new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Verifying International Agreements on AI: Six Layers of Verification for Rules on Large-Scale AI Development and Deployment

The risks of frontier AI may require international cooperation, which in turn may require verification: checking that all parties follow agreed-on rules. For instance, states might need to verify that powerful AI models are widely deployed only after their risks to international security have been evaluated and deemed manageable. However, research on AI verification could benefit from greater clarity and detail. To address this, this report provides an in-depth overview of AI verification, intended for both policy professionals and technical researchers. We present novel conceptual frameworks, detailed implementation options, and key R&D challenges. These draw on existing literature, expert interviews, and original analysis, all within the scope of confidentially overseeing AI development and deployment that uses thousands of high-end AI chips. We find that states could eventually verify compliance by using six largely independent verification approaches with substantial redundancy: (1) built-in security features in AI chips; (2-3) separate monitoring devices attached to AI chips; and (4-6) personnel-based mechanisms, such as whistleblower programs. While promising, these approaches require guardrails to protect against abuse and power concentration, and many of these technologies have yet to be built or stress-tested. To enable states to confidently verify compliance with rules on large-scale AI development and deployment, the R&D challenges we list need significant progress.

  • 5 authors
·
Jul 21, 2025

In Which Areas of Technical AI Safety Could Geopolitical Rivals Cooperate?

International cooperation is common in AI research, including between geopolitical rivals. While many experts advocate for greater international cooperation on AI safety to address shared global risks, some view cooperation on AI with suspicion, arguing that it can pose unacceptable risks to national security. However, the extent to which cooperation on AI safety poses such risks, as well as provides benefits, depends on the specific area of cooperation. In this paper, we consider technical factors that impact the risks of international cooperation on AI safety research, focusing on the degree to which such cooperation can advance dangerous capabilities, result in the sharing of sensitive information, or provide opportunities for harm. We begin by why nations historically cooperate on strategic technologies and analyse current US-China cooperation in AI as a case study. We further argue that existing frameworks for managing associated risks can be supplemented with consideration of key risks specific to cooperation on technical AI safety research. Through our analysis, we find that research into AI verification mechanisms and shared protocols may be suitable areas for such cooperation. Through this analysis we aim to help researchers and governments identify and mitigate the risks of international cooperation on AI safety research, so that the benefits of cooperation can be fully realised.

  • 22 authors
·
Apr 17, 2025

International Institutions for Advanced AI

International institutions may have an important role to play in ensuring advanced AI systems benefit humanity. International collaborations can unlock AI's ability to further sustainable development, and coordination of regulatory efforts can reduce obstacles to innovation and the spread of benefits. Conversely, the potential dangerous capabilities of powerful and general-purpose AI systems create global externalities in their development and deployment, and international efforts to further responsible AI practices could help manage the risks they pose. This paper identifies a set of governance functions that could be performed at an international level to address these challenges, ranging from supporting access to frontier AI systems to setting international safety standards. It groups these functions into four institutional models that exhibit internal synergies and have precedents in existing organizations: 1) a Commission on Frontier AI that facilitates expert consensus on opportunities and risks from advanced AI, 2) an Advanced AI Governance Organization that sets international standards to manage global threats from advanced models, supports their implementation, and possibly monitors compliance with a future governance regime, 3) a Frontier AI Collaborative that promotes access to cutting-edge AI, and 4) an AI Safety Project that brings together leading researchers and engineers to further AI safety research. We explore the utility of these models and identify open questions about their viability.

  • 11 authors
·
Jul 10, 2023