendor-agnostic engine compatibility. For large-scale multi-node inference, AIBrix employs hybrid orchestration -- leveraging Kubernetes for coarse-grained scheduling and Ray for fine-grained execution -- to balance efficiency and flexibility. Additionally, an SLO-driven GPU optimizer dynamically adjusts resource allocations, optimizing heterogeneous serving to maximize cost efficiency while maintaining service guarantees. Finally, AIBrix enhances system reliability with AI accelerator diagnostic tools, enabling automated failure detection and mock-up testing to improve fault resilience. AIBrix is available at https://github.com/vllm-project/aibrix.

  • 27 authors
·
Feb 22

RLinf-VLA: A Unified and Efficient Framework for VLA+RL Training

Recent progress in vision and language foundation models has significantly advanced multimodal understanding, reasoning, and generation, inspiring a surge of interest in extending such capabilities to embodied settings through vision-language-action (VLA) models. Yet, most VLA models are still trained with supervised fine-tuning (SFT), which struggles to generalize under distribution shifts due to error accumulation. Reinforcement learning (RL) offers a promising alternative by directly optimizing task performance through interaction, but existing attempts remain fragmented and lack a unified platform for fair and systematic comparison across model architectures and algorithmic designs. To address this gap, we introduce RLinf-VLA, a unified and efficient framework for scalable RL training of VLA models. The system adopts a highly flexible resource allocation design that addresses the challenge of integrating rendering, training, and inference in RL+VLA training. In particular, for GPU-parallelized simulators, RLinf-VLA implements a novel hybrid fine-grained pipeline allocation mode, achieving a 1.61x-1.88x speedup in training. Through a unified interface, RLinf-VLA seamlessly supports diverse VLA architectures (e.g., OpenVLA, OpenVLA-OFT), multiple RL algorithms (e.g., PPO, GRPO), and various simulators (e.g., ManiSkill, LIBERO). In simulation, a unified model achieves 98.11\% across 130 LIBERO tasks and 97.66\% across 25 ManiSkill tasks. Beyond empirical performance, our study distills a set of best practices for applying RL to VLA training and sheds light on emerging patterns in this integration. Furthermore, we present preliminary deployment on a real-world Franka robot, where RL-trained policies exhibit stronger generalization than those trained with SFT. We envision RLinf-VLA as a foundation to accelerate and standardize research on embodied intelligence.

RLinf RLinf
·
Oct 8 2

LaMDA: Large Model Fine-Tuning via Spectrally Decomposed Low-Dimensional Adaptation

Low-rank adaptation (LoRA) has become the default approach to fine-tune large language models (LLMs) due to its significant reduction in trainable parameters. However, trainable parameter demand for LoRA increases with increasing model embedding dimensions, leading to high compute costs. Additionally, its backward updates require storing high-dimensional intermediate activations and optimizer states, demanding high peak GPU memory. In this paper, we introduce large model fine-tuning via spectrally decomposed low-dimensional adaptation (LaMDA), a novel approach to fine-tuning large language models, which leverages low-dimensional adaptation to achieve significant reductions in trainable parameters and peak GPU memory footprint. LaMDA freezes a first projection matrix (PMA) in the adaptation path while introducing a low-dimensional trainable square matrix, resulting in substantial reductions in trainable parameters and peak GPU memory usage. LaMDA gradually freezes a second projection matrix (PMB) during the early fine-tuning stages, reducing the compute cost associated with weight updates to enhance parameter efficiency further. We also present an enhancement, LaMDA++, incorporating a ``lite-weight" adaptive rank allocation for the LoRA path via normalized spectrum analysis of pre-trained model weights. We evaluate LaMDA/LaMDA++ across various tasks, including natural language understanding with the GLUE benchmark, text summarization, natural language generation, and complex reasoning on different LLMs. Results show that LaMDA matches or surpasses the performance of existing alternatives while requiring up to 17.7x fewer parameter updates and up to 1.32x lower peak GPU memory usage during fine-tuning. Code will be publicly available.

  • 3 authors
·
Jun 18, 2024

Adding NVMe SSDs to Enable and Accelerate 100B Model Fine-tuning on a Single GPU

Recent advances in large language models have brought immense value to the world, with their superior capabilities stemming from the massive number of parameters they utilize. However, even the GPUs with the highest memory capacities, currently peaking at 80GB, are far from sufficient to accommodate these vast parameters and their associated optimizer states when conducting stochastic gradient descent-based optimization. One approach to hosting such huge models is to aggregate device memory from many GPUs. However, this approach introduces prohibitive costs for most academic researchers, who always have a limited budget for many high-end GPU servers. In this paper, we focus on huge model fine-tuning on a single, even low-end, GPU in a commodity server, which is accessible to most AI researchers. In such a scenario, the state-of-the-art work ZeRO-Infinity suffers from two severe issues when running in a commodity server: 1) low GPU utilization due to inefficient swapping, and 2) limited trainable model size due to CPU memory capacity. The underlying reason is that ZeRO-Infinity is optimized for running on high-end GPU servers. To this end, we present Fuyou, a low-cost training framework that enables efficient 100B huge model fine-tuning on a low-end server with a low-end GPU and limited CPU memory capacity. The key idea is to add the SSD-CPU communication as an optimization dimension and thus carefully co-optimize computation and data swapping from a systematic approach to maximize GPU utilization. The experimental results show that 1) Fuyou is able to fine-tune 175B GPT-3 on a consumer GPU RTX 4090 with high GPU utilization, while ZeRO-Infinity fails to fine-tune; and 2) when training a small GPT-3 13B model, Fuyou achieves 156 TFLOPS on an RTX 4090 GPU while ZeRO-Infinity only achieves 45 TFLOPS.

  • 7 authors
·
Mar 11, 2024 4

Analyzing Modern NVIDIA GPU cores

GPUs are the most popular platform for accelerating HPC workloads, such as artificial intelligence and science simulations. However, most microarchitectural research in academia relies on GPU core pipeline designs based on architectures that are more than 15 years old. This paper reverse engineers modern NVIDIA GPU cores, unveiling many key aspects of its design and explaining how GPUs leverage hardware-compiler techniques where the compiler guides hardware during execution. In particular, it reveals how the issue logic works including the policy of the issue scheduler, the structure of the register file and its associated cache, and multiple features of the memory pipeline. Moreover, it analyses how a simple instruction prefetcher based on a stream buffer fits well with modern NVIDIA GPUs and is likely to be used. Furthermore, we investigate the impact of the register file cache and the number of register file read ports on both simulation accuracy and performance. By modeling all these new discovered microarchitectural details, we achieve 18.24% lower mean absolute percentage error (MAPE) in execution cycles than previous state-of-the-art simulators, resulting in an average of 13.98% MAPE with respect to real hardware (NVIDIA RTX A6000). Also, we demonstrate that this new model stands for other NVIDIA architectures, such as Turing. Finally, we show that the software-based dependence management mechanism included in modern NVIDIA GPUs outperforms a hardware mechanism based on scoreboards in terms of performance and area.

  • 4 authors
·
Mar 26

Understanding GEMM Performance and Energy on NVIDIA Ada Lovelace: A Machine Learning-Based Analytical Approach

Analytical framework for predicting General Matrix Multiplication (GEMM) performance on modern GPUs, focusing on runtime, power consumption, and energy efficiency. Our study employs two approaches: a custom-implemented tiled matrix multiplication kernel for fundamental analysis, and NVIDIA's CUTLASS library for comprehensive performance data collection across advanced configurations. Using the NVIDIA RTX 4070 as our experimental platform, we developed a Random Forest-based prediction model with multi-output regression capability. Through analysis of both naive tiled matrix multiplication with varying tile sizes (1 to 32) and 16,128 CUTLASS GEMM operations across diverse configurations, we identified critical performance patterns related to matrix dimensions, thread block configurations, and memory access patterns. Our framework achieved exceptional accuracy with an R^2 score of 0.98 for runtime prediction (mean error 15.57%) and 0.78 for power prediction (median error 5.42%). The system successfully predicts performance across matrix sizes, demonstrating robust scaling behavior. Our results show that optimal tile size selection can improve performance by up to 3.2x while reducing power consumption by 22% compared to baseline configurations. Analysis of shared memory utilization and SM occupancy reveals that tile sizes of 16x16 achieve the best balance between parallelism and resource usage. The implementation of our framework, including prediction models and analysis tools, is available as an open-source project at GPPerf [https://github.com/pavlyhalim/GPPerf].

  • 3 authors
·
Nov 25, 2024

Benchmarking and Dissecting the Nvidia Hopper GPU Architecture

Graphics processing units (GPUs) are continually evolving to cater to the computational demands of contemporary general-purpose workloads, particularly those driven by artificial intelligence (AI) utilizing deep learning techniques. A substantial body of studies have been dedicated to dissecting the microarchitectural metrics characterizing diverse GPU generations, which helps researchers understand the hardware details and leverage them to optimize the GPU programs. However, the latest Hopper GPUs present a set of novel attributes, including new tensor cores supporting FP8, DPX, and distributed shared memory. Their details still remain mysterious in terms of performance and operational characteristics. In this research, we propose an extensive benchmarking study focused on the Hopper GPU. The objective is to unveil its microarchitectural intricacies through an examination of the new instruction-set architecture (ISA) of Nvidia GPUs and the utilization of new CUDA APIs. Our approach involves two main aspects. Firstly, we conduct conventional latency and throughput comparison benchmarks across the three most recent GPU architectures, namely Hopper, Ada, and Ampere. Secondly, we delve into a comprehensive discussion and benchmarking of the latest Hopper features, encompassing the Hopper DPX dynamic programming (DP) instruction set, distributed shared memory, and the availability of FP8 tensor cores. The microbenchmarking results we present offer a deeper understanding of the novel GPU AI function units and programming features introduced by the Hopper architecture. This newfound understanding is expected to greatly facilitate software optimization and modeling efforts for GPU architectures. To the best of our knowledge, this study makes the first attempt to demystify the tensor core performance and programming instruction sets unique to Hopper GPUs.

  • 6 authors
·
Feb 20, 2024

CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning

The exponential growth in demand for GPU computing resources, driven by the rapid advancement of Large Language Models, has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models (e.g. R1, o1) achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization. CUDA-L1 achieves performance improvements on the CUDA optimization task: trained on NVIDIA A100, it delivers an average speedup of x17.7 across all 250 CUDA kernels of KernelBench, with peak speedups reaching x449. Furthermore, the model also demonstrates excellent portability across GPU architectures, achieving average speedups of x17.8 on H100, x19.0 on RTX 3090, x16.5 on L40, x14.7 on H800, and x13.9 on H20 despite being optimized specifically for A100. Beyond these benchmark results, CUDA-L1 demonstrates several remarkable properties: 1) Discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) Uncovers fundamental principles of CUDA optimization; 3) Identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that harm performance. The capabilities of CUDA-L1 demonstrate that reinforcement learning can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. More importantly, the trained RL model extend the acquired reasoning abilities to new kernels. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.

