1 Newton-Cotes Graph Neural Networks: On the Time Evolution of Dynamic Systems Reasoning system dynamics is one of the most important analytical approaches for many scientific studies. With the initial state of a system as input, the recent graph neural networks (GNNs)-based methods are capable of predicting the future state distant in time with high accuracy. Although these methods have diverse designs in modeling the coordinates and interacting forces of the system, we show that they actually share a common paradigm that learns the integration of the velocity over the interval between the initial and terminal coordinates. However, their integrand is constant w.r.t. time. Inspired by this observation, we propose a new approach to predict the integration based on several velocity estimations with Newton-Cotes formulas and prove its effectiveness theoretically. Extensive experiments on several benchmarks empirically demonstrate consistent and significant improvement compared with the state-of-the-art methods. 8 authors · May 23, 2023
- Unsupervised Discovery of Formulas for Mathematical Constants Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas. 6 authors · Dec 21, 2024
- Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research. 6 authors · Dec 13, 2022
- Approximating the Convex Hull via Metric Space Magnitude Magnitude of a finite metric space and the related notion of magnitude functions on metric spaces is an active area of research in algebraic topology. Magnitude originally arose in the context of biology, where it represents the number of effective species in an environment; when applied to a one-parameter family of metric spaces tX with scale parameter t, the magnitude captures much of the underlying geometry of the space. Prior work has mostly focussed on properties of magnitude in a global sense; in this paper we restrict the sets to finite subsets of Euclidean space and investigate its individual components. We give an explicit formula for the corrected inclusion-exclusion principle, and define a quantity associated with each point, called the moment which gives an intrinsic ordering to the points. We exploit this in order to form an algorithm which approximates the convex hull. 3 authors · Aug 7, 2019
- Minkowski Functionals for composite smooth random fields Minkowski functionals quantify the morphology of smooth random fields. They are widely used to probe statistical properties of cosmological fields. Analytic formulae for ensemble expectations of Minkowski functionals are well known for Gaussian and mildly non-Gaussian fields. In this paper we extend the formulae to composite fields which are sums of two fields and explicitly derive the expressions for the sum of uncorrelated mildly non-Gaussian and Gaussian fields. These formulae are applicable to observed data which is usually a sum of the true signal and one or more secondary fields that can be either noise, or some residual contaminating signal. Our formulae provide explicit quantification of the effect of the secondary field on the morphology and statistical nature of the true signal. As examples, we apply the formulae to determine how the presence of Gaussian noise can bias the morphological properties and statistical nature of Gaussian and non-Gaussian CMB temperature maps. 2 authors · Nov 21, 2023
- Algorithm-assisted discovery of an intrinsic order among mathematical constants In recent decades, a growing number of discoveries in fields of mathematics have been assisted by computer algorithms, primarily for exploring large parameter spaces that humans would take too long to investigate. As computers and algorithms become more powerful, an intriguing possibility arises - the interplay between human intuition and computer algorithms can lead to discoveries of novel mathematical concepts that would otherwise remain elusive. To realize this perspective, we have developed a massively parallel computer algorithm that discovers an unprecedented number of continued fraction formulas for fundamental mathematical constants. The sheer number of formulas discovered by the algorithm unveils a novel mathematical structure that we call the conservative matrix field. Such matrix fields (1) unify thousands of existing formulas, (2) generate infinitely many new formulas, and most importantly, (3) lead to unexpected relations between different mathematical constants, including multiple integer values of the Riemann zeta function. Conservative matrix fields also enable new mathematical proofs of irrationality. In particular, we can use them to generalize the celebrated proof by Ap\'ery for the irrationality of zeta(3). Utilizing thousands of personal computers worldwide, our computer-supported research strategy demonstrates the power of experimental mathematics, highlighting the prospects of large-scale computational approaches to tackle longstanding open problems and discover unexpected connections across diverse fields of science. 9 authors · Aug 22, 2023
