- NISQA: A Deep CNN-Self-Attention Model for Multidimensional Speech Quality Prediction with Crowdsourced Datasets In this paper, we present an update to the NISQA speech quality prediction model that is focused on distortions that occur in communication networks. In contrast to the previous version, the model is trained end-to-end and the time-dependency modelling and time-pooling is achieved through a Self-Attention mechanism. Besides overall speech quality, the model also predicts the four speech quality dimensions Noisiness, Coloration, Discontinuity, and Loudness, and in this way gives more insight into the cause of a quality degradation. Furthermore, new datasets with over 13,000 speech files were created for training and validation of the model. The model was finally tested on a new, live-talking test dataset that contains recordings of real telephone calls. Overall, NISQA was trained and evaluated on 81 datasets from different sources and showed to provide reliable predictions also for unknown speech samples. The code, model weights, and datasets are open-sourced. 4 authors · Apr 19, 2021
1 MosaiQ: Quantum Generative Adversarial Networks for Image Generation on NISQ Computers Quantum machine learning and vision have come to the fore recently, with hardware advances enabling rapid advancement in the capabilities of quantum machines. Recently, quantum image generation has been explored with many potential advantages over non-quantum techniques; however, previous techniques have suffered from poor quality and robustness. To address these problems, we introduce, MosaiQ, a high-quality quantum image generation GAN framework that can be executed on today's Near-term Intermediate Scale Quantum (NISQ) computers. 6 authors · Aug 21, 2023
1 Improved FRQI on superconducting processors and its restrictions in the NISQ era In image processing, the amount of data to be processed grows rapidly, in particular when imaging methods yield images of more than two dimensions or time series of images. Thus, efficient processing is a challenge, as data sizes may push even supercomputers to their limits. Quantum image processing promises to encode images with logarithmically less qubits than classical pixels in the image. In theory, this is a huge progress, but so far not many experiments have been conducted in practice, in particular on real backends. Often, the precise conversion of classical data to quantum states, the exact implementation, and the interpretation of the measurements in the classical context are challenging. We investigate these practical questions in this paper. In particular, we study the feasibility of the Flexible Representation of Quantum Images (FRQI). Furthermore, we check experimentally what is the limit in the current noisy intermediate-scale quantum era, i.e. up to which image size an image can be encoded, both on simulators and on real backends. Finally, we propose a method for simplifying the circuits needed for the FRQI. With our alteration, the number of gates needed, especially of the error-prone controlled-NOT gates, can be reduced. As a consequence, the size of manageable images increases. 4 authors · Oct 29, 2021
2 Bridging Theory and Practice in Quantum Game Theory: Optimized Implementation of the Battle of the Sexes with Error Mitigation on NISQ Hardware Implementing quantum game theory on real hardware is challenging due to noise, decoherence, and limited qubit connectivity, yet such demonstrations are essential to validate theoretical predictions. We present one of the first full experimental realizations of the Battle of the Sexes game under the Eisert-Wilkens-Lewenstein (EWL) framework on IBM Quantum's ibm sherbrooke superconducting processor. Four quantum strategies (I, H, R(pi/4), R(pi)) were evaluated across 31 entanglement values gamma in [0, pi] using 2048 shots per configuration, enabling a direct comparison between analytical predictions and hardware execution. To mitigate noise and variability, we introduce a Guided Circuit Mapping (GCM) method that dynamically selects qubit pairs and optimizes routing based on real-time topology and calibration data. The analytical model forecasts up to 108% payoff improvement over the classical equilibrium, and despite hardware-induced deviations, experimental results with GCM preserve the expected payoff trends within 3.5%-12% relative error. These findings show that quantum advantages in strategic coordination can persist under realistic NISQ conditions, providing a pathway toward practical applications of quantum game theory in multi-agent, economic, and distributed decision-making systems. 5 authors · Aug 12 2
1 Quantum circuit synthesis of Bell and GHZ states using projective simulation in the NISQ era Quantum Computing has been evolving in the last years. Although nowadays quantum algorithms performance has shown superior to their classical counterparts, quantum decoherence and additional auxiliary qubits needed for error tolerance routines have been huge barriers for quantum algorithms efficient use. These restrictions lead us to search for ways to minimize algorithms costs, i.e the number of quantum logical gates and the depth of the circuit. For this, quantum circuit synthesis and quantum circuit optimization techniques are explored. We studied the viability of using Projective Simulation, a reinforcement learning technique, to tackle the problem of quantum circuit synthesis for noise quantum computers with limited number of qubits. The agent had the task of creating quantum circuits up to 5 qubits to generate GHZ states in the IBM Tenerife (IBM QX4) quantum processor. Our simulations demonstrated that the agent had a good performance but its capacity for learning new circuits decreased as the number of qubits increased. 4 authors · Apr 27, 2021