  • 5 authors
·
Jul 18 6

Tilus: A Virtual Machine for Arbitrary Low-Precision GPGPU Computation in LLM Serving

Serving Large Language Models (LLMs) is critical for AI-powered applications but demands substantial computational resources, particularly in memory bandwidth and computational throughput. Low-precision computation has emerged as a key technique to improve efficiency while reducing resource consumption. Existing approaches for generating low-precision kernels are limited to weight bit widths that are powers of two and suffer from suboptimal performance due to high-level GPU programming abstractions. These abstractions restrict critical optimizations, such as fine-grained register management and optimized memory access patterns, which are essential for efficient low-precision computations. In this paper, we introduce a virtual machine (VM) designed for General-Purpose GPU (GPGPU) computing, enabling support for low-precision data types with arbitrary bit widths while maintaining GPU programmability. The proposed VM features a thread-block-level programming model, a hierarchical memory space, a novel algebraic layout system, and extensive support for diverse low-precision data types. VM programs are compiled into highly efficient GPU programs with automatic vectorization and instruction selection. Extensive experiments demonstrate that our VM efficiently supports a full spectrum of low-precision data types, and outperforms state-of-the-art low-precision kernels on their supported types. Compared to existing compilers like Triton and Ladder, as well as hand-optimized kernels such as QuantLLM and Marlin, our VM achieves performance improvements of 1.75x, 2.61x, 1.29x and 1.03x, respectively.

  • 8 authors
·
Apr 17

Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading

Transformers and large language models~(LLMs) have seen rapid adoption in all domains. Their sizes have exploded to hundreds of billions of parameters and keep increasing. Under these circumstances, the training of transformers is very expensive and often hits a ``memory wall'', i.e., even when using 3D parallelism (pipeline, tensor, data) and aggregating the memory of many GPUs, it is still not enough to hold the necessary data structures (model parameters, optimizer state, gradients, activations) in GPU memory. To compensate, state-of-the-art approaches offload the optimizer state, at least partially, to the host memory and perform hybrid CPU-GPU computations. However, the management of the combined host-GPU memory is often suboptimal and results in poor overlapping between data movements and computations. This leads to missed opportunities to simultaneously leverage the interconnect bandwidth and computational capabilities of CPUs and GPUs. In this paper, we leverage a key observation that the interleaving of the forward, backward and update phases generate fluctuations in the GPU memory utilization, which can be exploited to dynamically move a part of the optimizer state between the host and the GPU memory at each iteration. To this end, we design and implement \proj, a novel technique to split the LLM into subgroups, whose update phase is scheduled on either the CPU or the GPU based on our proposed performance model that addresses the trade-off between data movement cost, acceleration on the GPUs vs the CPUs, and competition for shared resources. We integrate our approach with DeepSpeed and demonstrate 2.5times faster iterations over state-of-the-art approaches using extensive experiments.

  • 5 authors
·
Oct 25, 2024

The Fused Kernel Library: A C++ API to Develop Highly-Efficient GPU Libraries

Existing GPU libraries often struggle to fully exploit the parallel resources and on-chip memory (SRAM) of GPUs when chaining multiple GPU functions as individual kernels. While Kernel Fusion (KF) techniques like Horizontal Fusion (HF) and Vertical Fusion (VF) can mitigate this, current library implementations often require library developers to manually create fused kernels. Hence, library users rely on limited sets of pre-compiled or template-based fused kernels. This limits the use cases that can benefit from HF and VF and increases development costs. In order to solve these issues, we present a novel methodology for building GPU libraries that enables automatic on-demand HF and VF for arbitrary combinations of GPU library functions. Our methodology defines reusable, fusionable components that users combine via high-level programming interfaces. Leveraging C++17 metaprogramming features available in compilers like nvcc, our methodology generates a single and optimized fused kernel tailored to the user's specific sequence of operations at compile time, without needing a custom compiler or manual development and pre-compilation of kernel combinations. This approach abstracts low-level GPU complexities while maximizing GPU resource utilization and keeping intermediate data in SRAM. We provide an open-source implementation demonstrating significant speedups compared to traditional libraries in various benchmarks, validating the effectiveness of this methodology for improving GPU performance in the range of 2x to more than 1000x, while preserving high-level programmability.

  • 4 authors
·
Aug 9

ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning

In the last three years, the largest dense deep learning models have grown over 1000x to reach hundreds of billions of parameters, while the GPU memory has only grown by 5x (16 GB to 80 GB). Therefore, the growth in model scale has been supported primarily though system innovations that allow large models to fit in the aggregate GPU memory of multiple GPUs. However, we are getting close to the GPU memory wall. It requires 800 NVIDIA V100 GPUs just to fit a trillion parameter model for training, and such clusters are simply out of reach for most data scientists. In addition, training models at that scale requires complex combinations of parallelism techniques that puts a big burden on the data scientists to refactor their model. In this paper we present ZeRO-Infinity, a novel heterogeneous system technology that leverages GPU, CPU, and NVMe memory to allow for unprecedented model scale on limited resources without requiring model code refactoring. At the same time it achieves excellent training throughput and scalability, unencumbered by the limited CPU or NVMe bandwidth. ZeRO-Infinity can fit models with tens and even hundreds of trillions of parameters for training on current generation GPU clusters. It can be used to fine-tune trillion parameter models on a single NVIDIA DGX-2 node, making large models more accessible. In terms of training throughput and scalability, it sustains over 25 petaflops on 512 NVIDIA V100 GPUs(40% of peak), while also demonstrating super linear scalability. An open source implementation of ZeRO-Infinity is available through DeepSpeed, a deep learning optimization library that makes distributed training easy, efficient, and effective.

  • 5 authors
·
Apr 15, 2021

Pipette: Automatic Fine-grained Large Language Model Training Configurator for Real-World Clusters

Training large language models (LLMs) is known to be challenging because of the huge computational and memory capacity requirements. To address these issues, it is common to use a cluster of GPUs with 3D parallelism, which splits a model along the data batch, pipeline stage, and intra-layer tensor dimensions. However, the use of 3D parallelism produces the additional challenge of finding the optimal number of ways on each dimension and mapping the split models onto the GPUs. Several previous studies have attempted to automatically find the optimal configuration, but many of these lacked several important aspects. For instance, the heterogeneous nature of the interconnect speeds is often ignored. While the peak bandwidths for the interconnects are usually made equal, the actual attained bandwidth varies per link in real-world clusters. Combined with the critical path modeling that does not properly consider the communication, they easily fall into sub-optimal configurations. In addition, they often fail to consider the memory requirement per GPU, often recommending solutions that could not be executed. To address these challenges, we propose Pipette, which is an automatic fine-grained LLM training configurator for real-world clusters. By devising better performance models along with the memory estimator and fine-grained individual GPU assignment, Pipette achieves faster configurations that satisfy the memory constraints. We evaluated Pipette on large clusters to show that it provides a significant speedup over the prior art. The implementation of Pipette is available at https://github.com/yimjinkyu1/date2024_pipette.

  • 7 authors
·
May 28, 2024

Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment

Large language models (LLMs) such as GPT-3, OPT, and LLaMA have demonstrated remarkable accuracy in a wide range of tasks. However, training these models can incur significant expenses, often requiring tens of thousands of GPUs for months of continuous operation. Typically, this training is carried out in specialized GPU clusters equipped with homogeneous high-speed Remote Direct Memory Access (RDMA) network interface cards (NICs). The acquisition and maintenance of such dedicated clusters is challenging. Current LLM training frameworks, like Megatron-LM and Megatron-DeepSpeed, focus primarily on optimizing training within homogeneous cluster settings. In this paper, we introduce Holmes, a training framework for LLMs that employs thoughtfully crafted data and model parallelism strategies over the heterogeneous NIC environment. Our primary technical contribution lies in a novel scheduling method that intelligently allocates distinct computational tasklets in LLM training to specific groups of GPU devices based on the characteristics of their connected NICs. Furthermore, our proposed framework, utilizing pipeline parallel techniques, demonstrates scalability to multiple GPU clusters, even in scenarios without high-speed interconnects between nodes in distinct clusters. We conducted comprehensive experiments that involved various scenarios in the heterogeneous NIC environment. In most cases, our framework achieves performance levels close to those achievable with homogeneous RDMA-capable networks (InfiniBand or RoCE), significantly exceeding training efficiency within the pure Ethernet environment. Additionally, we verified that our framework outperforms other mainstream LLM frameworks under heterogeneous NIC environment in terms of training efficiency and can be seamlessly integrated with them.

  • 8 authors
·
Dec 6, 2023

TEMPI: An Interposed MPI Library with a Canonical Representation of CUDA-aware Datatypes

MPI derived datatypes are an abstraction that simplifies handling of non-contiguous data in MPI applications. These datatypes are recursively constructed at runtime from primitive Named Types defined in the MPI standard. More recently, the development and deployment of CUDA-aware MPI implementations has encouraged the transition of distributed high-performance MPI codes to use GPUs. Such implementations allow MPI functions to directly operate on GPU buffers, easing integration of GPU compute into MPI codes. This work first presents a novel datatype handling strategy for nested strided datatypes, which finds a middle ground between the specialized or generic handling in prior work. This work also shows that the performance characteristics of non-contiguous data handling can be modeled with empirical system measurements, and used to transparently improve MPI_Send/Recv latency. Finally, despite substantial attention to non-contiguous GPU data and CUDA-aware MPI implementations, good performance cannot be taken for granted. This work demonstrates its contributions through an MPI interposer library, TEMPI. TEMPI can be used with existing MPI deployments without system or application changes. Ultimately, the interposed-library model of this work demonstrates MPI_Pack speedup of up to 242000x and MPI_Send speedup of up to 59000x compared to the MPI implementation deployed on a leadership-class supercomputer. This yields speedup of more than 917x in a 3D halo exchange with 3072 processes.

  • 5 authors
·
Dec 28, 2020

Scaling Large Language Model Training on Frontier with Low-Bandwidth Partitioning

Scaling up Large Language Model(LLM) training involves fitting a tremendous amount of training parameters across a limited number of workers. However, methods like ZeRO-3 that drastically reduce GPU memory pressure often incur heavy communication to ensure global synchronization and consistency. Established efforts such as ZeRO++ use secondary partitions to avoid inter-node communications, given that intra-node GPU-GPU transfer generally has more bandwidth and lower latency than inter-node connections. However, as more capable infrastructure like Frontier, equipped with AMD GPUs, emerged with impressive computing capability, there is a need for investigations on the hardware topology and to develop targeted strategies to improve training efficiency. In this work, we propose a collection of communication and optimization strategies for ZeRO++ to reduce communication costs and improve memory utilization. In this paper, we propose a 3-level hierarchical partitioning specifically for the current Top-1 supercomputing cluster, Frontier, which aims at leveraging various bandwidths across layers of communications (GCD-GCD, GPU-GPU, and inter-node) to reduce communication overhead. For a 20B GPT model, we observe a 1.71x increase in TFLOPS per GPU when compared with ZeRO++ up to 384 GCDs and a scaling efficiency of 0.94 for up to 384 GCDs. To the best of our knowledge, our work is also the first effort to efficiently optimize LLM workloads on Frontier AMD GPUs.

