Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMMC: Iterative Refinement of VLM Reasoning via MCTS-based Multimodal Critique
Visual language models (VLMs) have demonstrated strong performance across diverse multimodal reasoning tasks but still face challenges such as hallucinations, resulting in incorrect reasoning outcomes. Inspired by recent research on external feedback mechanisms in large language models (LLMs), we propose a multimodal actor-critic framework to enhance VLM reasoning capabilities. Specifically, the actor model generates step-by-step reasoning paths based on image and text inputs, while the critic model evaluates these reasoning paths and provides corrective feedback. The actor model iteratively refines its reasoning based on the feedback until the reasoning outcome is deemed satisfactory by the critic model. To reduce reliance on costly manual annotations, we introduce an automated method for constructing multimodal critique datasets. By leveraging Monte Carlo Tree Search (MCTS), we systematically guide the actor model to explore diverse reasoning paths. To obtain critique data for correcting erroneous reasoning steps, we prompt an annotator model to compare pairs of reasoning paths diverging from a shared ancestor node - one leading to a correct conclusion and the other to an incorrect one. This approach enables us to construct the MMC (MCTS-based Multimodal Critique) dataset, upon which we further develop a comprehensive training and inference pipeline. Extensive experiments conducted on several public benchmark datasets and mainstream VLMs demonstrate that our approach significantly improves the performance of VLM on complex multimodal reasoning tasks, underscoring its effectiveness and wide applicability.
MMCOMPOSITION: Revisiting the Compositionality of Pre-trained Vision-Language Models
The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal understanding, enabling more sophisticated and accurate integration of visual and textual information across various tasks, including image and video captioning, visual question answering, and cross-modal retrieval. Despite VLMs' superior capabilities, researchers lack a comprehensive understanding of their compositionality -- the ability to understand and produce novel combinations of known visual and textual components. Prior benchmarks provide only a relatively rough compositionality evaluation from the perspectives of objects, relations, and attributes while neglecting deeper reasoning about object interactions, counting, and complex compositions. However, compositionality is a critical ability that facilitates coherent reasoning and understanding across modalities for VLMs. To address this limitation, we propose MMCOMPOSITION, a novel human-annotated benchmark for comprehensively and accurately evaluating VLMs' compositionality. Our proposed benchmark serves as a complement to these earlier works. With MMCOMPOSITION, we can quantify and explore the compositionality of the mainstream VLMs. Surprisingly, we find GPT-4o's compositionality inferior to the best open-source model, and we analyze the underlying reasons. Our experimental analysis reveals the limitations of VLMs in fine-grained compositional perception and reasoning, and points to areas for improvement in VLM design and training. Resources available at: https://hanghuacs.github.io/MMComposition/
MMCode: Evaluating Multi-Modal Code Large Language Models with Visually Rich Programming Problems
Programming often involves converting detailed and complex specifications into code, a process during which developers typically utilize visual aids to more effectively convey concepts. While recent developments in Large Multimodal Models have demonstrated remarkable abilities in visual reasoning and mathematical tasks, there is little work on investigating whether these models can effectively interpret visual elements for code generation. To this end, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic problem-solving skills in visually rich contexts. MMCode contains 3,548 questions and 6,620 images collected from real-world programming challenges harvested from 10 code competition websites, presenting significant challenges due to the extreme demand for reasoning abilities. Our experiment results show that current state-of-the-art models struggle to solve these problems. The results highlight the lack of powerful vision-code models, and we hope MMCode can serve as an inspiration for future works in this domain. The data and code are publicly available at https://github.com/happylkx/MMCode.
MMCR: Benchmarking Cross-Source Reasoning in Scientific Papers
Fully comprehending scientific papers by machines reflects a high level of Artificial General Intelligence, requiring the ability to reason across fragmented and heterogeneous sources of information, presenting a complex and practically significant challenge. While Vision-Language Models (VLMs) have made remarkable strides in various tasks, particularly those involving reasoning with evidence source from single image or text page, their ability to use cross-source information for reasoning remains an open problem. This work presents MMCR, a high-difficulty benchmark designed to evaluate VLMs' capacity for reasoning with cross-source information from scientific papers. The benchmark comprises 276 high-quality questions, meticulously annotated by humans across 7 subjects and 10 task types. Experiments with 18 VLMs demonstrate that cross-source reasoning presents a substantial challenge for existing models. Notably, even the top-performing model, GPT-4o, achieved only 48.55% overall accuracy, with only 20% accuracy in multi-table comprehension tasks, while the second-best model, Qwen2.5-VL-72B, reached 39.86% overall accuracy. Furthermore, we investigated the impact of the Chain-of-Thought (CoT) technique on cross-source reasoning and observed a detrimental effect on small models, whereas larger models demonstrated substantially enhanced performance. These results highlight the pressing need to develop VLMs capable of effectively utilizing cross-source information for reasoning.
