Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSortformer: Seamless Integration of Speaker Diarization and ASR by Bridging Timestamps and Tokens
We propose Sortformer, a novel neural model for speaker diarization, trained with unconventional objectives compared to existing end-to-end diarization models. The permutation problem in speaker diarization has long been regarded as a critical challenge. Most prior end-to-end diarization systems employ permutation invariant loss (PIL), which optimizes for the permutation that yields the lowest error. In contrast, we introduce Sort Loss, which enables a diarization model to autonomously resolve permutation, with or without PIL. We demonstrate that combining Sort Loss and PIL achieves performance competitive with state-of-the-art end-to-end diarization models trained exclusively with PIL. Crucially, we present a streamlined multispeaker ASR architecture that leverages Sortformer as a speaker supervision model, embedding speaker label estimation within the ASR encoder state using a sinusoidal kernel function. This approach resolves the speaker permutation problem through sorted objectives, effectively bridging speaker-label timestamps and speaker tokens. In our experiments, we show that the proposed multispeaker ASR architecture, enhanced with speaker supervision, improves performance via adapter techniques. Code and trained models will be made publicly available via the NVIDIA NeMo framework
nach0: Multimodal Natural and Chemical Languages Foundation Model
Large Language Models (LLMs) have substantially driven scientific progress in various domains, and many papers have demonstrated their ability to tackle complex problems with creative solutions. Our paper introduces a new foundation model, nach0, capable of solving various chemical and biological tasks: biomedical question answering, named entity recognition, molecular generation, molecular synthesis, attributes prediction, and others. nach0 is a multi-domain and multi-task encoder-decoder LLM pre-trained on unlabeled text from scientific literature, patents, and molecule strings to incorporate a range of chemical and linguistic knowledge. We employed instruction tuning, where specific task-related instructions are utilized to fine-tune nach0 for the final set of tasks. To train nach0 effectively, we leverage the NeMo framework, enabling efficient parallel optimization of both base and large model versions. Extensive experiments demonstrate that our model outperforms state-of-the-art baselines on single-domain and cross-domain tasks. Furthermore, it can generate high-quality outputs in molecular and textual formats, showcasing its effectiveness in multi-domain setups.
Generative Speech Foundation Model Pretraining for High-Quality Speech Extraction and Restoration
This paper proposes a generative pretraining foundation model for high-quality speech restoration tasks. By directly operating on complex-valued short-time Fourier transform coefficients, our model does not rely on any vocoders for time-domain signal reconstruction. As a result, our model simplifies the synthesis process and removes the quality upper-bound introduced by any mel-spectrogram vocoder compared to prior work SpeechFlow. The proposed method is evaluated on multiple speech restoration tasks, including speech denoising, bandwidth extension, codec artifact removal, and target speaker extraction. In all scenarios, finetuning our pretrained model results in superior performance over strong baselines. Notably, in the target speaker extraction task, our model outperforms existing systems, including those leveraging SSL-pretrained encoders like WavLM. The code and the pretrained checkpoints are publicly available in the NVIDIA NeMo framework.
NeMo Guardrails: A Toolkit for Controllable and Safe LLM Applications with Programmable Rails
NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems. Guardrails (or rails for short) are a specific way of controlling the output of an LLM, such as not talking about topics considered harmful, following a predefined dialogue path, using a particular language style, and more. There are several mechanisms that allow LLM providers and developers to add guardrails that are embedded into a specific model at training, e.g. using model alignment. Differently, using a runtime inspired from dialogue management, NeMo Guardrails allows developers to add programmable rails to LLM applications - these are user-defined, independent of the underlying LLM, and interpretable. Our initial results show that the proposed approach can be used with several LLM providers to develop controllable and safe LLM applications using programmable rails.
NeMo: a toolkit for building AI applications using Neural Modules
NeMo (Neural Modules) is a Python framework-agnostic toolkit for creating AI applications through re-usability, abstraction, and composition. NeMo is built around neural modules, conceptual blocks of neural networks that take typed inputs and produce typed outputs. Such modules typically represent data layers, encoders, decoders, language models, loss functions, or methods of combining activations. NeMo makes it easy to combine and re-use these building blocks while providing a level of semantic correctness checking via its neural type system. The toolkit comes with extendable collections of pre-built modules for automatic speech recognition and natural language processing. Furthermore, NeMo provides built-in support for distributed training and mixed precision on latest NVIDIA GPUs. NeMo is open-source https://github.com/NVIDIA/NeMo
X-NeMo: Expressive Neural Motion Reenactment via Disentangled Latent Attention
We propose X-NeMo, a novel zero-shot diffusion-based portrait animation pipeline that animates a static portrait using facial movements from a driving video of a different individual. Our work first identifies the root causes of the key issues in prior approaches, such as identity leakage and difficulty in capturing subtle and extreme expressions. To address these challenges, we introduce a fully end-to-end training framework that distills a 1D identity-agnostic latent motion descriptor from driving image, effectively controlling motion through cross-attention during image generation. Our implicit motion descriptor captures expressive facial motion in fine detail, learned end-to-end from a diverse video dataset without reliance on pretrained motion detectors. We further enhance expressiveness and disentangle motion latents from identity cues by supervising their learning with a dual GAN decoder, alongside spatial and color augmentations. By embedding the driving motion into a 1D latent vector and controlling motion via cross-attention rather than additive spatial guidance, our design eliminates the transmission of spatial-aligned structural clues from the driving condition to the diffusion backbone, substantially mitigating identity leakage. Extensive experiments demonstrate that X-NeMo surpasses state-of-the-art baselines, producing highly expressive animations with superior identity resemblance. Our code and models are available for research.
DynamicFace: High-Quality and Consistent Face Swapping for Image and Video using Composable 3D Facial Priors
Face swapping transfers the identity of a source face to a target face while retaining the attributes like expression, pose, hair, and background of the target face. Advanced face swapping methods have achieved attractive results. However, these methods often inadvertently transfer identity information from the target face, compromising expression-related details and accurate identity. We propose a novel method DynamicFace that leverages the power of diffusion models and plug-and-play adaptive attention layers for image and video face swapping. First, we introduce four fine-grained facial conditions using 3D facial priors. All conditions are designed to be disentangled from each other for precise and unique control. Then, we adopt Face Former and ReferenceNet for high-level and detailed identity injection. Through experiments on the FF++ dataset, we demonstrate that our method achieves state-of-the-art results in face swapping, showcasing superior image quality, identity preservation, and expression accuracy. Our framework seamlessly adapts to both image and video domains. Our code and results will be available on the project page: https://dynamic-face.github.io/
CQ-DINO: Mitigating Gradient Dilution via Category Queries for Vast Vocabulary Object Detection
With the exponential growth of data, traditional object detection methods are increasingly struggling to handle vast vocabulary object detection tasks effectively. We analyze two key limitations of classification-based detectors: positive gradient dilution, where rare positive categories receive insufficient learning signals, and hard negative gradient dilution, where discriminative gradients are overwhelmed by numerous easy negatives. To address these challenges, we propose CQ-DINO, a category query-based object detection framework that reformulates classification as a contrastive task between object queries and learnable category queries. Our method introduces image-guided query selection, which reduces the negative space by adaptively retrieving top-K relevant categories per image via cross-attention, thereby rebalancing gradient distributions and facilitating implicit hard example mining. Furthermore, CQ-DINO flexibly integrates explicit hierarchical category relationships in structured datasets (e.g., V3Det) or learns implicit category correlations via self-attention in generic datasets (e.g., COCO). Experiments demonstrate that CQ-DINO achieves superior performance on the challenging V3Det benchmark (surpassing previous methods by 2.1% AP) while maintaining competitiveness in COCO. Our work provides a scalable solution for real-world detection systems requiring wide category coverage. The code is publicly at https://github.com/RedAIGC/CQ-DINO.
Training Video Foundation Models with NVIDIA NeMo
Video Foundation Models (VFMs) have recently been used to simulate the real world to train physical AI systems and develop creative visual experiences. However, there are significant challenges in training large-scale, high quality VFMs that can generate high-quality videos. We present a scalable, open-source VFM training pipeline with NVIDIA NeMo, providing accelerated video dataset curation, multimodal data loading, and parallelized video diffusion model training and inference. We also provide a comprehensive performance analysis highlighting best practices for efficient VFM training and inference.
Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning
With the advance of text-to-image models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. Subsequently, there is a great demand for image animation techniques to further combine generated static images with motion dynamics. In this report, we propose a practical framework to animate most of the existing personalized text-to-image models once and for all, saving efforts in model-specific tuning. At the core of the proposed framework is to insert a newly initialized motion modeling module into the frozen text-to-image model and train it on video clips to distill reasonable motion priors. Once trained, by simply injecting this motion modeling module, all personalized versions derived from the same base T2I readily become text-driven models that produce diverse and personalized animated images. We conduct our evaluation on several public representative personalized text-to-image models across anime pictures and realistic photographs, and demonstrate that our proposed framework helps these models generate temporally smooth animation clips while preserving the domain and diversity of their outputs. Code and pre-trained weights will be publicly available at https://animatediff.github.io/ .
The Science of Evaluating Foundation Models
The emergent phenomena of large foundation models have revolutionized natural language processing. However, evaluating these models presents significant challenges due to their size, capabilities, and deployment across diverse applications. Existing literature often focuses on individual aspects, such as benchmark performance or specific tasks, but fails to provide a cohesive process that integrates the nuances of diverse use cases with broader ethical and operational considerations. This work focuses on three key aspects: (1) Formalizing the Evaluation Process by providing a structured framework tailored to specific use-case contexts, (2) Offering Actionable Tools and Frameworks such as checklists and templates to ensure thorough, reproducible, and practical evaluations, and (3) Surveying Recent Work with a targeted review of advancements in LLM evaluation, emphasizing real-world applications.
RDMM: Fine-Tuned LLM Models for On-Device Robotic Decision Making with Enhanced Contextual Awareness in Specific Domains
Large language models (LLMs) represent a significant advancement in integrating physical robots with AI-driven systems. We showcase the capabilities of our framework within the context of the real-world household competition. This research introduces a framework that utilizes RDMM (Robotics Decision-Making Models), which possess the capacity for decision-making within domain-specific contexts, as well as an awareness of their personal knowledge and capabilities. The framework leverages information to enhance the autonomous decision-making of the system. In contrast to other approaches, our focus is on real-time, on-device solutions, successfully operating on hardware with as little as 8GB of memory. Our framework incorporates visual perception models equipping robots with understanding of their environment. Additionally, the framework has integrated real-time speech recognition capabilities, thus enhancing the human-robot interaction experience. Experimental results demonstrate that the RDMM framework can plan with an 93\% accuracy. Furthermore, we introduce a new dataset consisting of 27k planning instances, as well as 1.3k text-image annotated samples derived from the competition. The framework, benchmarks, datasets, and models developed in this work are publicly available on our GitHub repository at https://github.com/shadynasrat/RDMM.
VeOmni: Scaling Any Modality Model Training with Model-Centric Distributed Recipe Zoo
Recent advances in large language models (LLMs) have driven impressive progress in omni-modal understanding and generation. However, training omni-modal LLMs remains a significant challenge due to the heterogeneous model architectures required to process diverse modalities, necessitating sophisticated system design for efficient large-scale training. Existing frameworks typically entangle model definition with parallel logic, incurring limited scalability and substantial engineering overhead for end-to-end omni-modal training. % We present \veomni, a modular and efficient training framework to accelerate the development of omni-modal LLMs. \veomni introduces model-centric distributed recipes that decouples communication from computation, enabling efficient 3D parallelism on omni-modal LLMs. \veomni also features a flexible configuration interface supporting seamless integration of new modalities with minimal code change. % Using \veomni, a omni-modal mixture-of-experts (MoE) model with 30B parameters can be trained with over 2,800 tokens/sec/GPU throughput and scale to 160K context lengths via 3D parallelism on 128 GPUs, showcasing its superior efficiency and scalability for training large omni-modal LLMs.
Octo-planner: On-device Language Model for Planner-Action Agents
AI agents have become increasingly significant in various domains, enabling autonomous decision-making and problem-solving. To function effectively, these agents require a planning process that determines the best course of action and then executes the planned actions. In this paper, we present an efficient on-device Planner-Action framework that separates planning and action execution into two distinct components: a planner agent based on Phi-3 Mini, a 3.8 billion parameter LLM optimized for edge devices, and an action agent using the Octopus model for function execution. The planner agent first responds to user queries by decomposing tasks into a sequence of sub-steps, which are then executed by the action agent. To optimize performance on resource-constrained devices, we employ model fine-tuning instead of in-context learning, reducing computational costs and energy consumption while improving response times. Our approach involves using GPT-4 to generate diverse planning queries and responses based on available functions, with subsequent validations to ensure data quality. We fine-tune the Phi-3 Mini model on this curated dataset, achieving a 97\% success rate in our in-domain test environment. To address multi-domain planning challenges, we developed a multi-LoRA training method that merges weights from LoRAs trained on distinct function subsets. This approach enables flexible handling of complex, multi-domain queries while maintaining computational efficiency on resource-constrained devices. To support further research, we have open-sourced our model weights at https://huggingface.co/NexaAIDev/octopus-planning. For the demo, please refer to https://www.nexa4ai.com/octo-planner.
torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation
While knowledge distillation (transfer) has been attracting attentions from the research community, the recent development in the fields has heightened the need for reproducible studies and highly generalized frameworks to lower barriers to such high-quality, reproducible deep learning research. Several researchers voluntarily published frameworks used in their knowledge distillation studies to help other interested researchers reproduce their original work. Such frameworks, however, are usually neither well generalized nor maintained, thus researchers are still required to write a lot of code to refactor/build on the frameworks for introducing new methods, models, datasets and designing experiments. In this paper, we present our developed open-source framework built on PyTorch and dedicated for knowledge distillation studies. The framework is designed to enable users to design experiments by declarative PyYAML configuration files, and helps researchers complete the recently proposed ML Code Completeness Checklist. Using the developed framework, we demonstrate its various efficient training strategies, and implement a variety of knowledge distillation methods. We also reproduce some of their original experimental results on the ImageNet and COCO datasets presented at major machine learning conferences such as ICLR, NeurIPS, CVPR and ECCV, including recent state-of-the-art methods. All the source code, configurations, log files and trained model weights are publicly available at https://github.com/yoshitomo-matsubara/torchdistill .