  • 7 authors
·
Jan 7

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM

Large language models have led to state-of-the-art accuracies across a range of tasks. However, training these models efficiently is challenging for two reasons: a) GPU memory capacity is limited, making it impossible to fit large models on even a multi-GPU server, and b) the number of compute operations required to train these models can result in unrealistically long training times. Consequently, new methods of model parallelism such as tensor and pipeline parallelism have been proposed. Unfortunately, naive usage of these methods leads to fundamental scaling issues at thousands of GPUs, e.g., due to expensive cross-node communication or devices spending significant time waiting on other devices to make progress. In this paper, we show how different types of parallelism methods (tensor, pipeline, and data parallelism) can be composed to scale to thousands of GPUs and models with trillions of parameters. We survey techniques for pipeline parallelism and propose a novel interleaved pipeline parallelism schedule that can improve throughput by 10+% with memory footprint comparable to existing approaches. We quantitatively study the trade-offs between tensor, pipeline, and data parallelism, and provide intuition as to how to configure distributed training of a large model. Our approach allows us to perform training iterations on a model with 1 trillion parameters at 502 petaFLOP/s on 3072 GPUs with achieved per-GPU throughput of 52% of theoretical peak. Our code is open sourced at https://github.com/nvidia/megatron-lm.

  • 12 authors
·
Apr 9, 2021

HPCTransCompile: An AI Compiler Generated Dataset for High-Performance CUDA Transpilation and LLM Preliminary Exploration

The rapid growth of deep learning has driven exponential increases in model parameters and computational demands. NVIDIA GPUs and their CUDA-based software ecosystem provide robust support for parallel computing, significantly alleviating computational bottlenecks. Meanwhile, due to the cultivation of user programming habits and the high performance of GPUs, the CUDA ecosystem has established a dominant position in the field of parallel software. This dominance requires other hardware platforms to support CUDA-based software with performance portability. However, translating CUDA code to other platforms poses significant challenges due to differences in parallel programming paradigms and hardware architectures. Existing approaches rely on language extensions, domain-specific languages (DSLs), or compilers but face limitations in workload coverage and generalizability. Moreover, these methods often incur substantial development costs. Recently, LLMs have demonstrated extraordinary potential in various vertical domains, especially in code-related tasks. However, the performance of existing LLMs in CUDA transpilation, particularly for high-performance code, remains suboptimal. To address these challenges, we propose a novel framework for generating high-performance CUDA and corresponding platform code pairs, leveraging AI compiler and automatic optimization technology. We further enhance the framework with a graph-based data augmentation method and introduce HPCTransEval, a benchmark for evaluating LLM performance on CUDA transpilation. We conduct experiments using CUDA-to-CPU transpilation as a case study on leading LLMs. The speedup ratio of the CPU operators has an average improvemnet of 43.8\%, highlighting the potential of LLMs to address compatibility challenges within the CUDA ecosystem. Our code is available at https://github.com/PJLAB-CHIP/HPCTransCompile.

  • 10 authors
·
Jun 12

POLCA: Power Oversubscription in LLM Cloud Providers

Recent innovation in large language models (LLMs), and their myriad use-cases have rapidly driven up the compute capacity demand for datacenter GPUs. Several cloud providers and other enterprises have made substantial plans of growth in their datacenters to support these new workloads. One of the key bottleneck resources in datacenters is power, and given the increasing model sizes of LLMs, they are becoming increasingly power intensive. In this paper, we show that there is a significant opportunity to oversubscribe power in LLM clusters. Power oversubscription improves the power efficiency of these datacenters, allowing more deployable servers per datacenter, and reduces the deployment time, since building new datacenters is slow. We extensively characterize the power consumption patterns of a variety of LLMs and their configurations. We identify the differences between the inference and training power consumption patterns. Based on our analysis of these LLMs, we claim that the average and peak power utilization in LLM clusters for inference should not be very high. Our deductions align with the data from production LLM clusters, revealing that inference workloads offer substantial headroom for power oversubscription. However, the stringent set of telemetry and controls that GPUs offer in a virtualized environment, makes it challenging to have a reliable and robust power oversubscription mechanism. We propose POLCA, our framework for power oversubscription that is robust, reliable, and readily deployable for GPU clusters. Using open-source models to replicate the power patterns observed in production, we simulate POLCA and demonstrate that we can deploy 30% more servers in the same GPU cluster for inference, with minimal performance loss

  • 7 authors
·
Aug 24, 2023

Large Graph Convolutional Network Training with GPU-Oriented Data Communication Architecture

Graph Convolutional Networks (GCNs) are increasingly adopted in large-scale graph-based recommender systems. Training GCN requires the minibatch generator traversing graphs and sampling the sparsely located neighboring nodes to obtain their features. Since real-world graphs often exceed the capacity of GPU memory, current GCN training systems keep the feature table in host memory and rely on the CPU to collect sparse features before sending them to the GPUs. This approach, however, puts tremendous pressure on host memory bandwidth and the CPU. This is because the CPU needs to (1) read sparse features from memory, (2) write features into memory as a dense format, and (3) transfer the features from memory to the GPUs. In this work, we propose a novel GPU-oriented data communication approach for GCN training, where GPU threads directly access sparse features in host memory through zero-copy accesses without much CPU help. By removing the CPU gathering stage, our method significantly reduces the consumption of the host resources and data access latency. We further present two important techniques to achieve high host memory access efficiency by the GPU: (1) automatic data access address alignment to maximize PCIe packet efficiency, and (2) asynchronous zero-copy access and kernel execution to fully overlap data transfer with training. We incorporate our method into PyTorch and evaluate its effectiveness using several graphs with sizes up to 111 million nodes and 1.6 billion edges. In a multi-GPU training setup, our method is 65-92% faster than the conventional data transfer method, and can even match the performance of all-in-GPU-memory training for some graphs that fit in GPU memory.

  • 8 authors
·
Mar 4, 2021

From FLOPs to Footprints: The Resource Cost of Artificial Intelligence

As computational demands continue to rise, assessing the environmental footprint of AI requires moving beyond energy and water consumption to include the material demands of specialized hardware. This study quantifies the material footprint of AI training by linking computational workloads to physical hardware needs. The elemental composition of the Nvidia A100 SXM 40 GB graphics processing unit (GPU) was analyzed using inductively coupled plasma optical emission spectroscopy, which identified 32 elements. The results show that AI hardware consists of about 90% heavy metals and only trace amounts of precious metals. The elements copper, iron, tin, silicon, and nickel dominate the GPU composition by mass. In a multi-step methodology, we integrate these measurements with computational throughput per GPU across varying lifespans, accounting for the computational requirements of training specific AI models at different training efficiency regimes. Scenario-based analyses reveal that, depending on Model FLOPs Utilization (MFU) and hardware lifespan, training GPT-4 requires between 1,174 and 8,800 A100 GPUs, corresponding to the extraction and eventual disposal of up to 7 tons of toxic elements. Combined software and hardware optimization strategies can reduce material demands: increasing MFU from 20% to 60% lowers GPU requirements by 67%, while extending lifespan from 1 to 3 years yields comparable savings; implementing both measures together reduces GPU needs by up to 93%. Our findings highlight that incremental performance gains, such as those observed between GPT-3.5 and GPT-4, come at disproportionately high material costs. The study underscores the necessity of incorporating material resource considerations into discussions of AI scalability, emphasizing that future progress in AI must align with principles of resource efficiency and environmental responsibility.

  • 5 authors
·
Dec 3 2

CUDA-LLM: LLMs Can Write Efficient CUDA Kernels

Large Language Models (LLMs) have demonstrated strong capabilities in general-purpose code generation. However, generating the code which is deeply hardware-specific, architecture-aware, and performance-critical, especially for massively parallel GPUs, remains a complex challenge. In this work, we explore the use of LLMs for the automated generation and optimization of CUDA programs, with the goal of producing high-performance GPU kernels that fully exploit the underlying hardware. To address this challenge, we propose a novel framework called Feature Search and Reinforcement (FSR). FSR jointly optimizes compilation and functional correctness, as well as the runtime performance, which are validated through extensive and diverse test cases, and measured by actual kernel execution latency on the target GPU, respectively. This approach enables LLMs not only to generate syntactically and semantically correct CUDA code but also to iteratively refine it for efficiency, tailored to the characteristics of the GPU architecture. We evaluate FSR on representative CUDA kernels, covering AI workloads and computational intensive algorithms. Our results show that LLMs augmented with FSR consistently guarantee correctness rates. Meanwhile, the automatically generated kernels can outperform general human-written code by a factor of up to 179times in execution speeds. These findings highlight the potential of combining LLMs with performance reinforcement to automate GPU programming for hardware-specific, architecture-sensitive, and performance-critical applications.

  • 5 authors
·
Jun 10

Closing the Performance Gap with Modern C++

On the way to Exascale, programmers face the increasing challenge of having to support multiple hardware architectures from the same code base. At the same time, portability of code and performance are increasingly difficult to achieve as hardware architectures are becoming more and more diverse. Today's heterogeneous systems often include two or more completely distinct and incompatible hardware execution models, such as GPGPU's, SIMD vector units, and general purpose cores which conventionally have to be programmed using separate tool chains representing non-overlapping programming models. The recent revival of interest in the industry and the wider community for the C++ language has spurred a remarkable amount of standardization proposals and technical specifications in the arena of concurrency and parallelism. This recently includes an increasing amount of discussion around the need for a uniform, higher-level abstraction and programming model for parallelism in the C++ standard targeting heterogeneous and distributed computing. Such an abstraction should perfectly blend with existing, already standardized language and library features, but should also be generic enough to support future hardware developments. In this paper, we present the results from developing such a higher-level programming abstraction for parallelism in C++ which aims at enabling code and performance portability over a wide range of architectures and for various types of parallelism. We present and compare performance data obtained from running the well-known STREAM benchmark ported to our higher level C++ abstraction with the corresponding results from running it natively. We show that our abstractions enable performance at least as good as the comparable base-line benchmarks while providing a uniform programming API on all compared target architectures.