MMCircuitEval: A Comprehensive Multimodal Circuit-Focused Benchmark for Evaluating LLMs
The emergence of multimodal large language models (MLLMs) presents promising opportunities for automation and enhancement in Electronic Design Automation (EDA). However, comprehensively evaluating these models in circuit design remains challenging due to the narrow scope of existing benchmarks. To bridge this gap, we introduce MMCircuitEval, the first multimodal benchmark specifically designed to assess MLLM performance comprehensively across diverse EDA tasks. MMCircuitEval comprises 3614 meticulously curated question-answer (QA) pairs spanning digital and analog circuits across critical EDA stages - ranging from general knowledge and specifications to front-end and back-end design. Derived from textbooks, technical question banks, datasheets, and real-world documentation, each QA pair undergoes rigorous expert review for accuracy and relevance. Our benchmark uniquely categorizes questions by design stage, circuit type, tested abilities (knowledge, comprehension, reasoning, computation), and difficulty level, enabling detailed analysis of model capabilities and limitations. Extensive evaluations reveal significant performance gaps among existing LLMs, particularly in back-end design and complex computations, highlighting the critical need for targeted training datasets and modeling approaches. MMCircuitEval provides a foundational resource for advancing MLLMs in EDA, facilitating their integration into real-world circuit design workflows. Our benchmark is available at https://github.com/cure-lab/MMCircuitEval.
MMCR: Advancing Visual Language Model in Multimodal Multi-Turn Contextual Reasoning
Compared to single-turn dialogue, multi-turn dialogue involving multiple images better aligns with the needs of real-world human-AI interactions. Additionally, as training data, it provides richer contextual reasoning information, thereby guiding the model to achieve better performance. However, existing vision-language models (VLMs) primarily rely on single-turn dialogue training and evaluation benchmarks. In this paper, following the characteristics of human dialogue, such as focused topics and concise, clear content, we present MMCR (Multimodal Multi-turn Contextual Reasoning), a novel dataset comprising: (1) MMCR-310k -- the largest multi-image multi-turn instruction tuning dataset with 310K contextual dialogues, each covering 1-4 images and 4 or 8 dialogue turns; and (2) MMCR-Bench -- a diagnostic benchmark featuring dialogues, spanning 8 domains (Humanities, Natural, Science, Education, etc.) and 40 sub-topics. Extensive evaluations demonstrate that models fine-tuned with MMCR-310k achieve 5.2\% higher contextual accuracy on MMCR-Bench, while showing consistent improvements on existing benchmarks (+1.1\% on AI2D, +1.2\% on MMMU and MMVet). MMCR and prompt engineering will be released publicly.
MMCTAgent: Multi-modal Critical Thinking Agent Framework for Complex Visual Reasoning
Recent advancements in Multi-modal Large Language Models (MLLMs) have significantly improved their performance in tasks combining vision and language. However, challenges persist in detailed multi-modal understanding, comprehension of complex tasks, and reasoning over multi-modal information. This paper introduces MMCTAgent, a novel multi-modal critical thinking agent framework designed to address the inherent limitations of current MLLMs in complex visual reasoning tasks. Inspired by human cognitive processes and critical thinking, MMCTAgent iteratively analyzes multi-modal information, decomposes queries, plans strategies, and dynamically evolves its reasoning. Additionally, MMCTAgent incorporates critical thinking elements such as verification of final answers and self-reflection through a novel approach that defines a vision-based critic and identifies task-specific evaluation criteria, thereby enhancing its decision-making abilities. Through rigorous evaluations across various image and video understanding benchmarks, we demonstrate that MMCTAgent (with and without the critic) outperforms both foundational MLLMs and other tool-augmented pipelines.