Benchmarking On-Device Machine Learning on Apple Silicon with MLX
The recent widespread adoption of Large Language Models (LLMs) and machine learning in general has sparked research interest in exploring the possibilities of deploying these models on smaller devices such as laptops and mobile phones. This creates a need for frameworks and approaches that are capable of taking advantage of on-device hardware. The MLX framework was created to address this need. It is a framework optimized for machine learning (ML) computations on Apple silicon devices, facilitating easier research, experimentation, and prototyping. This paper presents a performance evaluation of MLX, focusing on inference latency of transformer models. We compare the performance of different transformer architecture implementations in MLX with their Pytorch counterparts. For this research we create a framework called MLX-transformers which includes different transformer implementations in MLX and downloads the model checkpoints in pytorch and converts it to the MLX format. By leveraging the advanced architecture and capabilities of Apple Silicon, MLX-Transformers enables seamless execution of transformer models directly sourced from Hugging Face, eliminating the need for checkpoint conversion often required when porting models between frameworks. Our study benchmarks different transformer models on two Apple Silicon macbook devices against an NVIDIA CUDA GPU. Specifically, we compare the inference latency performance of models with the same parameter sizes and checkpoints. We evaluate the performance of BERT, RoBERTa, and XLM-RoBERTa models, with the intention of extending future work to include models of different modalities, thus providing a more comprehensive assessment of MLX's capabilities. The results highlight MLX's potential in enabling efficient and more accessible on-device ML applications within Apple's ecosystem.
LLM-KT: A Versatile Framework for Knowledge Transfer from Large Language Models to Collaborative Filtering
We present LLM-KT, a flexible framework designed to enhance collaborative filtering (CF) models by seamlessly integrating LLM (Large Language Model)-generated features. Unlike existing methods that rely on passing LLM-generated features as direct inputs, our framework injects these features into an intermediate layer of any CF model, allowing the model to reconstruct and leverage the embeddings internally. This model-agnostic approach works with a wide range of CF models without requiring architectural changes, making it adaptable to various recommendation scenarios. Our framework is built for easy integration and modification, providing researchers and developers with a powerful tool for extending CF model capabilities through efficient knowledge transfer. We demonstrate its effectiveness through experiments on the MovieLens and Amazon datasets, where it consistently improves baseline CF models. Experimental studies showed that LLM-KT is competitive with the state-of-the-art methods in context-aware settings but can be applied to a broader range of CF models than current approaches.
Mobile-Agent-E: Self-Evolving Mobile Assistant for Complex Tasks
Smartphones have become indispensable in modern life, yet navigating complex tasks on mobile devices often remains frustrating. Recent advancements in large multimodal model (LMM)-based mobile agents have demonstrated the ability to perceive and act in mobile environments. However, current approaches face significant limitations: they fall short in addressing real-world human needs, struggle with reasoning-intensive and long-horizon tasks, and lack mechanisms to learn and improve from prior experiences. To overcome these challenges, we introduce Mobile-Agent-E, a hierarchical multi-agent framework capable of self-evolution through past experience. By hierarchical, we mean an explicit separation of high-level planning and low-level action execution. The framework comprises a Manager, responsible for devising overall plans by breaking down complex tasks into subgoals, and four subordinate agents--Perceptor, Operator, Action Reflector, and Notetaker--which handle fine-grained visual perception, immediate action execution, error verification, and information aggregation, respectively. Mobile-Agent-E also features a novel self-evolution module which maintains a persistent long-term memory comprising Tips and Shortcuts. Tips are general guidance and lessons learned from prior tasks on how to effectively interact with the environment. Shortcuts are reusable, executable sequences of atomic operations tailored for specific subroutines. The inclusion of Tips and Shortcuts facilitates continuous refinement in performance and efficiency. Alongside this framework, we introduce Mobile-Eval-E, a new benchmark featuring complex mobile tasks requiring long-horizon, multi-app interactions. Empirical results show that Mobile-Agent-E achieves a 22% absolute improvement over previous state-of-the-art approaches across three foundation model backbones. Project page: https://x-plug.github.io/MobileAgent.
LoRA-Mixer: Coordinate Modular LoRA Experts Through Serial Attention Routing
Recent efforts to combine low-rank adaptation (LoRA) with mixture-of-experts (MoE) for adapting large language models (LLMs) to multiple tasks still exhibit prevailing limitations: they either swap entire attention/feed-forward layers for switch experts or bolt on parallel expert branches, diluting parameter efficiency and task fidelity. We propose the LoRA-Mixer, a modular and lightweight MoE framework that integrates LoRA experts. Our core innovation lies in replacing the projection matrices of the attention module's input/output linear layers with dynamically routed, task-specific LoRA experts. This design ensures seamless compatibility with diverse foundation models, including transformers and state space models (SSMs), by leveraging their inherent linear projection structures. The framework supports two operational paradigms: (1) joint optimization of LoRA experts and routing mechanisms via a novel hard-soft routing strategy, or (2) direct deployment of pre-trained, frozen LoRA modules sourced from external repositories. To enable robust router training with limited data while ensuring stable routing decisions and maximizing expert reuse, we introduce an adaptive Specialization Balance Loss (SBL) that jointly optimizes expert balance and task-specific alignment. Extensive experiments on seven benchmark datasets, including MedQA, CoLA, SST-2, GSM8K, ARC-E, ARC-C, and HumanEval, demonstrate the effectiveness of LoRA-Mixer. On datasets such as GSM8K, HumanEval, and MedQA, LoRA-Mixer achieves significant improvements of 7.61%, 4.88%, and 3.08% over the base models, respectively. Compared with state-of-the-art methods, LoRA-Mixer achieves additional improvements of 1.09%, 1.45%, and 1.68%, respectively, using only 48% of the parameters, demonstrating its efficiency and strong performance.
Neuro-Symbolic Frameworks: Conceptual Characterization and Empirical Comparative Analysis
Neurosymbolic (NeSy) frameworks combine neural representations and learning with symbolic representations and reasoning. Combining the reasoning capacities, explainability, and interpretability of symbolic processing with the flexibility and power of neural computing allows us to solve complex problems with more reliability while being data-efficient. However, this recently growing topic poses a challenge to developers with its learning curve, lack of user-friendly tools, libraries, and unifying frameworks. In this paper, we characterize the technical facets of existing NeSy frameworks, such as the symbolic representation language, integration with neural models, and the underlying algorithms. A majority of the NeSy research focuses on algorithms instead of providing generic frameworks for declarative problem specification to leverage problem solving. To highlight the key aspects of Neurosymbolic modeling, we showcase three generic NeSy frameworks - DeepProbLog, Scallop, and DomiKnowS. We identify the challenges within each facet that lay the foundation for identifying the expressivity of each framework in solving a variety of problems. Building on this foundation, we aim to spark transformative action and encourage the community to rethink this problem in novel ways.
Nerfstudio: A Modular Framework for Neural Radiance Field Development
Neural Radiance Fields (NeRF) are a rapidly growing area of research with wide-ranging applications in computer vision, graphics, robotics, and more. In order to streamline the development and deployment of NeRF research, we propose a modular PyTorch framework, Nerfstudio. Our framework includes plug-and-play components for implementing NeRF-based methods, which make it easy for researchers and practitioners to incorporate NeRF into their projects. Additionally, the modular design enables support for extensive real-time visualization tools, streamlined pipelines for importing captured in-the-wild data, and tools for exporting to video, point cloud and mesh representations. The modularity of Nerfstudio enables the development of Nerfacto, our method that combines components from recent papers to achieve a balance between speed and quality, while also remaining flexible to future modifications. To promote community-driven development, all associated code and data are made publicly available with open-source licensing at https://nerf.studio.
AppAgent v2: Advanced Agent for Flexible Mobile Interactions
With the advancement of Multimodal Large Language Models (MLLM), LLM-driven visual agents are increasingly impacting software interfaces, particularly those with graphical user interfaces. This work introduces a novel LLM-based multimodal agent framework for mobile devices. This framework, capable of navigating mobile devices, emulates human-like interactions. Our agent constructs a flexible action space that enhances adaptability across various applications including parser, text and vision descriptions. The agent operates through two main phases: exploration and deployment. During the exploration phase, functionalities of user interface elements are documented either through agent-driven or manual explorations into a customized structured knowledge base. In the deployment phase, RAG technology enables efficient retrieval and update from this knowledge base, thereby empowering the agent to perform tasks effectively and accurately. This includes performing complex, multi-step operations across various applications, thereby demonstrating the framework's adaptability and precision in handling customized task workflows. Our experimental results across various benchmarks demonstrate the framework's superior performance, confirming its effectiveness in real-world scenarios. Our code will be open source soon.
Puzzle: Distillation-Based NAS for Inference-Optimized LLMs
Large language models (LLMs) have demonstrated remarkable capabilities, but their adoption is limited by high computational costs during inference. While increasing parameter counts enhances accuracy, it also widens the gap between state-of-the-art capabilities and practical deployability. We present Puzzle, a framework to accelerate LLM inference on specific hardware while preserving their capabilities. Through an innovative application of neural architecture search (NAS) at an unprecedented scale, Puzzle systematically optimizes models with tens of billions of parameters under hardware constraints. Our approach utilizes blockwise local knowledge distillation (BLD) for parallel architecture exploration and employs mixed-integer programming for precise constraint optimization. We demonstrate the real-world impact of our framework through Llama-3.1-Nemotron-51B-Instruct (Nemotron-51B), a publicly available model derived from Llama-3.1-70B-Instruct. Nemotron-51B achieves a 2.17x inference throughput speedup, fitting on a single NVIDIA H100 GPU while preserving 98.4% of the original model's capabilities. Nemotron-51B currently stands as the most accurate language model capable of inference on a single GPU with large batch sizes. Remarkably, this transformation required just 45B training tokens, compared to over 15T tokens used for the 70B model it was derived from. This establishes a new paradigm where powerful models can be optimized for efficient deployment with only negligible compromise of their capabilities, demonstrating that inference performance, not parameter count alone, should guide model selection. With the release of Nemotron-51B and the presentation of the Puzzle framework, we provide practitioners immediate access to state-of-the-art language modeling capabilities at significantly reduced computational costs.
The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.
LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models
The success of large language models (LLMs), like GPT-3 and ChatGPT, has led to the development of numerous cost-effective and accessible alternatives that are created by fine-tuning open-access LLMs with task-specific data (e.g., ChatDoctor) or instruction data (e.g., Alpaca). Among the various fine-tuning methods, adapter-based parameter-efficient fine-tuning (PEFT) is undoubtedly one of the most attractive topics, as it only requires fine-tuning a few external parameters instead of the entire LLMs while achieving comparable or even better performance. To enable further research on PEFT methods of LLMs, this paper presents LLM-Adapters, an easy-to-use framework that integrates various adapters into LLMs and can execute these adapter-based PEFT methods of LLMs for different tasks. The framework includes state-of-the-art open-access LLMs such as LLaMA, BLOOM, OPT, and GPT-J, as well as widely used adapters such as Series adapter, Parallel adapter, and LoRA. The framework is designed to be research-friendly, efficient, modular, and extendable, allowing the integration of new adapters and the evaluation of them with new and larger-scale LLMs. Furthermore, to evaluate the effectiveness of adapters in LLMs-Adapters, we conduct experiments on six math reasoning datasets. The results demonstrate that using adapter-based PEFT in smaller-scale LLMs (7B) with few extra trainable parameters yields comparable, and in some cases superior, performance to that of powerful LLMs (175B) in zero-shot inference on simple math reasoning datasets. Overall, we provide a promising framework for fine-tuning large LLMs on downstream tasks. We believe the proposed LLMs-Adapters will advance adapter-based PEFT research, facilitate the deployment of research pipelines, and enable practical applications to real-world systems.
OneFlow: Redesign the Distributed Deep Learning Framework from Scratch
Deep learning frameworks such as TensorFlow and PyTorch provide a productive interface for expressing and training a deep neural network (DNN) model on a single device or using data parallelism. Still, they may not be flexible or efficient enough in training emerging large models on distributed devices, which require more sophisticated parallelism beyond data parallelism. Plugins or wrappers have been developed to strengthen these frameworks for model or pipeline parallelism, but they complicate the usage and implementation of distributed deep learning. Aiming at a simple, neat redesign of distributed deep learning frameworks for various parallelism paradigms, we present OneFlow, a novel distributed training framework based on an SBP (split, broadcast and partial-value) abstraction and the actor model. SBP enables much easier programming of data parallelism and model parallelism than existing frameworks, and the actor model provides a succinct runtime mechanism to manage the complex dependencies imposed by resource constraints, data movement and computation in distributed deep learning. We demonstrate the general applicability and efficiency of OneFlow for training various large DNN models with case studies and extensive experiments. The results show that OneFlow outperforms many well-known customized libraries built on top of the state-of-the-art frameworks. The code of OneFlow is available at: https://github.com/Oneflow-Inc/oneflow.
Online Training of Large Language Models: Learn while chatting
Large Language Models(LLMs) have dramatically revolutionized the field of Natural Language Processing(NLP), offering remarkable capabilities that have garnered widespread usage. However, existing interaction paradigms between LLMs and users are constrained by either inflexibility, limitations in customization, or a lack of persistent learning. This inflexibility is particularly evident as users, especially those without programming skills, have restricted avenues to enhance or personalize the model. Existing frameworks further complicate the model training and deployment process due to their computational inefficiencies and lack of user-friendly interfaces. To overcome these challenges, this paper introduces a novel interaction paradigm-'Online Training using External Interactions'-that merges the benefits of persistent, real-time model updates with the flexibility for individual customization through external interactions such as AI agents or online/offline knowledge bases.
LLM Pruning and Distillation in Practice: The Minitron Approach
We present a comprehensive report on compressing the Llama 3.1 8B and Mistral NeMo 12B models to 4B and 8B parameters, respectively, using pruning and distillation. We explore two distinct pruning strategies: (1) depth pruning and (2) joint hidden/attention/MLP (width) pruning, and evaluate the results on common benchmarks from the LM Evaluation Harness. The models are then aligned with NeMo Aligner and tested in instruct-tuned versions. This approach produces a compelling 4B model from Llama 3.1 8B and a state-of-the-art Mistral-NeMo-Minitron-8B (MN-Minitron-8B for brevity) model from Mistral NeMo 12B. We found that with no access to the original data, it is beneficial to slightly fine-tune teacher models on the distillation dataset. We open-source our base model weights on Hugging Face with a permissive license.
LLMeBench: A Flexible Framework for Accelerating LLMs Benchmarking
The recent development and success of Large Language Models (LLMs) necessitate an evaluation of their performance across diverse NLP tasks in different languages. Although several frameworks have been developed and made publicly available, their customization capabilities for specific tasks and datasets are often complex for different users. In this study, we introduce the LLMeBench framework. Initially developed to evaluate Arabic NLP tasks using OpenAI's GPT and BLOOM models; it can be seamlessly customized for any NLP task and model, regardless of language. The framework also features zero- and few-shot learning settings. A new custom dataset can be added in less than 10 minutes, and users can use their own model API keys to evaluate the task at hand. The developed framework has been already tested on 31 unique NLP tasks using 53 publicly available datasets within 90 experimental setups, involving approximately 296K data points. We plan to open-source the framework for the community (https://github.com/qcri/LLMeBench/). A video demonstrating the framework is available online (https://youtu.be/FkQn4UjYA0s).