  • 5 authors
·
May 30, 2022

CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning

In this paper, we propose CUDA-L2, a system that combines large language models (LLMs) and reinforcement learning (RL) to automatically optimize Half-precision General Matrix Multiply (HGEMM) CUDA kernels. Using CUDA execution speed as the RL reward, CUDA-L2 automatically optimizes HGEMM kernels across 1,000 configurations. CUDA-L2 systematically outperforms major matmul baselines to date, from the widely-used {\it torch.matmul} to state-of-the-art Nvidia's closed-source libraries, i.e., {\it cuBLAS}, {\it cuBLASLt}. In offline mode, where kernels are executed consecutively without time intervals, CUDA-L2 yields +22.0\% over {\it torch.matmul} on average; +19.2\% over {\it cuBLAS} using the optimal layout configuration (normal-normal NN and transposed-normal TN); +16.8\% over {\it cuBLASLt-heuristic}, which queries {\it cuBLASLt} library and selects the algorithm based on the heuristic's suggestion; and +11.4\% over the most competitive {\it cuBLASLt-AutoTuning} model, which selects the fastest algorithm from up to 100 candidates from {\it cuBLASLt}'s suggestions. In server mode, where kernels are executed at random intervals simulating real-time inference, the speedups further increase to +28.7\%, +26.0\%, +22.4\%, and +15.9\% for {\it torch.matmul}, {\it cuBLAS}, {\it cuBLASLt-heuristic}, and {\it cuBLASLt-AutoTuning} respectively. CUDA-L2 shows that even the most performance-critical, heavily-optimized kernels like HGEMM can be improved through LLM-guided RL automation by systematically exploring configuration spaces at scales impractical for humans. Project and code can be found at github.com/deepreinforce-ai/CUDA-L2

Code generation and runtime techniques for enabling data-efficient deep learning training on GPUs

As deep learning models scale, their training cost has surged significantly. Due to both hardware advancements and limitations in current software stacks, the need for data efficiency has risen. Data efficiency refers to the effective hiding of data access latency and the avoidance of unnecessary data movements. Major challenges arise from the growing disparity between GPU memory bandwidth and computational throughput, imminent GPU memory capacity limitations, and inefficiencies in the PyTorch software stack, including a lack of device-specific PCIe transfer optimizations and high-level domain-specific abstractions. To effectively mitigate these data inefficiencies for deep learning training, this dissertation analyzes data inefficiency in representative deep training tasks, specifically in graph neural networks (GNNs) and large language models (LLMs). It then proposes novel runtime and code generation techniques to mitigate these challenges and implements these optimizations seamlessly within the PyTorch stack while maintaining strong programmability and interoperability. First, PyTorch-Direct is devised to incorporate the GPU-centric PCIe data transfer paradigm in PyTorch for GNN training. Next, Hector intermediate representation (IR) and its code generator are proposed to introduce domain-specific high-level abstraction and systematically address memory-intensive performance challenges for relational GNNs. Finally, in LLM training, the throughput has been increasingly constrained by GPU memory capacity. To mitigate this, the SSDTrain offloading framework is designed and implemented. Together, these contributions show that code generation and runtime techniques can systematically mitigate the data management bottlenecks in deep learning training, which stem from the data-intensive nature of workloads and the oversimplification inherent in the deep learning training software stack.

  • 1 authors
·
Dec 5, 2024

Efficient Architecture Search by Network Transformation

Techniques for automatically designing deep neural network architectures such as reinforcement learning based approaches have recently shown promising results. However, their success is based on vast computational resources (e.g. hundreds of GPUs), making them difficult to be widely used. A noticeable limitation is that they still design and train each network from scratch during the exploration of the architecture space, which is highly inefficient. In this paper, we propose a new framework toward efficient architecture search by exploring the architecture space based on the current network and reusing its weights. We employ a reinforcement learning agent as the meta-controller, whose action is to grow the network depth or layer width with function-preserving transformations. As such, the previously validated networks can be reused for further exploration, thus saves a large amount of computational cost. We apply our method to explore the architecture space of the plain convolutional neural networks (no skip-connections, branching etc.) on image benchmark datasets (CIFAR-10, SVHN) with restricted computational resources (5 GPUs). Our method can design highly competitive networks that outperform existing networks using the same design scheme. On CIFAR-10, our model without skip-connections achieves 4.23\% test error rate, exceeding a vast majority of modern architectures and approaching DenseNet. Furthermore, by applying our method to explore the DenseNet architecture space, we are able to achieve more accurate networks with fewer parameters.

  • 5 authors
·
Jul 16, 2017

Hardware Acceleration of Neural Graphics

Rendering and inverse-rendering algorithms that drive conventional computer graphics have recently been superseded by neural representations (NR). NRs have recently been used to learn the geometric and the material properties of the scenes and use the information to synthesize photorealistic imagery, thereby promising a replacement for traditional rendering algorithms with scalable quality and predictable performance. In this work we ask the question: Does neural graphics (NG) need hardware support? We studied representative NG applications showing that, if we want to render 4k res. at 60FPS there is a gap of 1.5X-55X in the desired performance on current GPUs. For AR/VR applications, there is an even larger gap of 2-4 OOM between the desired performance and the required system power. We identify that the input encoding and the MLP kernels are the performance bottlenecks, consuming 72%,60% and 59% of application time for multi res. hashgrid, multi res. densegrid and low res. densegrid encodings, respectively. We propose a NG processing cluster, a scalable and flexible hardware architecture that directly accelerates the input encoding and MLP kernels through dedicated engines and supports a wide range of NG applications. We also accelerate the rest of the kernels by fusing them together in Vulkan, which leads to 9.94X kernel-level performance improvement compared to un-fused implementation of the pre-processing and the post-processing kernels. Our results show that, NGPC gives up to 58X end-to-end application-level performance improvement, for multi res. hashgrid encoding on average across the four NG applications, the performance benefits are 12X,20X,33X and 39X for the scaling factor of 8,16,32 and 64, respectively. Our results show that with multi res. hashgrid encoding, NGPC enables the rendering of 4k res. at 30FPS for NeRF and 8k res. at 120FPS for all our other NG applications.

  • 4 authors
·
Mar 10, 2023

NanoFlow: Towards Optimal Large Language Model Serving Throughput

The increasing usage of Large Language Models (LLMs) has resulted in a surging demand for planet-scale serving systems, where tens of thousands of GPUs continuously serve hundreds of millions of users. Consequently, throughput (under reasonable latency constraints) has emerged as a key metric that determines serving systems' performance. To boost throughput, various methods of inter-device parallelism (e.g., data, tensor, pipeline) have been explored. However, existing methods do not consider overlapping the utilization of different resources within a single device, leading to underutilization and sub-optimal performance. We propose NanoFlow, a novel serving framework that exploits intra-device parallelism, which overlaps the usage of resources including compute, memory, and network within a single device through operation co-scheduling. To exploit intra-device parallelism, NanoFlow introduces two key innovations: First, NanoFlow splits requests into nano-batches at the granularity of operations, which breaks the dependency of sequential operations in LLM inference and enables overlapping; then, to get benefit from overlapping, NanoFlow uses an operation-level pipeline with execution unit scheduling, which partitions the device's functional units and simultaneously executes different operations in each unit. NanoFlow automates the pipeline setup using a parameter search algorithm, which enables easily porting NanoFlow to different models. We implement NanoFlow on NVIDIA GPUs and evaluate end-to-end serving throughput on several popular models such as LLaMA-2-70B, Mixtral 8x7B, LLaMA-3-8B, etc.. With practical workloads, NanoFlow provides 1.91x throughput boost compared to state-of-the-art serving systems achieving 59% to 72% of optimal throughput across ported models.

  • 15 authors
·
Aug 22, 2024 2

HipKittens: Fast and Furious AMD Kernels

AMD GPUs offer state-of-the-art compute and memory bandwidth; however, peak performance AMD kernels are written in raw assembly. To address the difficulty of mapping AI algorithms to hardware, recent work proposes C++ embedded and PyTorch-inspired domain-specific languages like ThunderKittens (TK) to simplify high performance AI kernel development on NVIDIA hardware. We explore the extent to which such primitives -- for explicit tile-based programming with optimized memory accesses and fine-grained asynchronous execution across workers -- are NVIDIA-specific or general. We provide the first detailed study of the programming primitives that lead to performant AMD AI kernels, and we encapsulate these insights in the HipKittens (HK) programming framework. We find that tile-based abstractions used in prior DSLs generalize to AMD GPUs, however we need to rethink the algorithms that instantiate these abstractions for AMD. We validate the HK primitives across CDNA3 and CDNA4 AMD platforms. In evaluations, HK kernels compete with AMD's hand-optimized assembly kernels for GEMMs and attention, and consistently outperform compiler baselines. Moreover, assembly is difficult to scale to the breadth of AI workloads; reflecting this, in some settings HK outperforms all available kernel baselines by 1.2-2.4times (e.g., d=64 attention, GQA backwards, memory-bound kernels). These findings help pave the way for a single, tile-based software layer for high-performance AI kernels that translates across GPU vendors. HipKittens is released at: https://github.com/HazyResearch/HipKittens.

  • 9 authors
·
Nov 11

ConCuR: Conciseness Makes State-of-the-Art Kernel Generation

GPU kernel generation by LLMs has recently experienced rapid development, leveraging test-time scaling and reinforcement learning techniques. However, a key challenge for kernel generation is the scarcity of high-quality data, as most high-quality kernels are proprietary and not open-source. This challenge prevents us from leveraging supervised fine-tuning to align LLMs to the kernel generation task. To address this challenge, we develop a pipeline that generates and curates high-quality CUDA kernels with reasoning traces, motivated by a critical observation that concise yet informative reasoning traces result in robust generation of high-performance kernels. Using this pipeline, we construct our dataset ConCuR and introduce our model KernelCoder, which is the first model trained on a curated dataset consisting of PyTorch, reasoning, and CUDA kernel pairs, to our knowledge. In the KernelBench setup, our model achieves significant improvements over the existing top-performing model, QwQ-32B, and outperforms all open-source models fine-tuned for kernel generation, as well as frontier models such as DeepSeek-V3.1-Think and Claude-4-sonnet. Finally, we show that the average reasoning length can serve as a metric to assess the difficulty of kernel generation tasks. The observations, metrics, and our data collection and curation pipeline can help obtain better data in the kernel generation task in the future.

  • 4 authors
·
Oct 8

Accurate Computation of the Logarithm of Modified Bessel Functions on GPUs

Bessel functions are critical in scientific computing for applications such as machine learning, protein structure modeling, and robotics. However, currently, available routines lack precision or fail for certain input ranges, such as when the order v is large, and GPU-specific implementations are limited. We address the precision limitations of current numerical implementations while dramatically improving the runtime. We propose two novel algorithms for computing the logarithm of modified Bessel functions of the first and second kinds by computing intermediate values on a logarithmic scale. Our algorithms are robust and never have issues with underflows or overflows while having relative errors on the order of machine precision, even for inputs where existing libraries fail. In C++/CUDA, our algorithms have median and maximum speedups of 45x and 6150x for GPU and 17x and 3403x for CPU, respectively, over the ranges of inputs and third-party libraries tested. Compared to SciPy, the algorithms have median and maximum speedups of 77x and 300x for GPU and 35x and 98x for CPU, respectively, over the tested inputs. The ability to robustly compute a solution and the low relative errors allow us to fit von Mises-Fisher, vMF, distributions to high-dimensional neural network features. This is, e.g., relevant for uncertainty quantification in metric learning. We obtain image feature data by processing CIFAR10 training images with the convolutional layers of a pre-trained ResNet50. We successfully fit vMF distributions to 2048-, 8192-, and 32768-dimensional image feature data using our algorithms. Our approach provides fast and accurate results while existing implementations in SciPy and mpmath fail to fit successfully. Our approach is readily implementable on GPUs, and we provide a fast open-source implementation alongside this paper.

