2 Beyond Unified Models: A Service-Oriented Approach to Low Latency, Context Aware Phonemization for Real Time TTS Lightweight, real-time text-to-speech systems are crucial for accessibility. However, the most efficient TTS models often rely on lightweight phonemizers that struggle with context-dependent challenges. In contrast, more advanced phonemizers with a deeper linguistic understanding typically incur high computational costs, which prevents real-time performance. This paper examines the trade-off between phonemization quality and inference speed in G2P-aided TTS systems, introducing a practical framework to bridge this gap. We propose lightweight strategies for context-aware phonemization and a service-oriented TTS architecture that executes these modules as independent services. This design decouples heavy context-aware components from the core TTS engine, effectively breaking the latency barrier and enabling real-time use of high-quality phonemization models. Experimental results confirm that the proposed system improves pronunciation soundness and linguistic accuracy while maintaining real-time responsiveness, making it well-suited for offline and end-device TTS applications. 5 authors · Dec 8 2
- OLaPh: Optimal Language Phonemizer Phonemization, the conversion of text into phonemes, is a key step in text-to-speech. Traditional approaches use rule-based transformations and lexicon lookups, while more advanced methods apply preprocessing techniques or neural networks for improved accuracy on out-of-domain vocabulary. However, all systems struggle with names, loanwords, abbreviations, and homographs. This work presents OLaPh (Optimal Language Phonemizer), a framework that combines large lexica, multiple NLP techniques, and compound resolution with a probabilistic scoring function. Evaluations in German and English show improved accuracy over previous approaches, including on a challenging dataset. To further address unresolved cases, we train a large language model on OLaPh-generated data, which achieves even stronger generalization and performance. Together, the framework and LLM improve phonemization consistency and provide a freely available resource for future research. 1 authors · Sep 24