new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

HyMAD: A Hybrid Multi-Activity Detection Approach for Border Surveillance and Monitoring

Seismic sensing has emerged as a promising solution for border surveillance and monitoring; the seismic sensors that are often buried underground are small and cannot be noticed easily, making them difficult for intruders to detect, avoid, or vandalize. This significantly enhances their effectiveness compared to highly visible cameras or fences. However, accurately detecting and distinguishing between overlapping activities that are happening simultaneously, such as human intrusions, animal movements, and vehicle rumbling, remains a major challenge due to the complex and noisy nature of seismic signals. Correctly identifying simultaneous activities is critical because failing to separate them can lead to misclassification, missed detections, and an incomplete understanding of the situation, thereby reducing the reliability of surveillance systems. To tackle this problem, we propose HyMAD (Hybrid Multi-Activity Detection), a deep neural architecture based on spatio-temporal feature fusion. The framework integrates spectral features extracted with SincNet and temporal dependencies modeled by a recurrent neural network (RNN). In addition, HyMAD employs self-attention layers to strengthen intra-modal representations and a cross-modal fusion module to achieve robust multi-label classification of seismic events. e evaluate our approach on a dataset constructed from real-world field recordings collected in the context of border surveillance and monitoring, demonstrating its ability to generalize to complex, simultaneous activity scenarios involving humans, animals, and vehicles. Our method achieves competitive performance and offers a modular framework for extending seismic-based activity recognition in real-world security applications.

  • 3 authors
·
Nov 18

HyMamba: Mamba with Hybrid Geometry-Feature Coupling for Efficient Point Cloud Classification

Point cloud classification is one of the essential technologies for achieving intelligent perception of 3D environments by machines, its core challenge is to efficiently extract local and global features. Mamba leverages state space models (SSMs) for global point cloud modeling. Although prior Mamba-based point cloud processing methods pay attention to the limitation of its flattened sequence modeling mechanism in fusing local and global features, the critical issue of weakened local geometric relevance caused by decoupling geometric structures and features in the input patches remains not fully revealed, and both jointly limit local feature extraction. Therefore, we propose HyMamba, a geometry and feature coupled Mamba framework featuring: (1) Geometry-Feature Coupled Pooling (GFCP), which achieves physically interpretable geometric information coupling by dynamically aggregating adjacent geometric information into local features; (2) Collaborative Feature Enhancer (CoFE), which enhances sparse signal capture through cross-path feature hybridization while effectively integrating global and local contexts. We conducted extensive experiments on ModelNet40 and ScanObjectNN datasets. The results demonstrate that the proposed model achieves superior classification performance, particularly on the ModelNet40, where it elevates accuracy to 95.99% with merely 0.03M additional parameters. Furthermore, it attains 98.9% accuracy on the ModelNetFewShot dataset, validating its robust generalization capabilities under sparse samples. Our code and weights are available at https://github.com/L1277471578/HyMamba

  • 5 authors
·
May 16

PECCARY: A novel approach for characterizing orbital complexity, stochasticity, and regularity

Permutation Entropy and statistiCal Complexity Analysis for astRophYsics (PECCARY) is a computationally inexpensive, statistical method by which any time-series can be characterized as predominantly regular, complex, or stochastic. Elements of the PECCARY method have been used in a variety of physical, biological, economic, and mathematical scenarios, but have not yet gained traction in the astrophysical community. This study introduces the PECCARY technique with the specific aims to motivate its use in and optimize it for the analysis of astrophysical orbital systems. PECCARY works by decomposing a time-dependent measure, such as the x-coordinate or orbital angular momentum time-series, into ordinal patterns. Due to its unique approach and statistical nature, PECCARY is well-suited for detecting preferred and forbidden patterns (a signature of chaos), even when the chaotic behavior is short-lived or when working with a relatively short duration time-series or small sets of time-series data. A variety of examples are used to demonstrate the capabilities of PECCARY. These include mathematical examples (sine waves, varieties of noise, sums of sine waves, well-known chaotic functions), a double pendulum system, and astrophysical tracer particle simulations with potentials of varying intricacies. Since the adopted timescale used to diagnose a given time-series can affect the outcome, a method is presented to identify an ideal sampling scheme, constrained by the overall duration and the natural timescale of the system. The accompanying PECCARY Python package and its usage are discussed.

  • 3 authors
·
Jul 16, 2024