  • 3 authors
·
Sep 13, 2024

Video-Infinity: Distributed Long Video Generation

Diffusion models have recently achieved remarkable results for video generation. Despite the encouraging performances, the generated videos are typically constrained to a small number of frames, resulting in clips lasting merely a few seconds. The primary challenges in producing longer videos include the substantial memory requirements and the extended processing time required on a single GPU. A straightforward solution would be to split the workload across multiple GPUs, which, however, leads to two issues: (1) ensuring all GPUs communicate effectively to share timing and context information, and (2) modifying existing video diffusion models, which are usually trained on short sequences, to create longer videos without additional training. To tackle these, in this paper we introduce Video-Infinity, a distributed inference pipeline that enables parallel processing across multiple GPUs for long-form video generation. Specifically, we propose two coherent mechanisms: Clip parallelism and Dual-scope attention. Clip parallelism optimizes the gathering and sharing of context information across GPUs which minimizes communication overhead, while Dual-scope attention modulates the temporal self-attention to balance local and global contexts efficiently across the devices. Together, the two mechanisms join forces to distribute the workload and enable the fast generation of long videos. Under an 8 x Nvidia 6000 Ada GPU (48G) setup, our method generates videos up to 2,300 frames in approximately 5 minutes, enabling long video generation at a speed 100 times faster than the prior methods.

  • 4 authors
·
Jun 23, 2024 2

MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models

As inference on Large Language Models (LLMs) emerges as an important workload in machine learning applications, weight quantization has become a standard technique for efficient GPU deployment. Quantization not only reduces model size, but has also been shown to yield substantial speedups for single-user inference, due to reduced memory movement, with low accuracy impact. Yet, it remains open whether speedups are achievable also in batched settings with multiple parallel clients, which are highly relevant for practical serving. It is unclear whether GPU kernels can be designed to remain practically memory-bound, while supporting the substantially increased compute requirements of batched workloads. This paper resolves this question positively by describing the design of Mixed-precision Auto-Regressive LINear kernels, called MARLIN. Concretely, given a model whose weights are compressed via quantization to, e.g., 4 bits per element, MARLIN shows that batchsizes up to 16-32 can be supported with close to maximum (4times) quantization speedup, and larger batchsizes up to 64-128 with gradually decreasing, but still significant, acceleration. MARLIN accomplishes this via a combination of techniques, such as asynchronous memory access, complex task scheduling and pipelining, and bespoke quantization support. Our experiments show that MARLIN's near-optimal performance on individual LLM layers across different scenarios can also lead to end-to-end LLM inference speedups (of up to 2.8times) when integrated with the popular vLLM serving engine. Finally, MARLIN is extensible to further compression techniques, like NVIDIA 2:4 sparsity, leading to additional speedups.

Superpipeline: A Universal Approach for Reducing GPU Memory Usage in Large Models

The rapid growth in machine learning models, especially in natural language processing and computer vision, has led to challenges when running these models on hardware with limited resources. This paper introduces Superpipeline, a new framework designed to optimize the execution of large AI models on constrained hardware during both training and inference. Our approach involves dynamically managing model execution by dividing models into individual layers and efficiently transferring these layers between GPU and CPU memory. Superpipeline reduces GPU memory usage by up to 60% in our experiments while maintaining model accuracy and acceptable processing speeds. This allows models that would otherwise exceed available GPU memory to run effectively. Unlike existing solutions that focus mainly on inference or specific model types, Superpipeline can be applied to large language models (LLMs), vision-language models (VLMs), and vision-based models. We tested Superpipeline's performance across various models and hardware setups. The method includes two key parameters that allow fine-tuning the balance between GPU memory use and processing speed. Importantly, Superpipeline does not require retraining or changing model parameters, ensuring that the original model's output remains unchanged. Superpipeline's simplicity and flexibility make it useful for researchers and professionals working with advanced AI models on limited hardware. It enables the use of larger models or bigger batch sizes on existing hardware, potentially speeding up innovation across many machine learning applications. This work marks an important step toward making advanced AI models more accessible and optimizing their deployment in resource-limited environments. The code for Superpipeline is available at https://github.com/abbasiReza/super-pipeline.

  • 2 authors
·
Oct 11, 2024

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

Serving numerous users and requests concurrently requires good fairness in Large Language Models (LLMs) serving system. This ensures that, at the same cost, the system can meet the Service Level Objectives (SLOs) of more users , such as time to first token (TTFT) and time between tokens (TBT), rather than allowing a few users to experience performance far exceeding the SLOs. To achieve better fairness, the preemption-based scheduling policy dynamically adjusts the priority of each request to maintain balance during runtime. However, existing systems tend to overly prioritize throughput, overlooking the overhead caused by preemption-induced context switching, which is crucial for maintaining fairness through priority adjustments. In this work, we identify three main challenges that result in this overhead. 1) Inadequate I/O utilization. 2) GPU idleness. 3) Unnecessary I/O transmission during multi-turn conversations. Our key insight is that the block-based KV cache memory policy in existing systems, while achieving near-zero memory waste, leads to discontinuity and insufficient granularity in the KV cache memory. To respond, we introduce FastSwitch, a fairness-aware serving system that not only aligns with existing KV cache memory allocation policy but also mitigates context switching overhead. Our evaluation shows that FastSwitch outperforms the state-of-the-art LLM serving system vLLM with speedups of 1.4-11.2x across different tail TTFT and TBT.

  • 3 authors
·
Nov 27, 2024

FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning

Scaling Transformers to longer sequence lengths has been a major problem in the last several years, promising to improve performance in language modeling and high-resolution image understanding, as well as to unlock new applications in code, audio, and video generation. The attention layer is the main bottleneck in scaling to longer sequences, as its runtime and memory increase quadratically in the sequence length. FlashAttention exploits the asymmetric GPU memory hierarchy to bring significant memory saving (linear instead of quadratic) and runtime speedup (2-4times compared to optimized baselines), with no approximation. However, FlashAttention is still not nearly as fast as optimized matrix-multiply (GEMM) operations, reaching only 25-40\% of the theoretical maximum FLOPs/s. We observe that the inefficiency is due to suboptimal work partitioning between different thread blocks and warps on the GPU, causing either low-occupancy or unnecessary shared memory reads/writes. We propose FlashAttention-2, with better work partitioning to address these issues. In particular, we (1) tweak the algorithm to reduce the number of non-matmul FLOPs (2) parallelize the attention computation, even for a single head, across different thread blocks to increase occupancy, and (3) within each thread block, distribute the work between warps to reduce communication through shared memory. These yield around 2times speedup compared to FlashAttention, reaching 50-73\% of the theoretical maximum FLOPs/s on A100 and getting close to the efficiency of GEMM operations. We empirically validate that when used end-to-end to train GPT-style models, FlashAttention-2 reaches training speed of up to 225 TFLOPs/s per A100 GPU (72\% model FLOPs utilization).

  • 1 authors
·
Jul 17, 2023

Improve Machine Learning carbon footprint using Nvidia GPU and Mixed Precision training for classification models -- Part I

This is the 1st part of the dissertation for my master degree and compares the power consumption using the default floating point (32bit) and Nvidia mixed precision (16bit and 32bit) while training a classification ML model. A custom PC with specific hardware was built to perform the experiments, and different ML hyper-parameters, such as batch size, neurons, and epochs, were chosen to build Deep Neural Networks (DNN). Additionally, various software was used during the experiments to collect the power consumption data in Watts from the Graphics Processing Unit (GPU), Central Processing Unit (CPU), Random Access Memory (RAM) and manually from a wattmeter connected to the wall. A benchmarking test with default hyper parameter values for the DNN was used as a reference, while the experiments used a combination of different settings. The results were recorded in Excel, and descriptive statistics were chosen to calculate the mean between the groups and compare them using graphs and tables. The outcome was positive when using mixed precision combined with specific hyper-parameters. Compared to the benchmarking, the optimisation for the classification reduced the power consumption between 7 and 11 Watts. Similarly, the carbon footprint is reduced because the calculation uses the same power consumption data. Still, a consideration is required when configuring hyper-parameters because it can negatively affect hardware performance. However, this research required inferential statistics, specifically ANOVA and T-test, to compare the relationship between the means. Furthermore, tests indicated no statistical significance of the relationship between the benchmarking and experiments. However, a more extensive implementation with a cluster of GPUs can increase the sample size significantly, as it is an essential factor and can change the outcome of the statistical analysis.

  • 1 authors
·
Sep 12, 2024

MoETuner: Optimized Mixture of Expert Serving with Balanced Expert Placement and Token Routing

Mixture-of-Experts (MoE) model architecture has emerged as a promising solution for scaling transformer models efficiently, offering sparse activation that reduces computational costs while increasing model capacity. However, as MoE models scale, they need to be distributed across GPU devices, thus face critical performance bottlenecks due to their large memory footprint. Expert parallelism distributes experts across GPUs, however, faces key challenges including an unbalanced token routing and expert activation, resulting in communication tail latency and processing inefficiencies. While existing solutions address some of these issues, they fail to resolve the dual challenges of load imbalance and communication skew. The imbalance in token processing load across experts causes uneven processing times on different GPUs, while communication skew between GPUs leads to unbalanced inter-GPU data transfers. These factors degrade the performance of MoE models by increasing tail latency and reducing overall throughput. To address these limitations, we propose an Integer Linear Programming (ILP) formulation to optimize expert placement by jointly considering token load, communication, and computation costs. We exploit the property that there is a token routing dependency across layers, where tokens routed to a specific expert in one layer are likely to be routed to a limited set of experts in the subsequent layer. Our solution, MoETuner, offers an optimal expert-to-GPU assignment that minimizes inter-GPU token routing costs and balances token processing across devices, thereby reducing tail latency and end-to-end execution time. Experimental results demonstrate 9.3% and 17.5% of end-to-end speedups for single-node and multi-node inference respectively, showcasing the potential of our ILP-based optimization for offering expert parallel solutions for next-generation MoEs.