OmniDraft: A Cross-vocabulary, Online Adaptive Drafter for On-device Speculative Decoding
Speculative decoding generally dictates having a small, efficient draft model that is either pretrained or distilled offline to a particular target model series, for instance, Llama or Qwen models. However, within online deployment settings, there are two major challenges: 1) usage of a target model that is incompatible with the draft model; 2) expectation of latency improvements over usage and time. In this work, we propose OmniDraft, a unified framework that enables a single draft model to operate with any target model and adapt dynamically to user data. We introduce an online n-gram cache with hybrid distillation fine-tuning to address the cross-vocabulary mismatch across draft and target models; and further improve decoding speed by leveraging adaptive drafting techniques. OmniDraft is particularly suitable for on-device LLM applications where model cost, efficiency and user customization are the major points of contention. This further highlights the need to tackle the above challenges and motivates the ``one drafter for all'' paradigm. We showcase the proficiency of the OmniDraft framework by performing online learning on math reasoning, coding and text generation tasks. Notably, OmniDraft enables a single Llama-68M model to pair with various target models including Vicuna-7B, Qwen2-7B and Llama3-8B models for speculative decoding; and additionally provides up to 1.5-2x speedup.
Multimodal Structured Generation: CVPR's 2nd MMFM Challenge Technical Report
Multimodal Foundation Models (MMFMs) have shown remarkable performance on various computer vision and natural language processing tasks. However, their performance on particular tasks such as document understanding is still limited. They also require more compute, time, and engineering resources to finetune and deploy compared to traditional, unimodal models. In this report, we present Multimodal Structured Generation, a general framework which constrains the output logits of frozen MMFMs to force them to reason before responding with structured outputs that downstream APIs can parse and use. We provide a detailed account of our approach, including the technical details, theoretical discussions, and final evaluation results in the 2nd Multimodal Foundation Models Challenge hosted by the Computer Vision and Pattern Recognition (CVPR) conference. Our approach achieved the second highest score in the hidden test set for Phase 2 and third highest overall. This shows the method's ability to generalize to unseen tasks. And that simple engineering can beat expensive & complicated modelling steps as we first discussed in our paper, Retrieval Augmented Structured Generation: Business Document Information Extraction as Tool Use. All of our scripts, deployment steps, and evaluation results can be accessed in https://github.com/leloykun/MMFM-Challenge
Nemotron Elastic: Towards Efficient Many-in-One Reasoning LLMs
Training a family of large language models targeting multiple scales and deployment objectives is prohibitively expensive, requiring separate training runs for each different size. Recent work on model compression through pruning and knowledge distillation has reduced this cost; however, this process still incurs hundreds of billions of tokens worth of training cost per compressed model. In this paper, we present Nemotron Elastic, a framework for building reasoning-oriented LLMs, including hybrid Mamba-Attention architectures, that embed multiple nested submodels within a single parent model, each optimized for different deployment configurations and budgets. Each of these submodels shares weights with the parent model and can be extracted zero-shot during deployment without additional training or fine-tuning. We enable this functionality through an end-to-end trained router, tightly coupled to a two-stage training curriculum designed specifically for reasoning models. We additionally introduce group-aware SSM elastification that preserves Mamba's structural constraints, heterogeneous MLP elastification, normalized MSE-based layer importance for improved depth selection, and knowledge distillation enabling simultaneous multi-budget optimization. We apply Nemotron Elastic to the Nemotron Nano V2 12B model, simultaneously producing a 9B and a 6B model using only 110B training tokens; this results in over 360x cost reduction compared to training model families from scratch, and around 7x compared to SoTA compression techniques. Each of the nested models performs on par or better than the SoTA in accuracy. Moreover, unlike other compression methods, the nested capability of our approach allows having a many-in-one reasoning model that has constant deployment memory against the number of models in the family.
Predicting Movie Success with Multi-Task Learning: A Hybrid Framework Combining GPT-Based Sentiment Analysis and SIR Propagation
This study presents a hybrid framework for predicting movie success. The framework integrates multi-task learning (MTL), GPT-based sentiment analysis, and Susceptible-Infected-Recovered (SIR) propagation modeling. The study examines limitations in existing approaches. It models static production attributes, information dissemination, and audience sentiment at the same time. The framework uses 5,840 films from 2004 to 2024 and approximate 300,000 user reviews. It shows predictive performance with classification accuracy of 0.964 and regression metrics of MAE 0.388. Ablation analysis indicates component interactions. Selective feature combinations perform better than the comprehensive model. This result questions assumptions about feature integration. The model shows virality patterns between successful and unsuccessful films. Innovations include epidemiological modeling for information diffusion, multidimensional sentiment features from GPT-based analysis, and a shared representation architecture that optimizes multiple success metrics. The framework provides applications in the film production lifecycle. It also contributes to understanding how audience engagement leads to commercial outcomes.
A Multi-Level Framework for Accelerating Training Transformer Models
The fast growing capabilities of large-scale deep learning models, such as Bert, GPT and ViT, are revolutionizing the landscape of NLP, CV and many other domains. Training such models, however, poses an unprecedented demand for computing power, which incurs exponentially increasing energy cost and carbon dioxide emissions. It is thus critical to develop efficient training solutions to reduce the training costs. Motivated by a set of key observations of inter- and intra-layer similarities among feature maps and attentions that can be identified from typical training processes, we propose a multi-level framework for training acceleration. Specifically, the framework is based on three basic operators, Coalescing, De-coalescing and Interpolation, which can be orchestrated to build a multi-level training framework. The framework consists of a V-cycle training process, which progressively down- and up-scales the model size and projects the parameters between adjacent levels of models via coalescing and de-coalescing. The key idea is that a smaller model that can be trained for fast convergence and the trained parameters provides high-qualities intermediate solutions for the next level larger network. The interpolation operator is designed to break the symmetry of neurons incurred by de-coalescing for better convergence performance. Our experiments on transformer-based language models (e.g. Bert, GPT) as well as a vision model (e.g. DeiT) prove that the proposed framework reduces the computational cost by about 20% on training BERT/GPT-Base models and up to 51.6% on training the BERT-Large model while preserving the performance.
AdapterHub: A Framework for Adapting Transformers
The current modus operandi in NLP involves downloading and fine-tuning pre-trained models consisting of millions or billions of parameters. Storing and sharing such large trained models is expensive, slow, and time-consuming, which impedes progress towards more general and versatile NLP methods that learn from and for many tasks. Adapters -- small learnt bottleneck layers inserted within each layer of a pre-trained model -- ameliorate this issue by avoiding full fine-tuning of the entire model. However, sharing and integrating adapter layers is not straightforward. We propose AdapterHub, a framework that allows dynamic "stitching-in" of pre-trained adapters for different tasks and languages. The framework, built on top of the popular HuggingFace Transformers library, enables extremely easy and quick adaptations of state-of-the-art pre-trained models (e.g., BERT, RoBERTa, XLM-R) across tasks and languages. Downloading, sharing, and training adapters is as seamless as possible using minimal changes to the training scripts and a specialized infrastructure. Our framework enables scalable and easy access to sharing of task-specific models, particularly in low-resource scenarios. AdapterHub includes all recent adapter architectures and can be found at https://AdapterHub.ml.
Collective Communication for 100k+ GPUs
The increasing scale of large language models (LLMs) necessitates highly efficient collective communication frameworks, particularly as training workloads extend to hundreds of thousands of GPUs. Traditional communication methods face significant throughput and latency limitations at this scale, hindering both the development and deployment of state-of-the-art models. This paper presents the NCCLX collective communication framework, developed at Meta, engineered to optimize performance across the full LLM lifecycle, from the synchronous demands of large-scale training to the low-latency requirements of inference. The framework is designed to support complex workloads on clusters exceeding 100,000 GPUs, ensuring reliable, high-throughput, and low-latency data exchange. Empirical evaluation on the Llama4 model demonstrates substantial improvements in communication efficiency. This research contributes a robust solution for enabling the next generation of LLMs to operate at unprecedented scales.
Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models
As inference-time scaling becomes critical for enhanced reasoning capabilities, it is increasingly becoming important to build models that are efficient to infer. We introduce Nemotron-H, a family of 8B and 56B/47B hybrid Mamba-Transformer models designed to reduce inference cost for a given accuracy level. To achieve this goal, we replace the majority of self-attention layers in the common Transformer model architecture with Mamba layers that perform constant computation and require constant memory per generated token. We show that Nemotron-H models offer either better or on-par accuracy compared to other similarly-sized state-of-the-art open-sourced Transformer models (e.g., Qwen-2.5-7B/72B and Llama-3.1-8B/70B), while being up to 3times faster at inference. To further increase inference speed and reduce the memory required at inference time, we created Nemotron-H-47B-Base from the 56B model using a new compression via pruning and distillation technique called MiniPuzzle. Nemotron-H-47B-Base achieves similar accuracy to the 56B model, but is 20% faster to infer. In addition, we introduce an FP8-based training recipe and show that it can achieve on par results with BF16-based training. This recipe is used to train the 56B model. All Nemotron-H models will be released, with support in Hugging Face, NeMo, and Megatron-LM.
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking
Despite remarkable progress achieved, most neural architecture search (NAS) methods focus on searching for one single accurate and robust architecture. To further build models with better generalization capability and performance, model ensemble is usually adopted and performs better than stand-alone models. Inspired by the merits of model ensemble, we propose to search for multiple diverse models simultaneously as an alternative way to find powerful models. Searching for ensembles is non-trivial and has two key challenges: enlarged search space and potentially more complexity for the searched model. In this paper, we propose a one-shot neural ensemble architecture search (NEAS) solution that addresses the two challenges. For the first challenge, we introduce a novel diversity-based metric to guide search space shrinking, considering both the potentiality and diversity of candidate operators. For the second challenge, we enable a new search dimension to learn layer sharing among different models for efficiency purposes. The experiments on ImageNet clearly demonstrate that our solution can improve the supernet's capacity of ranking ensemble architectures, and further lead to better search results. The discovered architectures achieve superior performance compared with state-of-the-arts such as MobileNetV3 and EfficientNet families under aligned settings. Moreover, we evaluate the generalization ability and robustness of our searched architecture on the COCO detection benchmark and achieve a 3.1% improvement on AP compared with MobileNetV3. Codes and models are available at https://github.com/researchmm/NEAS.
NEMOTRON-CROSSTHINK: Scaling Self-Learning beyond Math Reasoning
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL). While prior work has successfully applied RL to mathematical reasoning -- where rules and correctness are well-defined -- generalizing these methods to broader reasoning domains remains challenging due to limited data, the lack of verifiable reward structures, and diverse task requirements. In this work, we propose NEMOTRON-CROSSTHINK, a framework that systematically incorporates multi-domain corpora, including both synthetic and real-world question-answer pairs, into RL training to improve generalization across diverse reasoning tasks. NEMOTRON-CROSSTHINK addresses key challenges by (1) incorporating data from varied sources spanning STEM, humanities, social sciences, etc.; (2) applying structured templates (e.g., multiple-choice and open-ended) to control answer-space complexity; (3) filtering for verifiable answers; and (4) optimizing data blending strategies that utilizes data from multiple sources effectively. Our approach enables scalable and verifiable reward modeling beyond mathematics and demonstrates improved accuracies on both math (MATH-500: +30.1%, AMC23:+27.5%) and non-math reasoning benchmarks (MMLU-PRO: +12.8%, GPQA-DIAMOND: +11.3%, AGIEVAL: +15.1%, SUPERGPQA: +3.8%). Moreover, NEMOTRON-CROSSTHINK exhibits significantly improved response efficiency -- using 28% fewer tokens for correct answers -- highlighting more focused and effective reasoning. Through NEMOTRON-CROSSTHINK, we demonstrate that integrating multi-domain, multi-format data in RL leads to more accurate, efficient, and generalizable LLMs.
ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning
We present a framework for intuitive robot programming by non-experts, leveraging natural language prompts and contextual information from the Robot Operating System (ROS). Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface. Key features of the framework include: integration of ROS with an AI agent connected to a plethora of open-source and commercial LLMs, automatic extraction of a behavior from the LLM output and execution of ROS actions/services, support for three behavior modes (sequence, behavior tree, state machine), imitation learning for adding new robot actions to the library of possible actions, and LLM reflection via human and environment feedback. Extensive experiments validate the framework, showcasing robustness, scalability, and versatility in diverse scenarios, including long-horizon tasks, tabletop rearrangements, and remote supervisory control. To facilitate the adoption of our framework and support the reproduction of our results, we have made our code open-source. You can access it at: https://github.com/huawei-noah/HEBO/tree/master/ROSLLM.
Neurosymbolic Grounding for Compositional World Models
We introduce Cosmos, a framework for object-centric world modeling that is designed for compositional generalization (CG), i.e., high performance on unseen input scenes obtained through the composition of known visual "atoms." The central insight behind Cosmos is the use of a novel form of neurosymbolic grounding. Specifically, the framework introduces two new tools: (i) neurosymbolic scene encodings, which represent each entity in a scene using a real vector computed using a neural encoder, as well as a vector of composable symbols describing attributes of the entity, and (ii) a neurosymbolic attention mechanism that binds these entities to learned rules of interaction. Cosmos is end-to-end differentiable; also, unlike traditional neurosymbolic methods that require representations to be manually mapped to symbols, it computes an entity's symbolic attributes using vision-language foundation models. Through an evaluation that considers two different forms of CG on an established blocks-pushing domain, we show that the framework establishes a new state-of-the-art for CG in world modeling.
CODESIM: Multi-Agent Code Generation and Problem Solving through Simulation-Driven Planning and Debugging
Large Language Models (LLMs) have made significant strides in code generation and problem solving. Current approaches employ external tool-based iterative debuggers that use compiler or other tool-based runtime feedback to refine coarse programs generated by various methods. However, the effectiveness of these approaches heavily relies on the quality of the initial code generation, which remains an open challenge. In this paper, we introduce CodeSim, a novel multi-agent code generation framework that comprehensively addresses the stages of program synthesis-planning, coding, and debugging-through a human-like perception approach. As human verifies their understanding of any algorithms through visual simulation, CodeSim uniquely features a method of plan verification and internal debugging through the step-by-step simulation of input/output. Extensive experiments across seven challenging competitive problem-solving and program synthesis benchmarks demonstrate CodeSim's remarkable code generation capabilities. Our framework achieves new state-of-the-art (pass@1) results-(HumanEval 95.1%, MBPP 90.7%, APPS 22%, and CodeContests 29.1%). Furthermore, our method shows potential for even greater enhancement when cascaded with external debuggers. To facilitate further research and development in this area, we have open-sourced our framework in this link (https://kagnlp.github.io/codesim.github.io/).
LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models
Efficient fine-tuning is vital for adapting large language models (LLMs) to downstream tasks. However, it requires non-trivial efforts to implement these methods on different models. We present LlamaFactory, a unified framework that integrates a suite of cutting-edge efficient training methods. It allows users to flexibly customize the fine-tuning of 100+ LLMs without the need for coding through the built-in web UI LlamaBoard. We empirically validate the efficiency and effectiveness of our framework on language modeling and text generation tasks. It has been released at https://github.com/hiyouga/LLaMA-Factory and already received over 13,000 stars and 1,600 forks.
EoS-FM: Can an Ensemble of Specialist Models act as a Generalist Feature Extractor?
