new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

MIPHEI-ViT: Multiplex Immunofluorescence Prediction from H&E Images using ViT Foundation Models

Histopathological analysis is a cornerstone of cancer diagnosis, with Hematoxylin and Eosin (H&E) staining routinely acquired for every patient to visualize cell morphology and tissue architecture. On the other hand, multiplex immunofluorescence (mIF) enables more precise cell type identification via proteomic markers, but has yet to achieve widespread clinical adoption due to cost and logistical constraints. To bridge this gap, we introduce MIPHEI (Multiplex Immunofluorescence Prediction from H&E), a U-Net-inspired architecture that integrates state-of-the-art ViT foundation models as encoders to predict mIF signals from H&E images. MIPHEI targets a comprehensive panel of markers spanning nuclear content, immune lineages (T cells, B cells, myeloid), epithelium, stroma, vasculature, and proliferation. We train our model using the publicly available ORION dataset of restained H&E and mIF images from colorectal cancer tissue, and validate it on two independent datasets. MIPHEI achieves accurate cell-type classification from H&E alone, with F1 scores of 0.88 for Pan-CK, 0.57 for CD3e, 0.56 for SMA, 0.36 for CD68, and 0.30 for CD20, substantially outperforming both a state-of-the-art baseline and a random classifier for most markers. Our results indicate that our model effectively captures the complex relationships between nuclear morphologies in their tissue context, as visible in H&E images and molecular markers defining specific cell types. MIPHEI offers a promising step toward enabling cell-type-aware analysis of large-scale H&E datasets, in view of uncovering relationships between spatial cellular organization and patient outcomes.

  • 5 authors
·
May 15

The Trojan Knowledge: Bypassing Commercial LLM Guardrails via Harmless Prompt Weaving and Adaptive Tree Search

Large language models (LLMs) remain vulnerable to jailbreak attacks that bypass safety guardrails to elicit harmful outputs. Existing approaches overwhelmingly operate within the prompt-optimization paradigm: whether through traditional algorithmic search or recent agent-based workflows, the resulting prompts typically retain malicious semantic signals that modern guardrails are primed to detect. In contrast, we identify a deeper, largely overlooked vulnerability stemming from the highly interconnected nature of an LLM's internal knowledge. This structure allows harmful objectives to be realized by weaving together sequences of benign sub-queries, each of which individually evades detection. To exploit this loophole, we introduce the Correlated Knowledge Attack Agent (CKA-Agent), a dynamic framework that reframes jailbreaking as an adaptive, tree-structured exploration of the target model's knowledge base. The CKA-Agent issues locally innocuous queries, uses model responses to guide exploration across multiple paths, and ultimately assembles the aggregated information to achieve the original harmful objective. Evaluated across state-of-the-art commercial LLMs (Gemini2.5-Flash/Pro, GPT-oss-120B, Claude-Haiku-4.5), CKA-Agent consistently achieves over 95% success rates even against strong guardrails, underscoring the severity of this vulnerability and the urgent need for defenses against such knowledge-decomposition attacks. Our codes are available at https://github.com/Graph-COM/CKA-Agent.

  • 10 authors
·
Dec 1