  • 2 authors
·
Feb 10

TorchTitan: One-stop PyTorch native solution for production ready LLM pre-training

The development of large language models (LLMs) has been instrumental in advancing state-of-the-art natural language processing applications. Training LLMs with billions of parameters and trillions of tokens require sophisticated distributed systems that enable composing and comparing several state-of-the-art techniques in order to efficiently scale across thousands of accelerators. However, existing solutions are complex, scattered across multiple libraries/repositories, lack interoperability, and are cumbersome to maintain. Thus, curating and empirically comparing training recipes require non-trivial engineering effort. This paper introduces TorchTitan, an open-source, PyTorch-native distributed training system that unifies state-of-the-art techniques, streamlining integration and reducing overhead. TorchTitan enables 3D parallelism in a modular manner with elastic scaling, providing comprehensive logging, checkpointing, and debugging tools for production-ready training. It also incorporates hardware-software co-designed solutions, leveraging features like Float8 training and SymmetricMemory. As a flexible test bed, TorchTitan facilitates custom recipe curation and comparison, allowing us to develop optimized training recipes for Llama 3.1 and provide guidance on selecting techniques for maximum efficiency based on our experiences. We thoroughly assess TorchTitan on the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its exceptional performance, modular composability, and elastic scalability. By stacking training optimizations, we demonstrate accelerations of 65.08% with 1D parallelism at the 128-GPU scale (Llama 3.1 8B), an additional 12.59% with 2D parallelism at the 256-GPU scale (Llama 3.1 70B), and an additional 30% with 3D parallelism at the 512-GPU scale (Llama 3.1 405B) on NVIDIA H100 GPUs over optimized baselines.

  • 13 authors
·
Oct 8, 2024 1

PyTorch-Direct: Enabling GPU Centric Data Access for Very Large Graph Neural Network Training with Irregular Accesses

With the increasing adoption of graph neural networks (GNNs) in the machine learning community, GPUs have become an essential tool to accelerate GNN training. However, training GNNs on very large graphs that do not fit in GPU memory is still a challenging task. Unlike conventional neural networks, mini-batching input samples in GNNs requires complicated tasks such as traversing neighboring nodes and gathering their feature values. While this process accounts for a significant portion of the training time, we find existing GNN implementations using popular deep neural network (DNN) libraries such as PyTorch are limited to a CPU-centric approach for the entire data preparation step. This "all-in-CPU" approach has negative impact on the overall GNN training performance as it over-utilizes CPU resources and hinders GPU acceleration of GNN training. To overcome such limitations, we introduce PyTorch-Direct, which enables a GPU-centric data accessing paradigm for GNN training. In PyTorch-Direct, GPUs are capable of efficiently accessing complicated data structures in host memory directly without CPU intervention. Our microbenchmark and end-to-end GNN training results show that PyTorch-Direct reduces data transfer time by 47.1% on average and speeds up GNN training by up to 1.6x. Furthermore, by reducing CPU utilization, PyTorch-Direct also saves system power by 12.4% to 17.5% during training. To minimize programmer effort, we introduce a new "unified tensor" type along with necessary changes to the PyTorch memory allocator, dispatch logic, and placement rules. As a result, users need to change at most two lines of their PyTorch GNN training code for each tensor object to take advantage of PyTorch-Direct.

  • 8 authors
·
Jan 19, 2021

Optimizing Distributed Training on Frontier for Large Language Models

Large language models (LLMs) have demonstrated remarkable success as foundational models, benefiting various downstream applications through fine-tuning. Recent studies on loss scaling have demonstrated the superior performance of larger LLMs compared to their smaller counterparts. Nevertheless, training LLMs with billions of parameters poses significant challenges and requires considerable computational resources. For example, training a one trillion parameter GPT-style model on 20 trillion tokens requires a staggering 120 million exaflops of computation. This research explores efficient distributed training strategies to extract this computation from Frontier, the world's first exascale supercomputer dedicated to open science. We enable and investigate various model and data parallel training techniques, such as tensor parallelism, pipeline parallelism, and sharded data parallelism, to facilitate training a trillion-parameter model on Frontier. We empirically assess these techniques and their associated parameters to determine their impact on memory footprint, communication latency, and GPU's computational efficiency. We analyze the complex interplay among these techniques and find a strategy to combine them to achieve high throughput through hyperparameter tuning. We have identified efficient strategies for training large LLMs of varying sizes through empirical analysis and hyperparameter tuning. For 22 Billion, 175 Billion, and 1 Trillion parameters, we achieved GPU throughputs of 38.38%, 36.14%, and 31.96%, respectively. For the training of the 175 Billion parameter model and the 1 Trillion parameter model, we achieved 100% weak scaling efficiency on 1024 and 3072 MI250X GPUs, respectively. We also achieved strong scaling efficiencies of 89% and 87% for these two models.

  • 8 authors
·
Dec 19, 2023

Characterizing and Optimizing LLM Inference Workloads on CPU-GPU Coupled Architectures

Large language model (LLM)-based inference workloads increasingly dominate data center costs and resource utilization. Therefore, understanding the inference workload characteristics on evolving CPU-GPU coupled architectures is crucial for optimization. This paper presents an in-depth analysis of LLM inference behavior on loosely-coupled (PCIe A100/H100) and closely-coupled (GH200) systems. We analyze performance dynamics using fine-grained operator-to-kernel trace analysis, facilitated by our novel profiler SKIP and metrics like Total Kernel Launch and Queuing Time (TKLQT). Results show that closely-coupled (CC) GH200 significantly outperforms loosely-coupled (LC) systems at large batch sizes, achieving 1.9x-2.7x faster prefill latency for Llama 3.2-1B. However, our analysis also reveals that GH200 remains CPU-bound up to 4x larger batch sizes than LC systems. In this extended CPU-bound region, we identify the performance characteristics of the Grace CPU as a key factor contributing to higher inference latency at low batch sizes on GH200. We demonstrate that TKLQT accurately identifies this CPU/GPU-bound transition point. Based on this analysis, we further show that kernel fusion offers significant potential to mitigate GH200's low-batch latency bottleneck by reducing kernel launch overhead. This detailed kernel-level characterization provides critical insights for optimizing diverse CPU-GPU coupling strategies. This work is an initial effort, and we plan to explore other major AI/DL workloads that demand different degrees of CPU-GPU heterogeneous architectures.

  • 6 authors
·
Apr 16

Hardware and Software Platform Inference

It is now a common business practice to buy access to large language model (LLM) inference rather than self-host, because of significant upfront hardware infrastructure and energy costs. However, as a buyer, there is no mechanism to verify the authenticity of the advertised service including the serving hardware platform, e.g. that it is actually being served using an NVIDIA H100. Furthermore, there are reports suggesting that model providers may deliver models that differ slightly from the advertised ones, often to make them run on less expensive hardware. That way, a client pays premium for a capable model access on more expensive hardware, yet ends up being served by a (potentially less capable) cheaper model on cheaper hardware. In this paper we introduce \textbf{hardware and software platform inference (HSPI)} -- a method for identifying the underlying architecture and software stack of a (black-box) machine learning model solely based on its input-output behavior. Our method leverages the inherent differences of various architectures and compilers to distinguish between different types and software stacks. By analyzing the numerical patterns in the model's outputs, we propose a classification framework capable of accurately identifying the used for model inference as well as the underlying software configuration. Our findings demonstrate the feasibility of inferring type from black-box models. We evaluate HSPI against models served on different real hardware and find that in a white-box setting we can distinguish between different s with between 83.9% and 100% accuracy. Even in a black-box setting we are able to achieve results that are up to three times higher than random guess accuracy.

  • 5 authors
·
Nov 7, 2024 2

LSM-GNN: Large-scale Storage-based Multi-GPU GNN Training by Optimizing Data Transfer Scheme

Graph Neural Networks (GNNs) are widely used today in recommendation systems, fraud detection, and node/link classification tasks. Real world GNNs continue to scale in size and require a large memory footprint for storing graphs and embeddings that often exceed the memory capacities of the target GPUs used for training. To address limited memory capacities, traditional GNN training approaches use graph partitioning and sharding techniques to scale up across multiple GPUs within a node and/or scale out across multiple nodes. However, this approach suffers from the high computational costs of graph partitioning algorithms and inefficient communication across GPUs. To address these overheads, we propose Large-scale Storage-based Multi-GPU GNN framework (LSM-GNN), a storagebased approach to train GNN models that utilizes a novel communication layer enabling GPU software caches to function as a system-wide shared cache with low overheads.LSM-GNN incorporates a hybrid eviction policy that intelligently manages cache space by using both static and dynamic node information to significantly enhance cache performance. Furthermore, we introduce the Preemptive Victim-buffer Prefetcher (PVP), a mechanism for prefetching node feature data from a Victim Buffer located in CPU pinned-memory to further reduce the pressure on the storage devices. Experimental results show that despite the lower compute capabilities and memory capacities, LSM-GNN in a single node with two GPUs offers superior performance over two-node-four-GPU Dist-DGL baseline and provides up to 3.75x speed up on end-to-end epoch time while running large-scale GNN training

  • 6 authors
·
Jul 21, 2024

Optimizing Memory Mapping Using Deep Reinforcement Learning

Resource scheduling and allocation is a critical component of many high impact systems ranging from congestion control to cloud computing. Finding more optimal solutions to these problems often has significant impact on resource and time savings, reducing device wear-and-tear, and even potentially improving carbon emissions. In this paper, we focus on a specific instance of a scheduling problem, namely the memory mapping problem that occurs during compilation of machine learning programs: That is, mapping tensors to different memory layers to optimize execution time. We introduce an approach for solving the memory mapping problem using Reinforcement Learning. RL is a solution paradigm well-suited for sequential decision making problems that are amenable to planning, and combinatorial search spaces with high-dimensional data inputs. We formulate the problem as a single-player game, which we call the mallocGame, such that high-reward trajectories of the game correspond to efficient memory mappings on the target hardware. We also introduce a Reinforcement Learning agent, mallocMuZero, and show that it is capable of playing this game to discover new and improved memory mapping solutions that lead to faster execution times on real ML workloads on ML accelerators. We compare the performance of mallocMuZero to the default solver used by the Accelerated Linear Algebra (XLA) compiler on a benchmark of realistic ML workloads. In addition, we show that mallocMuZero is capable of improving the execution time of the recently published AlphaTensor matrix multiplication model.

  • 18 authors
·
May 11, 2023

Boosting Large-scale Parallel Training Efficiency with C4: A Communication-Driven Approach

The emergence of Large Language Models (LLMs) has necessitated the adoption of parallel training techniques, involving the deployment of thousands of GPUs to train a single model. Unfortunately, we have found that the efficiency of current parallel training is often suboptimal, largely due to the following two main issues. Firstly, hardware failures are inevitable, leading to interruptions in the training tasks. The inability to quickly identify the faulty components results in a substantial waste of GPU resources. Secondly, since GPUs must wait for parameter synchronization to complete before proceeding to the next round of computation, network congestions can greatly increase the waiting time for GPUs. To address these challenges, this paper introduces a communication-driven solution, namely the C4. The key insights of C4 are two folds. First, in parallel training, collective communication exhibits periodic and homogeneous characteristics, so any anomalies are certainly due to some form of hardware malfunction. By leveraging this feature, C4 can rapidly identify the faulty components, swiftly isolate the anomaly, and restart the task, thereby avoiding resource wastage caused by delays in anomaly detection. Second, the predictable communication model of collective communication, involving few large flows, allows C4 to efficiently execute traffic planning, substantially reducing network congestion. C4 has been extensively implemented across our production systems, cutting error-induced overhead by roughly 30% and enhancing runtime performance by about 15% for certain applications with moderate communication costs.