Recent advances in foundation models have shown great promise in domains such as natural language processing and computer vision, and similar efforts are now emerging in the Earth Observation community. These models aim to generalize across tasks with limited supervision, reducing the need for training separate models for each task. However, current strategies, which largely focus on scaling model size and dataset volume, require prohibitive computational and data resources, limiting accessibility to only a few large institutions. Moreover, this paradigm of ever-larger models stands in stark contrast with the principles of sustainable and environmentally responsible AI, as it leads to immense carbon footprints and resource inefficiency. In this work, we present a novel and efficient alternative: an Ensemble-of-Specialists framework for building Remote Sensing Foundation Models (RSFMs). Our method decomposes the training process into lightweight, task-specific ConvNeXtV2 specialists that can be frozen and reused. This modular approach offers strong advantages in efficiency, interpretability, and extensibility. Moreover, it naturally supports federated training, pruning, and continuous specialist integration, making it particularly well-suited for collaborative and resource-constrained settings. Our framework sets a new direction for building scalable and efficient RSFMs. All codes and pretrained models are available at https://github.com/pierreadorni/EoS-FM.
Improving Text-to-SQL Semantic Parsing with Fine-grained Query Understanding
Most recent research on Text-to-SQL semantic parsing relies on either parser itself or simple heuristic based approach to understand natural language query (NLQ). When synthesizing a SQL query, there is no explicit semantic information of NLQ available to the parser which leads to undesirable generalization performance. In addition, without lexical-level fine-grained query understanding, linking between query and database can only rely on fuzzy string match which leads to suboptimal performance in real applications. In view of this, in this paper we present a general-purpose, modular neural semantic parsing framework that is based on token-level fine-grained query understanding. Our framework consists of three modules: named entity recognizer (NER), neural entity linker (NEL) and neural semantic parser (NSP). By jointly modeling query and database, NER model analyzes user intents and identifies entities in the query. NEL model links typed entities to schema and cell values in database. Parser model leverages available semantic information and linking results and synthesizes tree-structured SQL queries based on dynamically generated grammar. Experiments on SQUALL, a newly released semantic parsing dataset, show that we can achieve 56.8% execution accuracy on WikiTableQuestions (WTQ) test set, which outperforms the state-of-the-art model by 2.7%.
ERNIE 3.0 Titan: Exploring Larger-scale Knowledge Enhanced Pre-training for Language Understanding and Generation
Pre-trained language models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. GPT-3 has shown that scaling up pre-trained language models can further exploit their enormous potential. A unified framework named ERNIE 3.0 was recently proposed for pre-training large-scale knowledge enhanced models and trained a model with 10 billion parameters. ERNIE 3.0 outperformed the state-of-the-art models on various NLP tasks. In order to explore the performance of scaling up ERNIE 3.0, we train a hundred-billion-parameter model called ERNIE 3.0 Titan with up to 260 billion parameters on the PaddlePaddle platform. Furthermore, we design a self-supervised adversarial loss and a controllable language modeling loss to make ERNIE 3.0 Titan generate credible and controllable texts. To reduce the computation overhead and carbon emission, we propose an online distillation framework for ERNIE 3.0 Titan, where the teacher model will teach students and train itself simultaneously. ERNIE 3.0 Titan is the largest Chinese dense pre-trained model so far. Empirical results show that the ERNIE 3.0 Titan outperforms the state-of-the-art models on 68 NLP datasets.
Pico: A Modular Framework for Hypothesis-Driven Small Language Model Research
Building language models (LMs), especially small and medium ones, remains more art than science. While large LMs often improve by sheer scale, it is still unclear why many design choices work. For small LMs, this uncertainty is more limiting: tight parameter budgets make each decision critical, yet researchers still lack systematic, scientific ways to test and refine new ideas. We introduce Pico, a lightweight, modular framework that enables systematic, hypothesis-driven research for small and medium-scale language model development. Pico consists of two libraries that together provide a practical sandbox where researchers can make targeted changes to a model's architecture or training procedures and directly observe their effects on the model's behavior. To support reproducible experimentation, we also release a suite of baseline models, pico-decoder, trained under standardized conditions and open-sourced for the community. Case studies highlight how Pico can support iterative small LM design and analysis.
Integrating Large Language Models for Automated Structural Analysis
Automated analysis for engineering structures offers considerable potential for boosting efficiency by minimizing repetitive tasks. Although AI-driven methods are increasingly common, no systematic framework yet leverages Large Language Models (LLMs) for automatic structural analysis. To address this gap, we propose a novel framework that integrates LLMs with structural analysis software. LLMs serve as the core engine: they parse structural descriptions from text and translate them into executable Python scripts. Moreover, the framework integrates the generative capabilities of LLMs with code-based finite element (FE) tools like OpenSeesPy. It employs domain-specific prompt design and in-context learning strategies to enhance the LLM's problem-solving capabilities and generative stability, enabling fully automated structural analysis from descriptive text to model outputs. In our experiments, we introduce a well-curated small-scale benchmark dataset of 20 structural analysis word problems (SAWPs) with ground-truth solutions and evaluate the performance of different LLMs within our framework in solving these SAWPs. The role of system instructions, crafted by structural engineers, is also investigated to understand their impact on LLM-driven structural analysis. Additionally, the generative stability of our framework is examined. Through multiple validation experiments on the benchmark, our results demonstrate that the proposed framework can substantially increase the level of automation in solving SAWPs compared to traditional methods. Quantitatively, the framework, built on GPT-4o, achieved 100% accuracy, surpassing GPT-4 (85%), Gemini 1.5 Pro (80%), and Llama-3.3 (30%) on the test examples. Furthermore, integrating domain-specific instructions enhanced performance by 30% on problems with asymmetrical structural configurations.
KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging
KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at https://github.com/vboussot/KonfAI{https://github.com/vboussot/KonfAI}.
Omni-Embed-Nemotron: A Unified Multimodal Retrieval Model for Text, Image, Audio, and Video
We present Omni-Embed-Nemotron, a unified multimodal retrieval embedding model developed to handle the increasing complexity of real-world information needs. While Retrieval-Augmented Generation (RAG) has significantly advanced language models by incorporating external knowledge, existing text-based retrievers rely on clean, structured input and struggle with the visually and semantically rich content found in real-world documents such as PDFs, slides, or videos. Recent work such as ColPali has shown that preserving document layout using image-based representations can improve retrieval quality. Building on this, and inspired by the capabilities of recent multimodal models such as Qwen2.5-Omni, we extend retrieval beyond text and images to also support audio and video modalities. Omni-Embed-Nemotron enables both cross-modal (e.g., text - video) and joint-modal (e.g., text - video+audio) retrieval using a single model. We describe the architecture, training setup, and evaluation results of Omni-Embed-Nemotron, and demonstrate its effectiveness in text, image, and video retrieval.
SIGMA: Selective Gated Mamba for Sequential Recommendation
In various domains, Sequential Recommender Systems (SRS) have become essential due to their superior capability to discern intricate user preferences. Typically, SRS utilize transformer-based architectures to forecast the subsequent item within a sequence. Nevertheless, the quadratic computational complexity inherent in these models often leads to inefficiencies, hindering the achievement of real-time recommendations. Mamba, a recent advancement, has exhibited exceptional performance in time series prediction, significantly enhancing both efficiency and accuracy. However, integrating Mamba directly into SRS poses several challenges. Its inherently unidirectional nature may constrain the model's capacity to capture the full context of user-item interactions, while its instability in state estimation can compromise its ability to detect short-term patterns within interaction sequences. To overcome these issues, we introduce a new framework named Selective Gated Mamba (SIGMA) for Sequential Recommendation. This framework leverages a Partially Flipped Mamba (PF-Mamba) to construct a bidirectional architecture specifically tailored to improve contextual modeling. Additionally, an input-sensitive Dense Selective Gate (DS Gate) is employed to optimize directional weights and enhance the processing of sequential information in PF-Mamba. For short sequence modeling, we have also developed a Feature Extract GRU (FE-GRU) to efficiently capture short-term dependencies. Empirical results indicate that SIGMA outperforms current models on five real-world datasets. Our implementation code is available at https://github.com/ziwliu-cityu/SIMGA to ease reproducibility.
The CHiME-7 Challenge: System Description and Performance of NeMo Team's DASR System
We present the NVIDIA NeMo team's multi-channel speech recognition system for the 7th CHiME Challenge Distant Automatic Speech Recognition (DASR) Task, focusing on the development of a multi-channel, multi-speaker speech recognition system tailored to transcribe speech from distributed microphones and microphone arrays. The system predominantly comprises of the following integral modules: the Speaker Diarization Module, Multi-channel Audio Front-End Processing Module, and the ASR Module. These components collectively establish a cascading system, meticulously processing multi-channel and multi-speaker audio input. Moreover, this paper highlights the comprehensive optimization process that significantly enhanced our system's performance. Our team's submission is largely based on NeMo toolkits and will be publicly available.
PhilEO Bench: Evaluating Geo-Spatial Foundation Models
Massive amounts of unlabelled data are captured by Earth Observation (EO) satellites, with the Sentinel-2 constellation generating 1.6 TB of data daily. This makes Remote Sensing a data-rich domain well suited to Machine Learning (ML) solutions. However, a bottleneck in applying ML models to EO is the lack of annotated data as annotation is a labour-intensive and costly process. As a result, research in this domain has focused on Self-Supervised Learning and Foundation Model approaches. This paper addresses the need to evaluate different Foundation Models on a fair and uniform benchmark by introducing the PhilEO Bench, a novel evaluation framework for EO Foundation Models. The framework comprises of a testbed and a novel 400 GB Sentinel-2 dataset containing labels for three downstream tasks, building density estimation, road segmentation, and land cover classification. We present experiments using our framework evaluating different Foundation Models, including Prithvi and SatMAE, at multiple n-shots and convergence rates.
Mamba base PKD for efficient knowledge compression
Deep neural networks (DNNs) have remarkably succeeded in various image processing tasks. However, their large size and computational complexity present significant challenges for deploying them in resource-constrained environments. This paper presents an innovative approach for integrating Mamba Architecture within a Progressive Knowledge Distillation (PKD) process to address the challenge of reducing model complexity while maintaining accuracy in image classification tasks. The proposed framework distills a large teacher model into progressively smaller student models, designed using Mamba blocks. Each student model is trained using Selective-State-Space Models (S-SSM) within the Mamba blocks, focusing on important input aspects while reducing computational complexity. The work's preliminary experiments use MNIST and CIFAR-10 as datasets to demonstrate the effectiveness of this approach. For MNIST, the teacher model achieves 98% accuracy. A set of seven student models as a group retained 63% of the teacher's FLOPs, approximating the teacher's performance with 98% accuracy. The weak student used only 1% of the teacher's FLOPs and maintained 72% accuracy. Similarly, for CIFAR-10, the students achieved 1% less accuracy compared to the teacher, with the small student retaining 5% of the teacher's FLOPs to achieve 50% accuracy. These results confirm the flexibility and scalability of Mamba Architecture, which can be integrated into PKD, succeeding in the process of finding students as weak learners. The framework provides a solution for deploying complex neural networks in real-time applications with a reduction in computational cost.
CodeReef: an open platform for portable MLOps, reusable automation actions and reproducible benchmarking
We present CodeReef - an open platform to share all the components necessary to enable cross-platform MLOps (MLSysOps), i.e. automating the deployment of ML models across diverse systems in the most efficient way. We also introduce the CodeReef solution - a way to package and share models as non-virtualized, portable, customizable and reproducible archive files. Such ML packages include JSON meta description of models with all dependencies, Python APIs, CLI actions and portable workflows necessary to automatically build, benchmark, test and customize models across diverse platforms, AI frameworks, libraries, compilers and datasets. We demonstrate several CodeReef solutions to automatically build, run and measure object detection based on SSD-Mobilenets, TensorFlow and COCO dataset from the latest MLPerf inference benchmark across a wide range of platforms from Raspberry Pi, Android phones and IoT devices to data centers. Our long-term goal is to help researchers share their new techniques as production-ready packages along with research papers to participate in collaborative and reproducible benchmarking, compare the different ML/software/hardware stacks and select the most efficient ones on a Pareto frontier using online CodeReef dashboards.
Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media
This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.
ModelScope-Agent: Building Your Customizable Agent System with Open-source Large Language Models
Large language models (LLMs) have recently demonstrated remarkable capabilities to comprehend human intentions, engage in reasoning, and design planning-like behavior. To further unleash the power of LLMs to accomplish complex tasks, there is a growing trend to build agent framework that equips LLMs, such as ChatGPT, with tool-use abilities to connect with massive external APIs. In this work, we introduce ModelScope-Agent, a general and customizable agent framework for real-world applications, based on open-source LLMs as controllers. It provides a user-friendly system library, with customizable engine design to support model training on multiple open-source LLMs, while also enabling seamless integration with both model APIs and common APIs in a unified way. To equip the LLMs with tool-use abilities, a comprehensive framework has been proposed spanning over tool-use data collection, tool retrieval, tool registration, memory control, customized model training, and evaluation for practical real-world applications. Finally, we showcase ModelScopeGPT, a real-world intelligent assistant of ModelScope Community based on the ModelScope-Agent framework, which is able to connect open-source LLMs with more than 1000 public AI models and localized community knowledge in ModelScope. The ModelScope-Agent libraryhttps://github.com/modelscope/modelscope-agent and online demohttps://modelscope.cn/studios/damo/ModelScopeGPT/summary are now publicly available.
Kani: A Lightweight and Highly Hackable Framework for Building Language Model Applications
Language model applications are becoming increasingly popular and complex, often including features like tool usage and retrieval augmentation. However, existing frameworks for such applications are often opinionated, deciding for developers how their prompts ought to be formatted and imposing limitations on customizability and reproducibility. To solve this we present Kani: a lightweight, flexible, and model-agnostic open-source framework for building language model applications. Kani helps developers implement a variety of complex features by supporting the core building blocks of chat interaction: model interfacing, chat management, and robust function calling. All Kani core functions are easily overridable and well documented to empower developers to customize functionality for their own needs. Kani thus serves as a useful tool for researchers, hobbyists, and industry professionals alike to accelerate their development while retaining interoperability and fine-grained control.
DeepAudio-V1:Towards Multi-Modal Multi-Stage End-to-End Video to Speech and Audio Generation
Currently, high-quality, synchronized audio is synthesized using various multi-modal joint learning frameworks, leveraging video and optional text inputs. In the video-to-audio benchmarks, video-to-audio quality, semantic alignment, and audio-visual synchronization are effectively achieved. However, in real-world scenarios, speech and audio often coexist in videos simultaneously, and the end-to-end generation of synchronous speech and audio given video and text conditions are not well studied. Therefore, we propose an end-to-end multi-modal generation framework that simultaneously produces speech and audio based on video and text conditions. Furthermore, the advantages of video-to-audio (V2A) models for generating speech from videos remain unclear. The proposed framework, DeepAudio, consists of a video-to-audio (V2A) module, a text-to-speech (TTS) module, and a dynamic mixture of modality fusion (MoF) module. In the evaluation, the proposed end-to-end framework achieves state-of-the-art performance on the video-audio benchmark, video-speech benchmark, and text-speech benchmark. In detail, our framework achieves comparable results in the comparison with state-of-the-art models for the video-audio and text-speech benchmarks, and surpassing state-of-the-art models in the video-speech benchmark, with WER 16.57% to 3.15% (+80.99%), SPK-SIM 78.30% to 89.38% (+14.15%), EMO-SIM 66.24% to 75.56% (+14.07%), MCD 8.59 to 7.98 (+7.10%), MCD SL 11.05 to 9.40 (+14.93%) across a variety of dubbing settings.