- The Pseudoinverse of A=CR is A^+=R^+C^+ (?) This paper gives three formulas for the pseudoinverse of a matrix product A = CR. The first is sometimes correct, the second is always correct, and the third is almost never correct. But that third randomized pseudoinverse A^+_r may be very useful when A is a very large matrix. 1. A^+ = R^+C^+ when A = CR and C has independent columns and R has independent rows. 2. A^+ = (C^+CR)^+(CRR^+)^+ is always correct. 3. A^+_r = (P^TCR)^+P^TCRQ(CRQ)^+ = A^+ only when rank(P^TA) = rank(AQ) = rank(A) with A = CR. 2 authors · May 2, 2023
- Improved iterative methods for solving risk parity portfolio Risk parity, also known as equal risk contribution, has recently gained increasing attention as a portfolio allocation method. However, solving portfolio weights must resort to numerical methods as the analytic solution is not available. This study improves two existing iterative methods: the cyclical coordinate descent (CCD) and Newton methods. We enhance the CCD method by simplifying the formulation using a correlation matrix and imposing an additional rescaling step. We also suggest an improved initial guess inspired by the CCD method for the Newton method. Numerical experiments show that the improved CCD method performs the best and is approximately three times faster than the original CCD method, saving more than 40% of the iterations. 2 authors · Feb 28, 2022
- Auto-Formula: Recommend Formulas in Spreadsheets using Contrastive Learning for Table Representations Spreadsheets are widely recognized as the most popular end-user programming tools, which blend the power of formula-based computation, with an intuitive table-based interface. Today, spreadsheets are used by billions of users to manipulate tables, most of whom are neither database experts nor professional programmers. Despite the success of spreadsheets, authoring complex formulas remains challenging, as non-technical users need to look up and understand non-trivial formula syntax. To address this pain point, we leverage the observation that there is often an abundance of similar-looking spreadsheets in the same organization, which not only have similar data, but also share similar computation logic encoded as formulas. We develop an Auto-Formula system that can accurately predict formulas that users want to author in a target spreadsheet cell, by learning and adapting formulas that already exist in similar spreadsheets, using contrastive-learning techniques inspired by "similar-face recognition" from compute vision. Extensive evaluations on over 2K test formulas extracted from real enterprise spreadsheets show the effectiveness of Auto-Formula over alternatives. Our benchmark data is available at https://github.com/microsoft/Auto-Formula to facilitate future research. 8 authors · Apr 18, 2024
- Approximate Axiomatization for Differentially-Defined Functions This article establishes a complete approximate axiomatization for the real-closed field R expanded with all differentially-defined functions, including special functions such as sin(x), cos(x), e^x, dots. Every true sentence is provable up to some numerical approximation, and the truth of such approximations converge under mild conditions. Such an axiomatization is a fragment of the axiomatization for differential dynamic logic, and is therefore a finite extension of the axiomatization of real-closed fields. Furthermore, the numerical approximations approximate formulas containing special function symbols by FOL_{R} formulas, improving upon earlier decidability results only concerning closed sentences. 2 authors · Jun 9, 2025
- PP-FormulaNet: Bridging Accuracy and Efficiency in Advanced Formula Recognition Formula recognition is an important task in document intelligence. It involves converting mathematical expressions from document images into structured symbolic formats that computers can easily work with. LaTeX is the most common format used for this purpose. In this work, we present PP-FormulaNet, a state-of-the-art formula recognition model that excels in both accuracy and efficiency. To meet the diverse needs of applications, we have developed two specialized models: PP-FormulaNet-L, tailored for high-accuracy scenarios, and PP-FormulaNet-S, optimized for high-efficiency contexts. Our extensive evaluations reveal that PP-FormulaNet-L attains accuracy levels that surpass those of prominent models such as UniMERNet by a significant 6%. Conversely, PP-FormulaNet-S operates at speeds that are over 16 times faster. These advancements facilitate seamless integration of PP-FormulaNet into a broad spectrum of document processing environments that involve intricate mathematical formulas. Furthermore, we introduce a Formula Mining System, which is capable of extracting a vast amount of high-quality formula data. This system further enhances the robustness and applicability of our formula recognition model. Code and models are publicly available at PaddleOCR(https://github.com/PaddlePaddle/PaddleOCR) and PaddleX(https://github.com/PaddlePaddle/PaddleX). 5 authors · Mar 24, 2025