  • 25 authors
·
Jun 6, 2024

Sequence Parallelism: Long Sequence Training from System Perspective

Transformer achieves promising results on various tasks. However, self-attention suffers from quadratic memory requirements with respect to the sequence length. Existing work focuses on reducing time and space complexity from an algorithm perspective. In this work, we propose sequence parallelism, a memory-efficient parallelism method to help us break input sequence length limitation and train with longer sequences on GPUs efficiently. Our approach is compatible with most existing parallelisms (e.g. data parallelism, pipeline parallelism and tensor parallelism), which means our sequence parallelism makes 4D parallelism possible. More importantly, we no longer require a single device to hold the whole sequence. That is, with sparse attention, our sequence parallelism enables us to train transformer with infinite long sequence. Specifically, we split the input sequence into multiple chunks and feed each chunk into its corresponding device (i.e. GPU). To compute the attention output, we integrated ring-style communication with self-attention calculation and proposed Ring Self-Attention (RSA). Experiments show that sequence parallelism performs well when scaling with batch size and sequence length. Compared with tensor parallelism, our approach achieved 13.7times and 3.0times maximum batch size and sequence length respectively when scaling up to 64 NVIDIA P100 GPUs. With sparse attention, sequence can handle sequence with over 114K tokens, which is over 27times longer than existing sparse attention works holding the whole sequence on a single device.

  • 5 authors
·
May 26, 2021

Boost Vision Transformer with GPU-Friendly Sparsity and Quantization

The transformer extends its success from the language to the vision domain. Because of the stacked self-attention and cross-attention blocks, the acceleration deployment of vision transformer on GPU hardware is challenging and also rarely studied. This paper thoroughly designs a compression scheme to maximally utilize the GPU-friendly 2:4 fine-grained structured sparsity and quantization. Specially, an original large model with dense weight parameters is first pruned into a sparse one by 2:4 structured pruning, which considers the GPU's acceleration of 2:4 structured sparse pattern with FP16 data type, then the floating-point sparse model is further quantized into a fixed-point one by sparse-distillation-aware quantization aware training, which considers GPU can provide an extra speedup of 2:4 sparse calculation with integer tensors. A mixed-strategy knowledge distillation is used during the pruning and quantization process. The proposed compression scheme is flexible to support supervised and unsupervised learning styles. Experiment results show GPUSQ-ViT scheme achieves state-of-the-art compression by reducing vision transformer models 6.4-12.7 times on model size and 30.3-62 times on FLOPs with negligible accuracy degradation on ImageNet classification, COCO detection and ADE20K segmentation benchmarking tasks. Moreover, GPUSQ-ViT can boost actual deployment performance by 1.39-1.79 times and 3.22-3.43 times of latency and throughput on A100 GPU, and 1.57-1.69 times and 2.11-2.51 times improvement of latency and throughput on AGX Orin.

  • 4 authors
·
May 18, 2023

Performance Trade-offs of Optimizing Small Language Models for E-Commerce

Large Language Models (LLMs) offer state-of-the-art performance in natural language understanding and generation tasks. However, the deployment of leading commercial models for specialized tasks, such as e-commerce, is often hindered by high computational costs, latency, and operational expenses. This paper investigates the viability of smaller, open-weight models as a resource-efficient alternative. We present a methodology for optimizing a one-billion-parameter Llama 3.2 model for multilingual e-commerce intent recognition. The model was fine-tuned using Quantized Low-Rank Adaptation (QLoRA) on a synthetically generated dataset designed to mimic real-world user queries. Subsequently, we applied post-training quantization techniques, creating GPU-optimized (GPTQ) and CPU-optimized (GGUF) versions. Our results demonstrate that the specialized 1B model achieves 99% accuracy, matching the performance of the significantly larger GPT-4.1 model. A detailed performance analysis revealed critical, hardware-dependent trade-offs: while 4-bit GPTQ reduced VRAM usage by 41%, it paradoxically slowed inference by 82% on an older GPU architecture (NVIDIA T4) due to dequantization overhead. Conversely, GGUF formats on a CPU achieved a speedup of up to 18x in inference throughput and a reduction of over 90% in RAM consumption compared to the FP16 baseline. We conclude that small, properly optimized open-weight models are not just a viable but a more suitable alternative for domain-specific applications, offering state-of-the-art accuracy at a fraction of the computational cost.

  • 2 authors
·
Oct 24 2

ZeRO-Offload: Democratizing Billion-Scale Model Training

Large-scale model training has been a playing ground for a limited few requiring complex model refactoring and access to prohibitively expensive GPU clusters. ZeRO-Offload changes the large model training landscape by making large model training accessible to nearly everyone. It can train models with over 13 billion parameters on a single GPU, a 10x increase in size compared to popular framework such as PyTorch, and it does so without requiring any model change from the data scientists or sacrificing computational efficiency. ZeRO-Offload enables large model training by offloading data and compute to CPU. To preserve compute efficiency, it is designed to minimize the data movement to/from GPU, and reduce CPU compute time while maximizing memory savings on GPU. As a result, ZeRO-Offload can achieve 40 TFlops/GPU on a single NVIDIA V100 GPU for 10B parameter model compared to 30TF using PyTorch alone for a 1.4B parameter model, the largest that can be trained without running out of memory. ZeRO-Offload is also designed to scale on multiple-GPUs when available, offering near linear speedup on up to 128 GPUs. Additionally, it can work together with model parallelism to train models with over 70 billion parameters on a single DGX-2 box, a 4.5x increase in model size compared to using model parallelism alone. By combining compute and memory efficiency with ease-of-use, ZeRO-Offload democratizes large-scale model training making it accessible to even data scientists with access to just a single GPU.

  • 8 authors
·
Jan 17, 2021

MoE-Lens: Towards the Hardware Limit of High-Throughput MoE LLM Serving Under Resource Constraints

Mixture of Experts (MoE) LLMs, characterized by their sparse activation patterns, offer a promising approach to scaling language models while avoiding proportionally increasing the inference cost. However, their large parameter sizes present deployment challenges in resource-constrained environments with limited GPU memory capacity, as GPU memory is often insufficient to accommodate the full set of model weights. Consequently, typical deployments rely on CPU-GPU hybrid execution: the GPU handles compute-intensive GEMM operations, while the CPU processes the relatively lightweight attention mechanism. This setup introduces a key challenge: how to effectively optimize resource utilization across CPU and GPU? Prior work has designed system optimizations based on performance models with limited scope. Specifically, such models do not capture the complex interactions between hardware properties and system execution mechanisms. Therefore, previous approaches neither identify nor achieve the hardware limit. This paper presents MoE-Lens, a high-throughput MoE LLM inference system designed through holistic performance modeling for resource-constrained environments. Our performance model thoroughly analyzes various fundamental system components, including CPU memory capacity, GPU compute power, and workload characteristics, to understand the theoretical performance upper bound of MoE inference. Furthermore, it captures the system execution mechanisms to identify the key hardware bottlenecks and accurately predict the achievable throughput. Informed by our performance model, MoE-Lens introduces an inference system approaching hardware limits. Evaluated on diverse MoE models and datasets, MoE-Lens outperforms the state-of-the-art solution by 4.6x on average (up to 25.5x), with our theoretical model predicting performance with an average 94% accuracy.

  • 3 authors
·
Apr 12

CudaForge: An Agent Framework with Hardware Feedback for CUDA Kernel Optimization

Developing efficient CUDA kernels is increasingly critical for AI applications such as large-scale LLM training. However, manual kernel design is both costly and time-consuming, motivating automatic approaches that leverage LLMs for code generation. Existing methods for automatic kernel generation, however, often produce low-efficiency kernels, incur high computational overhead, and fail to generalize across settings. In this work, we propose CudaForge, a training-free multi-agent workflow for CUDA kernel generation and optimization. Our workflow is inspired by the iterative workflow of human experts, which contains steps such as developing initial kernels, testing correctness, analyzing hardware feedback, and iterative improvement. More specifically, CudaForge employs two LLM agents: a Coder and a Judge, that iteratively generate, correct, and optimize CUDA kernels, while integrating hardware feedback such as Nsight Compute (NCU) metrics. In extensive evaluations, we show that CudaForge, by leveraging base models like OpenAI-o3, achieves 97.6\% correctness of generated kernels and an average 1.68times speedup over PyTorch baselines, substantially surpassing state-of-the-art models including OpenAI-o3 and Kevin on KernelBench.Beyond accuracy and speed, CudaForge demonstrates strong generalization across GPUs (A100, RTX 6000, 4090, 3090) and base models (OpenAI-o3, GPT-5, gpt-oss-120B, Claude-Sonnet-4, QwQ-32B), while maintaining high efficiency. In particular, generating an optimized kernel takes about 26.5 minutes on one RTX6000 and incurs about \ 0.3 API cost, which is significantly cheaper than existing agentic work that costs 6 H100 hours and 5 API cost per kernel. Our results highlight that multi-agent, training-free workflows can enable cost-effective, generalizable, and high-performance CUDA kernel optimization. Code available at https://github.com/OptimAI-Lab/CudaForge

  • 6 authors
·
Oct 23

ZO2: Scalable Zeroth-Order Fine-Tuning for Extremely Large Language Models with Limited GPU Memory

Fine-tuning large pre-trained LLMs generally demands extensive GPU memory. Traditional first-order optimizers like SGD encounter substantial difficulties due to increased memory requirements from storing activations and gradients during both the forward and backward phases as the model size expands. Alternatively, zeroth-order (ZO) techniques can compute gradients using just forward operations, eliminating the need to store activations. Furthermore, by leveraging CPU capabilities, it's feasible to enhance both the memory and processing power available to a single GPU. We propose a novel framework, ZO2 (Zeroth-Order Offloading), for efficient zeroth-order fine-tuning of LLMs with only limited GPU memory. Our framework dynamically shifts model parameters between the CPU and GPU as required, optimizing computation flow and maximizing GPU usage by minimizing downtime. This integration of parameter adjustments with ZO's double forward operations reduces unnecessary data movement, enhancing the fine-tuning efficacy. Additionally, our framework supports an innovative low-bit precision approach in AMP mode to streamline data exchanges between the CPU and GPU. Employing this approach allows us to fine-tune extraordinarily large models, such as the OPT-175B with more than 175 billion parameters, on a mere 18GB GPU--achievements beyond the reach of traditional methods. Moreover, our framework achieves these results with almost no additional time overhead and absolutely no accuracy loss compared to standard zeroth-order methods. ZO2's code has been open-sourced in https://github.com/liangyuwang/zo2.