Tryage: Real-time, intelligent Routing of User Prompts to Large Language Models
The introduction of the transformer architecture and the self-attention mechanism has led to an explosive production of language models trained on specific downstream tasks and data domains. With over 200, 000 models in the Hugging Face ecosystem, users grapple with selecting and optimizing models to suit multifaceted workflows and data domains while addressing computational, security, and recency concerns. There is an urgent need for machine learning frameworks that can eliminate the burden of model selection and customization and unleash the incredible power of the vast emerging model library for end users. Here, we propose a context-aware routing system, Tryage, that leverages a language model router for optimal selection of expert models from a model library based on analysis of individual input prompts. Inspired by the thalamic router in the brain, Tryage employs a perceptive router to predict down-stream model performance on prompts and, then, makes a routing decision using an objective function that integrates performance predictions with user goals and constraints that are incorporated through flags (e.g., model size, model recency). Tryage allows users to explore a Pareto front and automatically trade-off between task accuracy and secondary goals including minimization of model size, recency, security, verbosity, and readability. Across heterogeneous data sets that include code, text, clinical data, and patents, the Tryage framework surpasses Gorilla and GPT3.5 turbo in dynamic model selection identifying the optimal model with an accuracy of 50.9% , compared to 23.6% by GPT 3.5 Turbo and 10.8% by Gorilla. Conceptually, Tryage demonstrates how routing models can be applied to program and control the behavior of multi-model LLM systems to maximize efficient use of the expanding and evolving language model ecosystem.
Nex-N1: Agentic Models Trained via a Unified Ecosystem for Large-Scale Environment Construction
The evolution of Large Language Models (LLMs) from passive responders to autonomous agents necessitates a fundamental shift in learning paradigms -- from static imitation to incentive-driven decision making. However, this transition is significantly impeded by the lack of scalable infrastructure capable of constructing high-quality interaction signals for effective policy learning. To address this, we introduce a comprehensive method designed to systematically scale the diversity and complexity of interactive environments. Our method realizes this scaling by addressing three orthogonal dimensions: (1) Complexity: NexAU, a flexible agent framework that supports building complex agent hierarchies via simple configurations; (2) Diversity: NexA4A automatically generates diverse agent hierarchies from natural language to cover infinite domains; and (3) Fidelity: NexGAP bridges the simulation-reality gap by integrating dynamic real-world environment for grounded trajectories synthesis. We train Nex-N1 upon the diverse and complex interactive environments established by our infrastructure. Empirical results on benchmarks such as SWE-bench and tau2 demonstrate that Nex-N1 consistently outperforms SOTA open-source models and achieves competitive performance against frontier proprietary models on complex agentic tasks. We open-source the Nex ecosystem and model weights to facilitate further research.
A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem
Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. This framework is realized in three instants in this work with a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). They are, along with a number of recently reviewed or published portfolio-selection strategies, examined in three back-test experiments with a trading period of 30 minutes in a cryptocurrency market. Cryptocurrencies are electronic and decentralized alternatives to government-issued money, with Bitcoin as the best-known example of a cryptocurrency. All three instances of the framework monopolize the top three positions in all experiments, outdistancing other compared trading algorithms. Although with a high commission rate of 0.25% in the backtests, the framework is able to achieve at least 4-fold returns in 50 days.
Collaborative Development of NLP models
Despite substantial advancements, Natural Language Processing (NLP) models often require post-training adjustments to enforce business rules, rectify undesired behavior, and align with user values. These adjustments involve operationalizing "concepts"--dictating desired model responses to certain inputs. However, it's difficult for a single entity to enumerate and define all possible concepts, indicating a need for a multi-user, collaborative model alignment framework. Moreover, the exhaustive delineation of a concept is challenging, and an improper approach can create shortcuts or interfere with original data or other concepts. To address these challenges, we introduce CoDev, a framework that enables multi-user interaction with the model, thereby mitigating individual limitations. CoDev aids users in operationalizing their concepts using Large Language Models, and relying on the principle that NLP models exhibit simpler behaviors in local regions. Our main insight is learning a local model for each concept, and a global model to integrate the original data with all concepts. We then steer a large language model to generate instances within concept boundaries where local and global disagree. Our experiments show CoDev is effective at helping multiple users operationalize concepts and avoid interference for a variety of scenarios, tasks, and models.
DOTA: Deformable Optimized Transformer Architecture for End-to-End Text Recognition with Retrieval-Augmented Generation
Text recognition in natural images remains a challenging yet essential task, with broad applications spanning computer vision and natural language processing. This paper introduces a novel end-to-end framework that combines ResNet and Vision Transformer backbones with advanced methodologies, including Deformable Convolutions, Retrieval-Augmented Generation, and Conditional Random Fields (CRF). These innovations collectively enhance feature representation and improve Optical Character Recognition (OCR) performance. Specifically, the framework substitutes standard convolution layers in the third and fourth blocks with Deformable Convolutions, leverages adaptive dropout for regularization, and incorporates CRF for more refined sequence modeling. Extensive experiments conducted on six benchmark datasets IC13, IC15, SVT, IIIT5K, SVTP, and CUTE80 validate the proposed method's efficacy, achieving notable accuracies: 97.32% on IC13, 58.26% on IC15, 88.10% on SVT, 74.13% on IIIT5K, 82.17% on SVTP, and 66.67% on CUTE80, resulting in an average accuracy of 77.77%. These results establish a new state-of-the-art for text recognition, demonstrating the robustness of the approach across diverse and challenging datasets.
Blended-NeRF: Zero-Shot Object Generation and Blending in Existing Neural Radiance Fields
Editing a local region or a specific object in a 3D scene represented by a NeRF is challenging, mainly due to the implicit nature of the scene representation. Consistently blending a new realistic object into the scene adds an additional level of difficulty. We present Blended-NeRF, a robust and flexible framework for editing a specific region of interest in an existing NeRF scene, based on text prompts or image patches, along with a 3D ROI box. Our method leverages a pretrained language-image model to steer the synthesis towards a user-provided text prompt or image patch, along with a 3D MLP model initialized on an existing NeRF scene to generate the object and blend it into a specified region in the original scene. We allow local editing by localizing a 3D ROI box in the input scene, and seamlessly blend the content synthesized inside the ROI with the existing scene using a novel volumetric blending technique. To obtain natural looking and view-consistent results, we leverage existing and new geometric priors and 3D augmentations for improving the visual fidelity of the final result. We test our framework both qualitatively and quantitatively on a variety of real 3D scenes and text prompts, demonstrating realistic multi-view consistent results with much flexibility and diversity compared to the baselines. Finally, we show the applicability of our framework for several 3D editing applications, including adding new objects to a scene, removing/replacing/altering existing objects, and texture conversion.
Is Vanilla MLP in Neural Radiance Field Enough for Few-shot View Synthesis?
Neural Radiance Field (NeRF) has achieved superior performance for novel view synthesis by modeling the scene with a Multi-Layer Perception (MLP) and a volume rendering procedure, however, when fewer known views are given (i.e., few-shot view synthesis), the model is prone to overfit the given views. To handle this issue, previous efforts have been made towards leveraging learned priors or introducing additional regularizations. In contrast, in this paper, we for the first time provide an orthogonal method from the perspective of network structure. Given the observation that trivially reducing the number of model parameters alleviates the overfitting issue, but at the cost of missing details, we propose the multi-input MLP (mi-MLP) that incorporates the inputs (i.e., location and viewing direction) of the vanilla MLP into each layer to prevent the overfitting issue without harming detailed synthesis. To further reduce the artifacts, we propose to model colors and volume density separately and present two regularization terms. Extensive experiments on multiple datasets demonstrate that: 1) although the proposed mi-MLP is easy to implement, it is surprisingly effective as it boosts the PSNR of the baseline from 14.73 to 24.23. 2) the overall framework achieves state-of-the-art results on a wide range of benchmarks. We will release the code upon publication.
Feature4X: Bridging Any Monocular Video to 4D Agentic AI with Versatile Gaussian Feature Fields
Recent advancements in 2D and multimodal models have achieved remarkable success by leveraging large-scale training on extensive datasets. However, extending these achievements to enable free-form interactions and high-level semantic operations with complex 3D/4D scenes remains challenging. This difficulty stems from the limited availability of large-scale, annotated 3D/4D or multi-view datasets, which are crucial for generalizable vision and language tasks such as open-vocabulary and prompt-based segmentation, language-guided editing, and visual question answering (VQA). In this paper, we introduce Feature4X, a universal framework designed to extend any functionality from 2D vision foundation model into the 4D realm, using only monocular video input, which is widely available from user-generated content. The "X" in Feature4X represents its versatility, enabling any task through adaptable, model-conditioned 4D feature field distillation. At the core of our framework is a dynamic optimization strategy that unifies multiple model capabilities into a single representation. Additionally, to the best of our knowledge, Feature4X is the first method to distill and lift the features of video foundation models (e.g. SAM2, InternVideo2) into an explicit 4D feature field using Gaussian Splatting. Our experiments showcase novel view segment anything, geometric and appearance scene editing, and free-form VQA across all time steps, empowered by LLMs in feedback loops. These advancements broaden the scope of agentic AI applications by providing a foundation for scalable, contextually and spatiotemporally aware systems capable of immersive dynamic 4D scene interaction.
CellForge: Agentic Design of Virtual Cell Models
Virtual cell modeling represents an emerging frontier at the intersection of artificial intelligence and biology, aiming to predict quantities such as responses to diverse perturbations quantitatively. However, autonomously building computational models for virtual cells is challenging due to the complexity of biological systems, the heterogeneity of data modalities, and the need for domain-specific expertise across multiple disciplines. Here, we introduce CellForge, an agentic system that leverages a multi-agent framework that transforms presented biological datasets and research objectives directly into optimized computational models for virtual cells. More specifically, given only raw single-cell multi-omics data and task descriptions as input, CellForge outputs both an optimized model architecture and executable code for training virtual cell models and inference. The framework integrates three core modules: Task Analysis for presented dataset characterization and relevant literature retrieval, Method Design, where specialized agents collaboratively develop optimized modeling strategies, and Experiment Execution for automated generation of code. The agents in the Design module are separated into experts with differing perspectives and a central moderator, and have to collaboratively exchange solutions until they achieve a reasonable consensus. We demonstrate CellForge's capabilities in single-cell perturbation prediction, using six diverse datasets that encompass gene knockouts, drug treatments, and cytokine stimulations across multiple modalities. CellForge consistently outperforms task-specific state-of-the-art methods. Overall, CellForge demonstrates how iterative interaction between LLM agents with differing perspectives provides better solutions than directly addressing a modeling challenge. Our code is publicly available at https://github.com/gersteinlab/CellForge.
Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks
We introduce llama-embed-nemotron-8b, an open-weights text embedding model that achieves state-of-the-art performance on the Multilingual Massive Text Embedding Benchmark (MMTEB) leaderboard as of October 21, 2025. While recent models show strong performance, their training data or methodologies are often not fully disclosed. We aim to address this by developing a fully open-source model, publicly releasing its weights and detailed ablation studies, and planning to share the curated training datasets. Our model demonstrates superior performance across all major embedding tasks -- including retrieval, classification and semantic textual similarity (STS) -- and excels in challenging multilingual scenarios, such as low-resource languages and cross-lingual setups. This state-of-the-art performance is driven by a novel data mix of 16.1 million query-document pairs, split between 7.7 million samples from public datasets and 8.4 million synthetically generated examples from various open-weight LLMs. One of our key contributions is a detailed ablation study analyzing core design choices, including a comparison of contrastive loss implementations, an evaluation of synthetic data generation (SDG) strategies, and the impact of model merging. The llama-embed-nemotron-8b is an instruction-aware model, supporting user-defined instructions to enhance performance for specific use-cases. This combination of top-tier performance, broad applicability, and user-driven flexibility enables it to serve as a universal text embedding solution.
Llama Nemoretriever Colembed: Top-Performing Text-Image Retrieval Model
Motivated by the growing demand for retrieval systems that operate across modalities, we introduce llama-nemoretriever-colembed, a unified text-image retrieval model that delivers state-of-the-art performance across multiple benchmarks. We release two model variants, 1B and 3B. The 3B model achieves state of the art performance, scoring NDCG@5 91.0 on ViDoRe V1 and 63.5 on ViDoRe V2, placing first on both leaderboards as of June 27, 2025. Our approach leverages the NVIDIA Eagle2 Vision-Language model (VLM), modifies its architecture by replacing causal attention with bidirectional attention, and integrates a ColBERT-style late interaction mechanism to enable fine-grained multimodal retrieval in a shared embedding space. While this mechanism delivers superior retrieval accuracy, it introduces trade-offs in storage and efficiency. We provide a comprehensive analysis of these trade-offs. Additionally, we adopt a two-stage training strategy to enhance the model's retrieval capabilities.
LLM-Based Routing in Mixture of Experts: A Novel Framework for Trading
Recent advances in deep learning and large language models (LLMs) have facilitated the deployment of the mixture-of-experts (MoE) mechanism in the stock investment domain. While these models have demonstrated promising trading performance, they are often unimodal, neglecting the wealth of information available in other modalities, such as textual data. Moreover, the traditional neural network-based router selection mechanism fails to consider contextual and real-world nuances, resulting in suboptimal expert selection. To address these limitations, we propose LLMoE, a novel framework that employs LLMs as the router within the MoE architecture. Specifically, we replace the conventional neural network-based router with LLMs, leveraging their extensive world knowledge and reasoning capabilities to select experts based on historical price data and stock news. This approach provides a more effective and interpretable selection mechanism. Our experiments on multimodal real-world stock datasets demonstrate that LLMoE outperforms state-of-the-art MoE models and other deep neural network approaches. Additionally, the flexible architecture of LLMoE allows for easy adaptation to various downstream tasks.
Workflow is All You Need: Escaping the "Statistical Smoothing Trap" via High-Entropy Information Foraging and Adversarial Pacing
Central to long-form text generation in vertical domains is the "impossible trinity" confronting current large language models (LLMs): the simultaneous achievement of low hallucination, deep logical coherence, and personalized expression. This study establishes that this bottleneck arises from existing generative paradigms succumbing to the Statistical Smoothing Trap, a phenomenon that overlooks the high-entropy information acquisition and structured cognitive processes integral to expert-level writing. To address this limitation, we propose the DeepNews Framework, an agentic workflow that explicitly models the implicit cognitive processes of seasoned financial journalists. The framework integrates three core modules: first, a dual-granularity retrieval mechanism grounded in information foraging theory, which enforces a 10:1 saturated information input ratio to mitigate hallucinatory outputs; second, schema-guided strategic planning, a process leveraging domain expert knowledge bases (narrative schemas) and Atomic Blocks to forge a robust logical skeleton; third, adversarial constraint prompting, a technique deploying tactics including Rhythm Break and Logic Fog to disrupt the probabilistic smoothness inherent in model-generated text. Experiments delineate a salient Knowledge Cliff in deep financial reporting: content truthfulness collapses when retrieved context falls below 15,000 characters, while a high-redundancy input exceeding 30,000 characters stabilizes the Hallucination-Free Rate (HFR) above 85%. In an ecological validity blind test conducted with a top-tier Chinese technology media outlet, the DeepNews system--built on a previous-generation model (DeepSeek-V3-0324)-achieved a 25% submission acceptance rate, significantly outperforming the 0% acceptance rate of zero-shot generation by a state-of-the-art (SOTA) model (GPT-5).