MMCBE: Multi-modality Dataset for Crop Biomass Estimation and Beyond
Crop biomass, a critical indicator of plant growth, health, and productivity, is invaluable for crop breeding programs and agronomic research. However, the accurate and scalable quantification of crop biomass remains inaccessible due to limitations in existing measurement methods. One of the obstacles impeding the advancement of current crop biomass prediction methodologies is the scarcity of publicly available datasets. Addressing this gap, we introduce a new dataset in this domain, i.e. Multi-modality dataset for crop biomass estimation (MMCBE). Comprising 216 sets of multi-view drone images, coupled with LiDAR point clouds, and hand-labelled ground truth, MMCBE represents the first multi-modality one in the field. This dataset aims to establish benchmark methods for crop biomass quantification and foster the development of vision-based approaches. We have rigorously evaluated state-of-the-art crop biomass estimation methods using MMCBE and ventured into additional potential applications, such as 3D crop reconstruction from drone imagery and novel-view rendering. With this publication, we are making our comprehensive dataset available to the broader community.
MMCert: Provable Defense against Adversarial Attacks to Multi-modal Models
Different from a unimodal model whose input is from a single modality, the input (called multi-modal input) of a multi-modal model is from multiple modalities such as image, 3D points, audio, text, etc. Similar to unimodal models, many existing studies show that a multi-modal model is also vulnerable to adversarial perturbation, where an attacker could add small perturbation to all modalities of a multi-modal input such that the multi-modal model makes incorrect predictions for it. Existing certified defenses are mostly designed for unimodal models, which achieve sub-optimal certified robustness guarantees when extended to multi-modal models as shown in our experimental results. In our work, we propose MMCert, the first certified defense against adversarial attacks to a multi-modal model. We derive a lower bound on the performance of our MMCert under arbitrary adversarial attacks with bounded perturbations to both modalities (e.g., in the context of auto-driving, we bound the number of changed pixels in both RGB image and depth image). We evaluate our MMCert using two benchmark datasets: one for the multi-modal road segmentation task and the other for the multi-modal emotion recognition task. Moreover, we compare our MMCert with a state-of-the-art certified defense extended from unimodal models. Our experimental results show that our MMCert outperforms the baseline.
MMChat: Multi-Modal Chat Dataset on Social Media
Incorporating multi-modal contexts in conversation is important for developing more engaging dialogue systems. In this work, we explore this direction by introducing MMChat: a large-scale Chinese multi-modal dialogue corpus (32.4M raw dialogues and 120.84K filtered dialogues). Unlike previous corpora that are crowd-sourced or collected from fictitious movies, MMChat contains image-grounded dialogues collected from real conversations on social media, in which the sparsity issue is observed. Specifically, image-initiated dialogues in common communications may deviate to some non-image-grounded topics as the conversation proceeds. To better investigate this issue, we manually annotate 100K dialogues from MMChat and further filter the corpus accordingly, which yields MMChat-hf. We develop a benchmark model to address the sparsity issue in dialogue generation tasks by adapting the attention routing mechanism on image features. Experiments demonstrate the usefulness of incorporating image features and the effectiveness of handling the sparsity of image features.
Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding
Multi-modal multi-party conversation (MMC) is a less studied yet important topic of research due to that it well fits real-world scenarios and thus potentially has more widely-used applications. Compared with the traditional multi-modal conversations, MMC requires stronger character-centered understanding abilities as there are many interlocutors appearing in both the visual and textual context. To facilitate the study of this problem, we present Friends-MMC in this paper, an MMC dataset that contains 24,000+ unique utterances paired with video context. To explore the character-centered understanding of the dialogue, we also annotate the speaker of each utterance, the names and bounding bboxes of faces that appear in the video. Based on this Friends-MMC dataset, we further study two fundamental MMC tasks: conversation speaker identification and conversation response prediction, both of which have the multi-party nature with the video or image as visual context. For conversation speaker identification, we demonstrate the inefficiencies of existing methods such as pre-trained models, and propose a simple yet effective baseline method that leverages an optimization solver to utilize the context of two modalities to achieve better performance. For conversation response prediction, we fine-tune generative dialogue models on Friend-MMC, and analyze the benefits of speaker information. The code and dataset is publicly available at https://github.com/yellow-binary-tree/Friends-MMC and thus we call for more attention on modeling speaker information when understanding conversations.