  • 7 authors
·
Mar 16

Im2win: An Efficient Convolution Paradigm on GPU

Convolution is the most time-consuming operation in deep neural network operations, so its performance is critical to the overall performance of the neural network. The commonly used methods for convolution on GPU include the general matrix multiplication (GEMM)-based convolution and the direct convolution. GEMM-based convolution relies on the im2col algorithm, which results in a large memory footprint and reduced performance. Direct convolution does not have the large memory footprint problem, but the performance is not on par with GEMM-based approach because of the discontinuous memory access. This paper proposes a window-order-based convolution paradigm on GPU, called im2win, which not only reduces memory footprint but also offers continuous memory accesses, resulting in improved performance. Furthermore, we apply a range of optimization techniques on the convolution CUDA kernel, including shared memory, tiling, micro-kernel, double buffer, and prefetching. We compare our implementation with the direct convolution, and PyTorch's GEMM-based convolution with cuBLAS and six cuDNN-based convolution implementations, with twelve state-of-the-art DNN benchmarks. The experimental results show that our implementation 1) uses less memory footprint by 23.1% and achieves 3.5times TFLOPS compared with cuBLAS, 2) uses less memory footprint by 32.8% and achieves up to 1.8times TFLOPS compared with the best performant convolutions in cuDNN, and 3) achieves up to 155times TFLOPS compared with the direct convolution. We further perform an ablation study on the applied optimization techniques and find that the micro-kernel has the greatest positive impact on performance.

  • 4 authors
·
Jun 25, 2023

vAttention: Dynamic Memory Management for Serving LLMs without PagedAttention

Efficient use of GPU memory is essential for high throughput LLM inference. Prior systems reserved memory for the KV-cache ahead-of-time, resulting in wasted capacity due to internal fragmentation. Inspired by OS-based virtual memory systems, vLLM proposed PagedAttention to enable dynamic memory allocation for KV-cache. This approach eliminates fragmentation, enabling high-throughput LLM serving with larger batch sizes. However, to be able to allocate physical memory dynamically, PagedAttention changes the layout of KV-cache from contiguous virtual memory to non-contiguous virtual memory. This change requires attention kernels to be rewritten to support paging, and serving framework to implement a memory manager. Thus, the PagedAttention model leads to software complexity, portability issues, redundancy and inefficiency. In this paper, we propose vAttention for dynamic KV-cache memory management. In contrast to PagedAttention, vAttention retains KV-cache in contiguous virtual memory and leverages low-level system support for demand paging, that already exists, to enable on-demand physical memory allocation. Thus, vAttention unburdens the attention kernel developer from having to explicitly support paging and avoids re-implementation of memory management in the serving framework. We show that vAttention enables seamless dynamic memory management for unchanged implementations of various attention kernels. vAttention also generates tokens up to 1.97x faster than vLLM, while processing input prompts up to 3.92x and 1.45x faster than the PagedAttention variants of FlashAttention and FlashInfer.

  • 5 authors
·
May 7, 2024

Galvatron: Automatic Distributed Training for Large Transformer Models

Training multi-billion to trillion-parameter language models efficiently on GPU clusters requires leveraging multiple parallelism strategies. We present Galvatron, a novel open-source framework (dubbed 'Optimus-Megatron' in the implementation) that dynamically combines data parallelism, tensor model parallelism, and pipeline parallelism to optimize training throughput. Built atop PyTorch and integrating NVIDIA's Megatron-LM and Microsoft's DeepSpeed, Galvatron automatically selects and adjusts parallelism strategies in real time based on model architecture, hardware, and training dynamics. This paper details Galvatron's key features -- automatic hybrid parallelism selection, layer-wise and phase-wise strategy optimization, and runtime adaptation -- and contrasts them with existing static frameworks. We describe the system's technical stack, including its use of DeepSpeed's ZeRO and NCCL communication, and provide an in-depth implementation overview of its core modules (profilers, strategy selector, parallelism manager). We then illustrate how Galvatron can be seamlessly integrated into existing training pipelines with minimal code modifications, providing companies a plug-and-play solution for efficient large-model training. Finally, we situate Galvatron in context with related efforts (NVIDIA Megatron-LM, Microsoft DeepSpeed, Google GShard, Meta FairScale, etc.), highlighting how it advances the state of the art in distributed deep learning. References to the GitHub repository and relevant literature are provided throughout.

  • 1 authors
·
Mar 13

Splitwise: Efficient generative LLM inference using phase splitting

Recent innovations in generative large language models (LLMs) have made their applications and use-cases ubiquitous. This has led to large-scale deployments of these models, using complex, expensive, and power-hungry AI accelerators, most commonly GPUs. These developments make LLM inference efficiency an important challenge. Based on our extensive characterization, we find that there are two main phases during an LLM inference request: a compute-intensive prompt computation, and a memory-intensive token generation, each with distinct latency, throughput, memory, and power characteristics. Despite state-of-the-art batching and scheduling, the token generation phase underutilizes compute resources. Specifically, unlike compute-intensive prompt computation phases, token generation phases do not require the compute capability of the latest GPUs, and can be run with lower power and cost. With Splitwise, we propose splitting the two phases of a LLM inference request on to separate machines. This allows us to use hardware that is well-suited for each phase, and provision resources independently per phase. However, splitting an inference request across machines requires state transfer from the machine running prompt computation over to the machine generating tokens. We implement and optimize this state transfer using the fast back-plane interconnects available in today's GPU clusters. We use the Splitwise technique to design LLM inference clusters using the same or different types of machines for the prompt computation and token generation phases. Our clusters are optimized for three key objectives: throughput, cost, and power. In particular, we show that we can achieve 1.4x higher throughput at 20% lower cost than current designs. Alternatively, we can achieve 2.35x more throughput with the same cost and power budgets.

  • 7 authors
·
Nov 30, 2023

Adaptive Two-Stage Cloud Resource Scaling via Hierarchical Multi-Indicator Forecasting and Bayesian Decision-Making

The surging demand for cloud computing resources, driven by the rapid growth of sophisticated large-scale models and data centers, underscores the critical importance of efficient and adaptive resource allocation. As major tech enterprises deploy massive infrastructures with thousands of GPUs, existing cloud platforms still struggle with low resource utilization due to key challenges: capturing hierarchical indicator structures, modeling non-Gaussian distributions, and decision-making under uncertainty. To address these challenges, we propose HRAMONY, an adaptive Hierarchical Attention-based Resource Modeling and Decision-Making System. HARMONY combines hierarchical multi-indicator distribution forecasting and uncertainty-aware Bayesian decision-making. It introduces a novel hierarchical attention mechanism that comprehensively models complex inter-indicator dependencies, enabling accurate predictions that can adapt to evolving environment states. By transforming Gaussian projections into adaptive non-Gaussian distributions via Normalizing Flows. Crucially, HARMONY leverages the full predictive distributions in an adaptive Bayesian process, proactively incorporating uncertainties to optimize resource allocation while robustly meeting SLA constraints under varying conditions. Extensive evaluations across four large-scale cloud datasets demonstrate HARMONY's state-of-the-art performance, significantly outperforming nine established methods. A month-long real-world deployment validated HARMONY's substantial practical impact, realizing over 35,000 GPU hours in savings and translating to $100K+ in cost reduction, showcasing its remarkable economic value through adaptive, uncertainty-aware scaling. Our code is available at https://github.com/Floating-LY/HARMONY1.

  • 7 authors
·
Aug 2, 2024

FlashRNN: Optimizing Traditional RNNs on Modern Hardware

While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: https://github.com/NX-AI/flashrnn

  • 3 authors
·
Dec 10, 2024

SpecMemo: Speculative Decoding is in Your Pocket

Recent advancements in speculative decoding have demonstrated considerable speedup across a wide array of large language model (LLM) tasks. Speculative decoding inherently relies on sacrificing extra memory allocations to generate several candidate tokens, of which acceptance rate drives the speedup. However, deploying speculative decoding on memory-constrained devices, such as mobile GPUs, remains as a significant challenge in real-world scenarios. In this work, we present a device-aware inference engine named SpecMemo that can smartly control memory allocations at finer levels to enable multi-turn chatbots with speculative decoding on such limited memory devices. Our methodology stems from theoretically modeling memory footprint of speculative decoding to determine a lower bound on the required memory budget while retaining speedup. SpecMemo empirically acquires a careful balance between minimizing redundant memory allocations for rejected candidate tokens and maintaining competitive performance gains from speculation. Notably, with SpecMemo's memory management, we maintain 96% of overall throughput from speculative decoding on MT-Bench, with reduced generation-memory by 65% on single Nvidia Titan RTX. Given multiple constrained GPUs, we build on top of previous speculative decoding architectures to facilitate big-model inference by distributing Llama-2-70B-Chat model, on which we provide novel batched speculative decoding to increase usability of multiple small server GPUs. This novel framework demonstrates 2x speedup over distributed and batched vanilla decoding with the base model on eight AMD MI250 GPUs. Moreover, inference throughput increases remarkably 8x with batch size 10. Our work contributes to democratized LLM applications in resource-constrained environments, providing a pathway for faster and cheaper deployment of real-world LLM applications with robust performance.

  • 2 authors
·
May 16

S-LoRA: Serving Thousands of Concurrent LoRA Adapters

The "pretrain-then-finetune" paradigm is commonly adopted in the deployment of large language models. Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is often employed to adapt a base model to a multitude of tasks, resulting in a substantial collection of LoRA adapters derived from one base model. We observe that this paradigm presents significant opportunities for batched inference during serving. To capitalize on these opportunities, we present S-LoRA, a system designed for the scalable serving of many LoRA adapters. S-LoRA stores all adapters in the main memory and fetches the adapters used by the currently running queries to the GPU memory. To efficiently use the GPU memory and reduce fragmentation, S-LoRA proposes Unified Paging. Unified Paging uses a unified memory pool to manage dynamic adapter weights with different ranks and KV cache tensors with varying sequence lengths. Additionally, S-LoRA employs a novel tensor parallelism strategy and highly optimized custom CUDA kernels for heterogeneous batching of LoRA computation. Collectively, these features enable S-LoRA to serve thousands of LoRA adapters on a single GPU or across multiple GPUs with a small overhead. Compared to state-of-the-art libraries such as HuggingFace PEFT and vLLM (with naive support of LoRA serving), S-LoRA can improve the throughput by up to 4 times and increase the number of served adapters by several orders of magnitude. As a result, S-LoRA enables scalable serving of many task-specific fine-tuned models and offers the potential for large-scale customized fine-tuning services.

  • 12 authors
·
Nov 6, 2023 2