LatteReview: A Multi-Agent Framework for Systematic Review Automation Using Large Language Models
Systematic literature reviews and meta-analyses are essential for synthesizing research insights, but they remain time-intensive and labor-intensive due to the iterative processes of screening, evaluation, and data extraction. This paper introduces and evaluates LatteReview, a Python-based framework that leverages large language models (LLMs) and multi-agent systems to automate key elements of the systematic review process. Designed to streamline workflows while maintaining rigor, LatteReview utilizes modular agents for tasks such as title and abstract screening, relevance scoring, and structured data extraction. These agents operate within orchestrated workflows, supporting sequential and parallel review rounds, dynamic decision-making, and iterative refinement based on user feedback. LatteReview's architecture integrates LLM providers, enabling compatibility with both cloud-based and locally hosted models. The framework supports features such as Retrieval-Augmented Generation (RAG) for incorporating external context, multimodal reviews, Pydantic-based validation for structured inputs and outputs, and asynchronous programming for handling large-scale datasets. The framework is available on the GitHub repository, with detailed documentation and an installable package.
Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation
This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts, including single images, multi-view images, and text descriptions. The framework consists of 3D shape generation and texture generation. (1). The 3D shape generation pipeline employs a Variational Autoencoder (VAE) to encode implicit 3D geometries into a latent space and a diffusion network to generate latents conditioned on input prompts, with modifications to enhance model capacity. An alternative Artist-Created Mesh (AM) generation approach is also explored, yielding promising results for simpler geometries. (2). Texture generation involves a multi-stage process starting with frontal images generation followed by multi-view images generation, RGB-to-PBR texture conversion, and high-resolution multi-view texture refinement. A consistency scheduler is plugged into every stage, to enforce pixel-wise consistency among multi-view textures during inference, ensuring seamless integration. The pipeline demonstrates effective handling of diverse input formats, leveraging advanced neural architectures and novel methodologies to produce high-quality 3D content. This report details the system architecture, experimental results, and potential future directions to improve and expand the framework. The source code and pretrained weights are released at: https://github.com/Tencent/Tencent-XR-3DGen.
Qwen3 Technical Report
In this work, we present Qwen3, the latest version of the Qwen model family. Qwen3 comprises a series of large language models (LLMs) designed to advance performance, efficiency, and multilingual capabilities. The Qwen3 series includes models of both dense and Mixture-of-Expert (MoE) architectures, with parameter scales ranging from 0.6 to 235 billion. A key innovation in Qwen3 is the integration of thinking mode (for complex, multi-step reasoning) and non-thinking mode (for rapid, context-driven responses) into a unified framework. This eliminates the need to switch between different models--such as chat-optimized models (e.g., GPT-4o) and dedicated reasoning models (e.g., QwQ-32B)--and enables dynamic mode switching based on user queries or chat templates. Meanwhile, Qwen3 introduces a thinking budget mechanism, allowing users to allocate computational resources adaptively during inference, thereby balancing latency and performance based on task complexity. Moreover, by leveraging the knowledge from the flagship models, we significantly reduce the computational resources required to build smaller-scale models, while ensuring their highly competitive performance. Empirical evaluations demonstrate that Qwen3 achieves state-of-the-art results across diverse benchmarks, including tasks in code generation, mathematical reasoning, agent tasks, etc., competitive against larger MoE models and proprietary models. Compared to its predecessor Qwen2.5, Qwen3 expands multilingual support from 29 to 119 languages and dialects, enhancing global accessibility through improved cross-lingual understanding and generation capabilities. To facilitate reproducibility and community-driven research and development, all Qwen3 models are publicly accessible under Apache 2.0.
Captions Speak Louder than Images (CASLIE): Generalizing Foundation Models for E-commerce from High-quality Multimodal Instruction Data
Leveraging multimodal data to drive breakthroughs in e-commerce applications through Multimodal Foundation Models (MFMs) is gaining increasing attention from the research community. However, there are significant challenges that hinder the optimal use of multimodal e-commerce data by foundation models: (1) the scarcity of large-scale, high-quality multimodal benchmark datasets; and (2) the lack of effective multimodal information integration methods. To address these challenges, in this paper, we introduce MMECInstruct, the first-ever, large-scale, and high-quality multimodal instruction dataset for e-commerce. We also develop CASLIE, a simple, lightweight, yet effective framework for integrating multimodal information for e-commerce. Leveraging MMECInstruct, we fine-tune a series of e-commerce MFMs within CASLIE, denoted as CASLIE models. Our comprehensive evaluation demonstrates that CASLIE models substantially outperform 5 categories of advanced baseline models in the in-domain evaluation. Moreover, CASLIE models show strong generalizability to out-of-domain settings. MMECInstruct and CASLIE models are publicly accessible through https://ninglab.github.io/CASLIE/.
DreamDissector: Learning Disentangled Text-to-3D Generation from 2D Diffusion Priors
Text-to-3D generation has recently seen significant progress. To enhance its practicality in real-world applications, it is crucial to generate multiple independent objects with interactions, similar to layer-compositing in 2D image editing. However, existing text-to-3D methods struggle with this task, as they are designed to generate either non-independent objects or independent objects lacking spatially plausible interactions. Addressing this, we propose DreamDissector, a text-to-3D method capable of generating multiple independent objects with interactions. DreamDissector accepts a multi-object text-to-3D NeRF as input and produces independent textured meshes. To achieve this, we introduce the Neural Category Field (NeCF) for disentangling the input NeRF. Additionally, we present the Category Score Distillation Sampling (CSDS), facilitated by a Deep Concept Mining (DCM) module, to tackle the concept gap issue in diffusion models. By leveraging NeCF and CSDS, we can effectively derive sub-NeRFs from the original scene. Further refinement enhances geometry and texture. Our experimental results validate the effectiveness of DreamDissector, providing users with novel means to control 3D synthesis at the object level and potentially opening avenues for various creative applications in the future.
Towards Robust Multi-Modal Reasoning via Model Selection
The reasoning capabilities of LLM (Large Language Model) are widely acknowledged in recent research, inspiring studies on tool learning and autonomous agents. LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving. Unlike methods invoking tools like calculators or weather APIs for straightforward tasks, multi-modal agents excel by integrating diverse AI models for complex challenges. However, current multi-modal agents neglect the significance of model selection: they primarily focus on the planning and execution phases, and will only invoke predefined task-specific models for each subtask, making the execution fragile. Meanwhile, other traditional model selection methods are either incompatible with or suboptimal for the multi-modal agent scenarios, due to ignorance of dependencies among subtasks arising by multi-step reasoning. To this end, we identify the key challenges therein and propose the M^3 framework as a plug-in with negligible runtime overhead at test-time. This framework improves model selection and bolsters the robustness of multi-modal agents in multi-step reasoning. In the absence of suitable benchmarks, we create MS-GQA, a new dataset specifically designed to investigate the model selection challenge in multi-modal agents. Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies, thereby robustifying the overall reasoning process. Our code and benchmark: https://github.com/LINs-lab/M3.
NExT-OMNI: Towards Any-to-Any Omnimodal Foundation Models with Discrete Flow Matching
Next-generation multimodal foundation models capable of any-to-any cross-modal generation and multi-turn interaction will serve as core components of artificial general intelligence systems, playing a pivotal role in human-machine interaction. However, most existing multimodal models remain constrained by autoregressive architectures, whose inherent limitations prevent a balanced integration of understanding and generation capabilities. Although hybrid and decoupling strategies have been explored to address these tasks within unified frameworks separately, their redundant, non-integrated designs limit their applicability to broader scenarios, such as cross-modal retrieval. In this work, we introduce NExT-OMNI, an open-source omnimodal foundation model that achieves unified modeling through discrete flow paradigms. By leveraging metric-induced probability paths and kinetic optimal velocities, NExT-OMNI natively supports any-to-any understanding and generation with enhanced response efficiency, while enabling broader application scenarios through concise unified representations rather than task-decoupled designs. Trained on large-scale interleaved text, image, video, and audio data, NExT-OMNI delivers competitive performance on multimodal generation and understanding benchmarks, while outperforming prior unified models in multi-turn multimodal interaction and cross-modal retrieval, highlighting its architectural advantages as a next-generation multimodal foundation model. To advance further research, we release training details, data protocols, and open-source both the code and model checkpoints.
Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM Agents
In this paper, we present a novel framework for enhancing the capabilities of large language models (LLMs) by leveraging the power of multi-agent systems. Our framework introduces a collaborative environment where multiple intelligent agent components, each with distinctive attributes and roles, work together to handle complex tasks more efficiently and effectively. We demonstrate the practicality and versatility of our framework through case studies in artificial general intelligence (AGI), specifically focusing on the Auto-GPT and BabyAGI models. We also examine the "Gorilla" model, which integrates external APIs into the LLM. Our framework addresses limitations and challenges such as looping issues, security risks, scalability, system evaluation, and ethical considerations. By modeling various domains such as courtroom simulations and software development scenarios, we showcase the potential applications and benefits of our proposed multi-agent system. Our framework provides an avenue for advancing the capabilities and performance of LLMs through collaboration and knowledge exchange among intelligent agents.
Generalizable Neural Voxels for Fast Human Radiance Fields
Rendering moving human bodies at free viewpoints only from a monocular video is quite a challenging problem. The information is too sparse to model complicated human body structures and motions from both view and pose dimensions. Neural radiance fields (NeRF) have shown great power in novel view synthesis and have been applied to human body rendering. However, most current NeRF-based methods bear huge costs for both training and rendering, which impedes the wide applications in real-life scenarios. In this paper, we propose a rendering framework that can learn moving human body structures extremely quickly from a monocular video. The framework is built by integrating both neural fields and neural voxels. Especially, a set of generalizable neural voxels are constructed. With pretrained on various human bodies, these general voxels represent a basic skeleton and can provide strong geometric priors. For the fine-tuning process, individual voxels are constructed for learning differential textures, complementary to general voxels. Thus learning a novel body can be further accelerated, taking only a few minutes. Our method shows significantly higher training efficiency compared with previous methods, while maintaining similar rendering quality. The project page is at https://taoranyi.com/gneuvox .
NVIDIA Nemotron Nano V2 VL
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
Cube: A Roblox View of 3D Intelligence
Foundation models trained on vast amounts of data have demonstrated remarkable reasoning and generation capabilities in the domains of text, images, audio and video. Our goal at Roblox is to build such a foundation model for 3D intelligence, a model that can support developers in producing all aspects of a Roblox experience, from generating 3D objects and scenes to rigging characters for animation to producing programmatic scripts describing object behaviors. We discuss three key design requirements for such a 3D foundation model and then present our first step towards building such a model. We expect that 3D geometric shapes will be a core data type and describe our solution for 3D shape tokenizer. We show how our tokenization scheme can be used in applications for text-to-shape generation, shape-to-text generation and text-to-scene generation. We demonstrate how these applications can collaborate with existing large language models (LLMs) to perform scene analysis and reasoning. We conclude with a discussion outlining our path to building a fully unified foundation model for 3D intelligence.
CookAnything: A Framework for Flexible and Consistent Multi-Step Recipe Image Generation
Cooking is a sequential and visually grounded activity, where each step such as chopping, mixing, or frying carries both procedural logic and visual semantics. While recent diffusion models have shown strong capabilities in text-to-image generation, they struggle to handle structured multi-step scenarios like recipe illustration. Additionally, current recipe illustration methods are unable to adjust to the natural variability in recipe length, generating a fixed number of images regardless of the actual instructions structure. To address these limitations, we present CookAnything, a flexible and consistent diffusion-based framework that generates coherent, semantically distinct image sequences from textual cooking instructions of arbitrary length. The framework introduces three key components: (1) Step-wise Regional Control (SRC), which aligns textual steps with corresponding image regions within a single denoising process; (2) Flexible RoPE, a step-aware positional encoding mechanism that enhances both temporal coherence and spatial diversity; and (3) Cross-Step Consistency Control (CSCC), which maintains fine-grained ingredient consistency across steps. Experimental results on recipe illustration benchmarks show that CookAnything performs better than existing methods in training-based and training-free settings. The proposed framework supports scalable, high-quality visual synthesis of complex multi-step instructions and holds significant potential for broad applications in instructional media, and procedural content creation.
PhysRig: Differentiable Physics-Based Skinning and Rigging Framework for Realistic Articulated Object Modeling
Skinning and rigging are fundamental components in animation, articulated object reconstruction, motion transfer, and 4D generation. Existing approaches predominantly rely on Linear Blend Skinning (LBS), due to its simplicity and differentiability. However, LBS introduces artifacts such as volume loss and unnatural deformations, and it fails to model elastic materials like soft tissues, fur, and flexible appendages (e.g., elephant trunks, ears, and fatty tissues). In this work, we propose PhysRig: a differentiable physics-based skinning and rigging framework that overcomes these limitations by embedding the rigid skeleton into a volumetric representation (e.g., a tetrahedral mesh), which is simulated as a deformable soft-body structure driven by the animated skeleton. Our method leverages continuum mechanics and discretizes the object as particles embedded in an Eulerian background grid to ensure differentiability with respect to both material properties and skeletal motion. Additionally, we introduce material prototypes, significantly reducing the learning space while maintaining high expressiveness. To evaluate our framework, we construct a comprehensive synthetic dataset using meshes from Objaverse, The Amazing Animals Zoo, and MixaMo, covering diverse object categories and motion patterns. Our method consistently outperforms traditional LBS-based approaches, generating more realistic and physically plausible results. Furthermore, we demonstrate the applicability of our framework in the pose transfer task highlighting its versatility for articulated object modeling.
Make-It-Animatable: An Efficient Framework for Authoring Animation-Ready 3D Characters
3D characters are essential to modern creative industries, but making them animatable often demands extensive manual work in tasks like rigging and skinning. Existing automatic rigging tools face several limitations, including the necessity for manual annotations, rigid skeleton topologies, and limited generalization across diverse shapes and poses. An alternative approach is to generate animatable avatars pre-bound to a rigged template mesh. However, this method often lacks flexibility and is typically limited to realistic human shapes. To address these issues, we present Make-It-Animatable, a novel data-driven method to make any 3D humanoid model ready for character animation in less than one second, regardless of its shapes and poses. Our unified framework generates high-quality blend weights, bones, and pose transformations. By incorporating a particle-based shape autoencoder, our approach supports various 3D representations, including meshes and 3D Gaussian splats. Additionally, we employ a coarse-to-fine representation and a structure-aware modeling strategy to ensure both accuracy and robustness, even for characters with non-standard skeleton structures. We conducted extensive experiments to validate our framework's effectiveness. Compared to existing methods, our approach demonstrates significant improvements in both quality and speed.
Anywhere: A Multi-Agent Framework for Reliable and Diverse Foreground-Conditioned Image Inpainting
Recent advancements in image inpainting, particularly through diffusion modeling, have yielded promising outcomes. However, when tested in scenarios involving the completion of images based on the foreground objects, current methods that aim to inpaint an image in an end-to-end manner encounter challenges such as "over-imagination", inconsistency between foreground and background, and limited diversity. In response, we introduce Anywhere, a pioneering multi-agent framework designed to address these issues. Anywhere utilizes a sophisticated pipeline framework comprising various agents such as Visual Language Model (VLM), Large Language Model (LLM), and image generation models. This framework consists of three principal components: the prompt generation module, the image generation module, and the outcome analyzer. The prompt generation module conducts a semantic analysis of the input foreground image, leveraging VLM to predict relevant language descriptions and LLM to recommend optimal language prompts. In the image generation module, we employ a text-guided canny-to-image generation model to create a template image based on the edge map of the foreground image and language prompts, and an image refiner to produce the outcome by blending the input foreground and the template image. The outcome analyzer employs VLM to evaluate image content rationality, aesthetic score, and foreground-background relevance, triggering prompt and image regeneration as needed. Extensive experiments demonstrate that our Anywhere framework excels in foreground-conditioned image inpainting, mitigating "over-imagination", resolving foreground-background discrepancies, and enhancing diversity. It successfully elevates foreground-conditioned image inpainting to produce more reliable and diverse results.
MMFactory: A Universal Solution Search Engine for Vision-Language Tasks
With advances in foundational and vision-language models, and effective fine-tuning techniques, a large number of both general and special-purpose models have been developed for a variety of visual tasks. Despite the flexibility and accessibility of these models, no single model is able to handle all tasks and/or applications that may be envisioned by potential users. Recent approaches, such as visual programming and multimodal LLMs with integrated tools aim to tackle complex visual tasks, by way of program synthesis. However, such approaches overlook user constraints (e.g., performance / computational needs), produce test-time sample-specific solutions that are difficult to deploy, and, sometimes, require low-level instructions that maybe beyond the abilities of a naive user. To address these limitations, we introduce MMFactory, a universal framework that includes model and metrics routing components, acting like a solution search engine across various available models. Based on a task description and few sample input-output pairs and (optionally) resource and/or performance constraints, MMFactory can suggest a diverse pool of programmatic solutions by instantiating and combining visio-lingual tools from its model repository. In addition to synthesizing these solutions, MMFactory also proposes metrics and benchmarks performance / resource characteristics, allowing users to pick a solution that meets their unique design constraints. From the technical perspective, we also introduced a committee-based solution proposer that leverages multi-agent LLM conversation to generate executable, diverse, universal, and robust solutions for the user. Experimental results show that MMFactory outperforms existing methods by delivering state-of-the-art solutions tailored to user problem specifications. Project page is available at https://davidhalladay.github.io/mmfactory_demo.
FiNER: Financial Named Entity Recognition Dataset and Weak-Supervision Model
The development of annotated datasets over the 21st century has helped us truly realize the power of deep learning. Most of the datasets created for the named-entity-recognition (NER) task are not domain specific. Finance domain presents specific challenges to the NER task and a domain specific dataset would help push the boundaries of finance research. In our work, we develop the first high-quality NER dataset for the finance domain. To set the benchmark for the dataset, we develop and test a weak-supervision-based framework for the NER task. We extend the current weak-supervision framework to make it employable for span-level classification. Our weak-ner framework and the dataset are publicly available on GitHub and Hugging Face.
AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment
Motivated by the transformative capabilities of large language models (LLMs) across various natural language tasks, there has been a growing demand to deploy these models effectively across diverse real-world applications and platforms. However, the challenge of efficiently deploying LLMs has become increasingly pronounced due to the varying application-specific performance requirements and the rapid evolution of computational platforms, which feature diverse resource constraints and deployment flows. These varying requirements necessitate LLMs that can adapt their structures (depth and width) for optimal efficiency across different platforms and application specifications. To address this critical gap, we propose AmoebaLLM, a novel framework designed to enable the instant derivation of LLM subnets of arbitrary shapes, which achieve the accuracy-efficiency frontier and can be extracted immediately after a one-time fine-tuning. In this way, AmoebaLLM significantly facilitates rapid deployment tailored to various platforms and applications. Specifically, AmoebaLLM integrates three innovative components: (1) a knowledge-preserving subnet selection strategy that features a dynamic-programming approach for depth shrinking and an importance-driven method for width shrinking; (2) a shape-aware mixture of LoRAs to mitigate gradient conflicts among subnets during fine-tuning; and (3) an in-place distillation scheme with loss-magnitude balancing as the fine-tuning objective. Extensive experiments validate that AmoebaLLM not only sets new standards in LLM adaptability but also successfully delivers subnets that achieve state-of-the-art trade-offs between accuracy and efficiency.
Enhancing Financial Question Answering with a Multi-Agent Reflection Framework
While Large Language Models (LLMs) have shown impressive capabilities in numerous Natural Language Processing (NLP) tasks, they still struggle with financial question answering (QA), particularly when numerical reasoning is required. Recently, LLM-based multi-agent frameworks have demonstrated remarkable effectiveness in multi-step reasoning, which is crucial for financial QA tasks as it involves extracting relevant information from tables and text and then performing numerical reasoning on the extracted data to infer answers. In this study, we propose a multi-agent framework incorporating a critic agent that reflects on the reasoning steps and final answers for each question. Additionally, we enhance our system by adding multiple critic agents, each focusing on a specific aspect of the answer. Our results indicate that this framework significantly improves performance compared to single-agent reasoning, with an average performance increase of 15% for the LLaMA3-8B model and 5% for the LLaMA3-70B model. Furthermore, our framework performs on par with, and in some cases surpasses, larger single-agent LLMs such as LLaMA3.1-405B and GPT-4o-mini, though it falls slightly short compared to Claude-3.5 Sonnet. Overall, our framework presents an effective solution to enhance open-source LLMs for financial QA tasks, offering a cost-effective alternative to larger models like Claude-3.5 Sonnet.
LatticeWorld: A Multimodal Large Language Model-Empowered Framework for Interactive Complex World Generation
Recent research has been increasingly focusing on developing 3D world models that simulate complex real-world scenarios. World models have found broad applications across various domains, including embodied AI, autonomous driving, entertainment, etc. A more realistic simulation with accurate physics will effectively narrow the sim-to-real gap and allow us to gather rich information about the real world conveniently. While traditional manual modeling has enabled the creation of virtual 3D scenes, modern approaches have leveraged advanced machine learning algorithms for 3D world generation, with most recent advances focusing on generative methods that can create virtual worlds based on user instructions. This work explores such a research direction by proposing LatticeWorld, a simple yet effective 3D world generation framework that streamlines the industrial production pipeline of 3D environments. LatticeWorld leverages lightweight LLMs (LLaMA-2-7B) alongside the industry-grade rendering engine (e.g., Unreal Engine 5) to generate a dynamic environment. Our proposed framework accepts textual descriptions and visual instructions as multimodal inputs and creates large-scale 3D interactive worlds with dynamic agents, featuring competitive multi-agent interaction, high-fidelity physics simulation, and real-time rendering. We conduct comprehensive experiments to evaluate LatticeWorld, showing that it achieves superior accuracy in scene layout generation and visual fidelity. Moreover, LatticeWorld achieves over a 90times increase in industrial production efficiency while maintaining high creative quality compared with traditional manual production methods. Our demo video is available at https://youtu.be/8VWZXpERR18
Novel Benchmark for NER in the Wastewater and Stormwater Domain
Effective wastewater and stormwater management is essential for urban sustainability and environmental protection. Extracting structured knowledge from reports and regulations is challenging due to domainspecific terminology and multilingual contexts. This work focuses on domain-specific Named Entity Recognition (NER) as a first step towards effective relation and information extraction to support decision making. A multilingual benchmark is crucial for evaluating these methods. This study develops a French-Italian domain-specific text corpus for wastewater management. It evaluates state-of-the-art NER methods, including LLM-based approaches, to provide a reliable baseline for future strategies and explores automated annotation projection in view of an extension of the corpus to new languages.
OCTCube-M: A 3D multimodal optical coherence tomography foundation model for retinal and systemic diseases with cross-cohort and cross-device validation
We present OCTCube-M, a 3D OCT-based multi-modal foundation model for jointly analyzing OCT and en face images. OCTCube-M first developed OCTCube, a 3D foundation model pre-trained on 26,685 3D OCT volumes encompassing 1.62 million 2D OCT images. It then exploits a novel multi-modal contrastive learning framework COEP to integrate other retinal imaging modalities, such as fundus autofluorescence and infrared retinal imaging, into OCTCube, efficiently extending it into multi-modal foundation models. OCTCube achieves best performance on predicting 8 retinal diseases, demonstrating strong generalizability on cross-cohort, cross-device and cross-modality prediction. OCTCube can also predict cross-organ nodule malignancy (CT) and low cardiac ejection fraction as well as systemic diseases, such as diabetes and hypertension, revealing its wide applicability beyond retinal diseases. We further develop OCTCube-IR using COEP with 26,685 OCT and IR image pairs. OCTCube-IR can accurately retrieve between OCT and IR images, allowing joint analysis between 3D and 2D retinal imaging modalities. Finally, we trained a tri-modal foundation model OCTCube-EF from 4 million 2D OCT images and 400K en face retinal images. OCTCube-EF attains the best performance on predicting the growth rate of geographic atrophy (GA) across datasets collected from 6 multi-center global trials conducted in 23 countries. This improvement is statistically equivalent to running a clinical trial with more than double the size of the original study. Our analysis based on another retrospective case study reveals OCTCube-EF's ability to avoid false positive Phase-III results according to its accurate treatment effect estimation on the Phase-II results. In sum, OCTCube-M is a 3D multi-modal foundation model framework that integrates OCT and other retinal imaging modalities revealing substantial diagnostic and prognostic benefits.
JM3D & JM3D-LLM: Elevating 3D Representation with Joint Multi-modal Cues
The rising importance of 3D representation learning, pivotal in computer vision, autonomous driving, and robotics, is evident. However, a prevailing trend, which straightforwardly resorted to transferring 2D alignment strategies to the 3D domain, encounters three distinct challenges: (1) Information Degradation: This arises from the alignment of 3D data with mere single-view 2D images and generic texts, neglecting the need for multi-view images and detailed subcategory texts. (2) Insufficient Synergy: These strategies align 3D representations to image and text features individually, hampering the overall optimization for 3D models. (3) Underutilization: The fine-grained information inherent in the learned representations is often not fully exploited, indicating a potential loss in detail. To address these issues, we introduce JM3D, a comprehensive approach integrating point cloud, text, and image. Key contributions include the Structured Multimodal Organizer (SMO), enriching vision-language representation with multiple views and hierarchical text, and the Joint Multi-modal Alignment (JMA), combining language understanding with visual representation. Our advanced model, JM3D-LLM, marries 3D representation with large language models via efficient fine-tuning. Evaluations on ModelNet40 and ScanObjectNN establish JM3D's superiority. The superior performance of JM3D-LLM further underscores the effectiveness of our representation transfer approach. Our code and models are available at https://github.com/Mr-Neko/JM3D.
MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems
We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model-which allows us to easily incorporate diverse materials, scales, and mechanical features-it performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic.
Enhancing Customer Churn Prediction in Telecommunications: An Adaptive Ensemble Learning Approach
Customer churn, the discontinuation of services by existing customers, poses a significant challenge to the telecommunications industry. This paper proposes a novel adaptive ensemble learning framework for highly accurate customer churn prediction. The framework integrates multiple base models, including XGBoost, LightGBM, LSTM, a Multi-Layer Perceptron (MLP) neural network, and Support Vector Machine (SVM). These models are strategically combined using a stacking ensemble method, further enhanced by meta-feature generation from base model predictions. A rigorous data preprocessing pipeline, coupled with a multi-faceted feature engineering approach, optimizes model performance. The framework is evaluated on three publicly available telecom churn datasets, demonstrating substantial accuracy improvements over state-of-the-art techniques. The research achieves a remarkable 99.28% accuracy, signifying a major advancement in churn prediction.The implications of this research for developing proactive customer retention strategies withinthe telecommunications industry are discussed.
DreamWaltz: Make a Scene with Complex 3D Animatable Avatars
We present DreamWaltz, a novel framework for generating and animating complex 3D avatars given text guidance and parametric human body prior. While recent methods have shown encouraging results for text-to-3D generation of common objects, creating high-quality and animatable 3D avatars remains challenging. To create high-quality 3D avatars, DreamWaltz proposes 3D-consistent occlusion-aware Score Distillation Sampling (SDS) to optimize implicit neural representations with canonical poses. It provides view-aligned supervision via 3D-aware skeleton conditioning which enables complex avatar generation without artifacts and multiple faces. For animation, our method learns an animatable 3D avatar representation from abundant image priors of diffusion model conditioned on various poses, which could animate complex non-rigged avatars given arbitrary poses without retraining. Extensive evaluations demonstrate that DreamWaltz is an effective and robust approach for creating 3D avatars that can take on complex shapes and appearances as well as novel poses for animation. The proposed framework further enables the creation of complex scenes with diverse compositions, including avatar-avatar, avatar-object and avatar-scene interactions. See https://dreamwaltz3d.github.io/ for more vivid 3D avatar and animation results.
Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.
MetaAID 2.0: An Extensible Framework for Developing Metaverse Applications via Human-controllable Pre-trained Models
Pre-trained models (PM) have achieved promising results in content generation. However, the space for human creativity and imagination is endless, and it is still unclear whether the existing models can meet the needs. Model-generated content faces uncontrollable responsibility and potential unethical problems. This paper presents the MetaAID 2.0 framework, dedicated to human-controllable PM information flow. Through the PM information flow, humans can autonomously control their creativity. Through the Universal Resource Identifier extension (URI-extension), the responsibility of the model outputs can be controlled. Our framework includes modules for handling multimodal data and supporting transformation and generation. The URI-extension consists of URI, detailed description, and URI embeddings, and supports fuzzy retrieval of model outputs. Based on this framework, we conduct experiments on PM information flow and URI embeddings, and the results demonstrate the good performance of our system.
MirrorLimb: Implementing hand pose acquisition and robot teleoperation based on RealMirror
In this work, we present a PICO-based robot remote operating framework that enables low-cost, real-time acquisition of hand motion and pose data, outperforming mainstream visual tracking and motion capture solutions in terms of cost-effectiveness. The framework is natively compatible with the RealMirror ecosystem, offering ready-to-use functionality for stable and precise robotic trajectory recording within the Isaac simulation environment, thereby facilitating the construction of Vision-Language-Action (VLA) datasets. Additionally, the system supports real-time teleoperation of a variety of end-effector-equipped robots, including dexterous hands and robotic grippers. This work aims to lower the technical barriers in the study of upper-limb robotic manipulation, thereby accelerating advancements in VLA-related research.
PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics
We propose PROSE-FD, a zero-shot multimodal PDE foundational model for simultaneous prediction of heterogeneous two-dimensional physical systems related to distinct fluid dynamics settings. These systems include shallow water equations and the Navier-Stokes equations with incompressible and compressible flow, regular and complex geometries, and different buoyancy settings. This work presents a new transformer-based multi-operator learning approach that fuses symbolic information to perform operator-based data prediction, i.e. non-autoregressive. By incorporating multiple modalities in the inputs, the PDE foundation model builds in a pathway for including mathematical descriptions of the physical behavior. We pre-train our foundation model on 6 parametric families of equations collected from 13 datasets, including over 60K trajectories. Our model outperforms popular operator learning, computer vision, and multi-physics models, in benchmark forward prediction tasks. We test our architecture choices with ablation studies.
CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents
The development of autonomous agents increasingly relies on Multimodal Language Models (MLMs) to perform tasks described in natural language with GUI environments, such as websites, desktop computers, or mobile phones. Existing benchmarks for MLM agents in interactive environments are limited by their focus on a single environment, lack of detailed and generalized evaluation methods, and the complexities of constructing tasks and evaluators. To overcome these limitations, we introduce Crab, the first agent benchmark framework designed to support cross-environment tasks, incorporating a graph-based fine-grained evaluation method and an efficient mechanism for task and evaluator construction. Our framework supports multiple devices and can be easily extended to any environment with a Python interface. Leveraging Crab, we developed a cross-platform Crab Benchmark-v0 comprising 100 tasks in computer desktop and mobile phone environments. We evaluated four advanced MLMs using different single and multi-agent system configurations on this benchmark. The experimental results demonstrate that the single agent with GPT-4o achieves the best completion ratio of 35.26%. All framework code, agent code, and task datasets are publicly available at https://github.com/camel-ai/crab.
Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search
Recently, test-time scaling has garnered significant attention from the research community, largely due to the substantial advancements of the o1 model released by OpenAI. By allocating more computational resources during the inference phase, large language models~(LLMs) can extensively explore the solution space by generating more thought tokens or diverse solutions, thereby producing more accurate responses. However, developing an o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research. In this paper, we present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms. This framework is implemented by integrating the policy model, reward model, and search algorithm. It is primarily constructed around a tree search algorithm, where the policy model navigates a dynamically expanding tree guided by a specially trained reward model. We thoroughly explore various design considerations necessary for implementing this framework and provide a detailed report of the technical aspects. To assess the effectiveness of our approach, we focus on mathematical reasoning tasks and conduct extensive evaluations on four challenging datasets, significantly enhancing the reasoning abilities of LLMs.
Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO), demonstrating strong transferability across diverse remote sensing tasks. While prior work has focused on network architectures and training strategies, the role of dataset curation, especially in balancing and diversifying pre-training datasets, remains underexplored. In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery, which can lead to biased representations and inefficient training. In this work, we propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance. Our method iteratively refines the training set without requiring a pre-existing feature extractor, making it well-suited for domains where curated datasets are limited or unavailable. We demonstrate our approach on the Sentinel-1 Wave Mode (WV) Synthetic Aperture Radar (SAR) archive, a challenging dataset dominated by ocean observations. We train models from scratch on the entire Sentinel-1 WV archive spanning 10 years. Across three downstream tasks, our results show that dynamic pruning improves both computational efficiency and representation quality, leading to stronger transferability. We also release the weights of Nereus-SAR-1, the first model in the Nereus family, a series of foundation models for ocean observation and analysis using SAR imagery, at github.com/galeio-research/nereus-sar-models/.
Delicate Textured Mesh Recovery from NeRF via Adaptive Surface Refinement
Neural Radiance Fields (NeRF) have constituted a remarkable breakthrough in image-based 3D reconstruction. However, their implicit volumetric representations differ significantly from the widely-adopted polygonal meshes and lack support from common 3D software and hardware, making their rendering and manipulation inefficient. To overcome this limitation, we present a novel framework that generates textured surface meshes from images. Our approach begins by efficiently initializing the geometry and view-dependency decomposed appearance with a NeRF. Subsequently, a coarse mesh is extracted, and an iterative surface refining algorithm is developed to adaptively adjust both vertex positions and face density based on re-projected rendering errors. We jointly refine the appearance with geometry and bake it into texture images for real-time rendering. Extensive experiments demonstrate that our method achieves superior mesh quality and competitive rendering quality.
Differentiable Model Selection for Ensemble Learning
Model selection is a strategy aimed at creating accurate and robust models. A key challenge in designing these algorithms is identifying the optimal model for classifying any particular input sample. This paper addresses this challenge and proposes a novel framework for differentiable model selection integrating machine learning and combinatorial optimization. The framework is tailored for ensemble learning, a strategy that combines the outputs of individually pre-trained models, and learns to select appropriate ensemble members for a particular input sample by transforming the ensemble learning task into a differentiable selection program trained end-to-end within the ensemble learning model. Tested on various tasks, the proposed framework demonstrates its versatility and effectiveness, outperforming conventional and advanced consensus rules across a variety of settings and learning tasks.
PyVision: Agentic Vision with Dynamic Tooling
LLMs are increasingly deployed as agents, systems capable of planning, reasoning, and dynamically calling external tools. However, in visual reasoning, prior approaches largely remain limited by predefined workflows and static toolsets. In this report, we present PyVision, an interactive, multi-turn framework that enables MLLMs to autonomously generate, execute, and refine Python-based tools tailored to the task at hand, unlocking flexible and interpretable problem-solving. We develop a taxonomy of the tools created by PyVision and analyze their usage across a diverse set of benchmarks. Quantitatively, PyVision achieves consistent performance gains, boosting GPT-4.1 by +7.8% on V* and Claude-4.0-Sonnet by +31.1% on VLMsAreBlind-mini. These results point to a broader shift: dynamic tooling allows models not just to use tools, but to invent them, advancing toward more agentic visual reasoning.
Loong: Synthesize Long Chain-of-Thoughts at Scale through Verifiers
Recent advances in Large Language Models (LLMs) have shown that their reasoning capabilities can be significantly improved through Reinforcement Learning with Verifiable Reward (RLVR), particularly in domains like mathematics and programming, where ground-truth correctness can be automatically evaluated. However, extending this success to other reasoning-intensive domains remains challenging due to the scarcity of high-quality, verifiable datasets and the high cost of human supervision. In this work, we introduce the Loong Project: an open-source framework for scalable synthetic data generation and verification across a diverse range of reasoning-intensive domains. The framework consists of two key components: (1) LoongBench, a curated seed dataset containing 8,729 human-vetted examples across 12 domains (e.g., Advanced Mathematics, Chemistry, Logic), each paired with executable code and rich metadata; and (2) LoongEnv, a modular synthetic data generation environment that supports multiple prompting strategies to produce new question-answer-code triples. Together, these components form an agent-environment loop that enables reinforcement learning, where an LLM-based agent is rewarded for generating Chain-of-Thought (CoT) solutions that align with code-executed answers. Empirically, we benchmark LoongBench on a broad suite of both open-source and proprietary LLMs to evaluate domain coverage and reveal performance bottlenecks. In addition, we conduct a comprehensive analysis of synthetic data generated by LoongEnv, examining correctness, difficulty, and diversity. Code and documentation are available at https://github.com/camel-ai/loong.
ICE-G: Image Conditional Editing of 3D Gaussian Splats
Recently many techniques have emerged to create high quality 3D assets and scenes. When it comes to editing of these objects, however, existing approaches are either slow, compromise on quality, or do not provide enough customization. We introduce a novel approach to quickly edit a 3D model from a single reference view. Our technique first segments the edit image, and then matches semantically corresponding regions across chosen segmented dataset views using DINO features. A color or texture change from a particular region of the edit image can then be applied to other views automatically in a semantically sensible manner. These edited views act as an updated dataset to further train and re-style the 3D scene. The end-result is therefore an edited 3D model. Our framework enables a wide variety of editing tasks such as manual local edits, correspondence based style transfer from any example image, and a combination of different styles from multiple example images. We use Gaussian Splats as our primary 3D representation due to their speed and ease of local editing, but our technique works for other methods such as NeRFs as well. We show through multiple examples that our method produces higher quality results while offering fine-grained control of editing. Project page: ice-gaussian.github.io
Low-Rank Adaptation for Foundation Models: A Comprehensive Review
The rapid advancement of foundation modelslarge-scale neural networks trained on diverse, extensive datasetshas revolutionized artificial intelligence, enabling unprecedented advancements across domains such as natural language processing, computer vision, and scientific discovery. However, the substantial parameter count of these models, often reaching billions or trillions, poses significant challenges in adapting them to specific downstream tasks. Low-Rank Adaptation (LoRA) has emerged as a highly promising approach for mitigating these challenges, offering a parameter-efficient mechanism to fine-tune foundation models with minimal computational overhead. This survey provides the first comprehensive review of LoRA techniques beyond large Language Models to general foundation models, including recent techniques foundations, emerging frontiers and applications of low-rank adaptation across multiple domains. Finally, this survey discusses key challenges and future research directions in theoretical understanding, scalability, and robustness. This survey serves as a valuable resource for researchers and practitioners working with efficient foundation model adaptation.
FeatureNeRF: Learning Generalizable NeRFs by Distilling Foundation Models
Recent works on generalizable NeRFs have shown promising results on novel view synthesis from single or few images. However, such models have rarely been applied on other downstream tasks beyond synthesis such as semantic understanding and parsing. In this paper, we propose a novel framework named FeatureNeRF to learn generalizable NeRFs by distilling pre-trained vision foundation models (e.g., DINO, Latent Diffusion). FeatureNeRF leverages 2D pre-trained foundation models to 3D space via neural rendering, and then extract deep features for 3D query points from NeRF MLPs. Consequently, it allows to map 2D images to continuous 3D semantic feature volumes, which can be used for various downstream tasks. We evaluate FeatureNeRF on tasks of 2D/3D semantic keypoint transfer and 2D/3D object part segmentation. Our extensive experiments demonstrate the effectiveness of FeatureNeRF as a generalizable 3D semantic feature extractor. Our project page is available at https://jianglongye.com/featurenerf/ .
MIO: A Foundation Model on Multimodal Tokens
In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.
Conversation Routines: A Prompt Engineering Framework for Task-Oriented Dialog Systems
This study introduces Conversation Routines (CR), a structured prompt engineering framework for developing task-oriented dialog systems using Large Language Models (LLMs). While LLMs demonstrate remarkable natural language understanding capabilities, engineering them to reliably execute complex business workflows remains challenging. The proposed CR framework enables the development of Conversation Agentic Systems (CAS) through natural language specifications, embedding task-oriented logic within LLM prompts. This approach provides a systematic methodology for designing and implementing complex conversational workflows while maintaining behavioral consistency. We demonstrate the framework's effectiveness through two proof-of-concept implementations: a Train Ticket Booking System and an Interactive Troubleshooting Copilot. These case studies validate CR's capability to encode sophisticated behavioral patterns and decision logic while preserving natural conversational flexibility. Results show that CR enables domain experts to design conversational workflows in natural language while leveraging custom functions (tools) developed by software engineers, creating an efficient division of responsibilities where developers focus on core API implementation and domain experts handle conversation design. While the framework shows promise in accessibility and adaptability, we identify key challenges including computational overhead, non-deterministic behavior, and domain-specific logic optimization. Future research directions include CR evaluation methods based on prompt engineering frameworks driven by goal-oriented grading criteria, improving scalability for complex multi-agent interactions, and enhancing system robustness to address the identified limitations across diverse business applications.
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models. The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures. Caffe fits industry and internet-scale media needs by CUDA GPU computation, processing over 40 million images a day on a single K40 or Titan GPU (approx 2.5 ms per image). By separating model representation from actual implementation, Caffe allows experimentation and seamless switching among platforms for ease of development and deployment from prototyping machines to cloud environments. Caffe is maintained and developed by the Berkeley Vision and Learning Center (BVLC) with the help of an active community of contributors on GitHub. It powers ongoing research projects, large-scale industrial applications, and startup prototypes in vision, speech, and multimedia.
TabTune: A Unified Library for Inference and Fine-Tuning Tabular Foundation Models
Tabular foundation models represent a growing paradigm in structured data learning, extending the benefits of large-scale pretraining to tabular domains. However, their adoption remains limited due to heterogeneous preprocessing pipelines, fragmented APIs, inconsistent fine-tuning procedures, and the absence of standardized evaluation for deployment-oriented metrics such as calibration and fairness. We present TabTune, a unified library that standardizes the complete workflow for tabular foundation models through a single interface. TabTune provides consistent access to seven state-of-the-art models supporting multiple adaptation strategies, including zero-shot inference, meta-learning, supervised fine-tuning (SFT), and parameter-efficient fine-tuning (PEFT). The framework automates model-aware preprocessing, manages architectural heterogeneity internally, and integrates evaluation modules for performance, calibration, and fairness. Designed for extensibility and reproducibility, TabTune enables consistent benchmarking of adaptation strategies of tabular foundation models. The library is open source and available at https://github.com/Lexsi-Labs/TabTune .
Ouroboros3D: Image-to-3D Generation via 3D-aware Recursive Diffusion
Existing single image-to-3D creation methods typically involve a two-stage process, first generating multi-view images, and then using these images for 3D reconstruction. However, training these two stages separately leads to significant data bias in the inference phase, thus affecting the quality of reconstructed results. We introduce a unified 3D generation framework, named Ouroboros3D, which integrates diffusion-based multi-view image generation and 3D reconstruction into a recursive diffusion process. In our framework, these two modules are jointly trained through a self-conditioning mechanism, allowing them to adapt to each other's characteristics for robust inference. During the multi-view denoising process, the multi-view diffusion model uses the 3D-aware maps rendered by the reconstruction module at the previous timestep as additional conditions. The recursive diffusion framework with 3D-aware feedback unites the entire process and improves geometric consistency.Experiments show that our framework outperforms separation of these two stages and existing methods that combine them at the inference phase. Project page: https://costwen.github.io/Ouroboros3D/
MovieLLM: Enhancing Long Video Understanding with AI-Generated Movies
The development of multimodal models has marked a significant step forward in how machines understand videos. These models have shown promise in analyzing short video clips. However, when it comes to longer formats like movies, they often fall short. The main hurdles are the lack of high-quality, diverse video data and the intensive work required to collect or annotate such data. In the face of these challenges, we propose MovieLLM, a novel framework designed to create synthetic, high-quality data for long videos. This framework leverages the power of GPT-4 and text-to-image models to generate detailed scripts and corresponding visuals. Our approach stands out for its flexibility and scalability, making it a superior alternative to traditional data collection methods. Our extensive experiments validate that the data produced by MovieLLM significantly improves the performance of multimodal models in understanding complex video narratives, overcoming the limitations of existing datasets regarding scarcity and bias.
