9 STT: Stateful Tracking with Transformers for Autonomous Driving Tracking objects in three-dimensional space is critical for autonomous driving. To ensure safety while driving, the tracker must be able to reliably track objects across frames and accurately estimate their states such as velocity and acceleration in the present. Existing works frequently focus on the association task while either neglecting the model performance on state estimation or deploying complex heuristics to predict the states. In this paper, we propose STT, a Stateful Tracking model built with Transformers, that can consistently track objects in the scenes while also predicting their states accurately. STT consumes rich appearance, geometry, and motion signals through long term history of detections and is jointly optimized for both data association and state estimation tasks. Since the standard tracking metrics like MOTA and MOTP do not capture the combined performance of the two tasks in the wider spectrum of object states, we extend them with new metrics called S-MOTA and MOTPS that address this limitation. STT achieves competitive real-time performance on the Waymo Open Dataset. 22 authors · Apr 30, 2024 3
1 Motamot: A Dataset for Revealing the Supremacy of Large Language Models over Transformer Models in Bengali Political Sentiment Analysis Sentiment analysis is the process of identifying and categorizing people's emotions or opinions regarding various topics. Analyzing political sentiment is critical for understanding the complexities of public opinion processes, especially during election seasons. It gives significant information on voter preferences, attitudes, and current trends. In this study, we investigate political sentiment analysis during Bangladeshi elections, specifically examining how effectively Pre-trained Language Models (PLMs) and Large Language Models (LLMs) capture complex sentiment characteristics. Our study centers on the creation of the "Motamot" dataset, comprising 7,058 instances annotated with positive and negative sentiments, sourced from diverse online newspaper portals, forming a comprehensive resource for political sentiment analysis. We meticulously evaluate the performance of various PLMs including BanglaBERT, Bangla BERT Base, XLM-RoBERTa, mBERT, and sahajBERT, alongside LLMs such as Gemini 1.5 Pro and GPT 3.5 Turbo. Moreover, we explore zero-shot and few-shot learning strategies to enhance our understanding of political sentiment analysis methodologies. Our findings underscore BanglaBERT's commendable accuracy of 88.10% among PLMs. However, the exploration into LLMs reveals even more promising results. Through the adept application of Few-Shot learning techniques, Gemini 1.5 Pro achieves an impressive accuracy of 96.33%, surpassing the remarkable performance of GPT 3.5 Turbo, which stands at 94%. This underscores Gemini 1.5 Pro's status as the superior performer in this comparison. 6 authors · Jul 28, 2024
- Fair coins tend to land on the same side they started: Evidence from 350,757 flips Many people have flipped coins but few have stopped to ponder the statistical and physical intricacies of the process. We collected 350{,}757 coin flips to test the counterintuitive prediction from a physics model of human coin tossing developed by Diaconis, Holmes, and Montgomery (DHM; 2007). The model asserts that when people flip an ordinary coin, it tends to land on the same side it started -- DHM estimated the probability of a same-side outcome to be about 51\%. Our data lend strong support to this precise prediction: the coins landed on the same side more often than not, Pr(same side) = 0.508, 95\% credible interval (CI) [0.506, 0.509], BF_{same-side bias} = 2359. Furthermore, the data revealed considerable between-people variation in the degree of this same-side bias. Our data also confirmed the generic prediction that when people flip an ordinary coin -- with the initial side-up randomly determined -- it is equally likely to land heads or tails: Pr(heads) = 0.500, 95\% CI [0.498, 0.502], BF_{heads-tails bias} = 0.182. Furthermore, this lack of heads-tails bias does not appear to vary across coins. Additional analyses revealed that the within-people same-side bias decreased as more coins were flipped, an effect that is consistent with the possibility that practice makes people flip coins in a less wobbly fashion. Our data therefore provide strong evidence that when some (but not all) people flip a fair coin, it tends to land on the same side it started. 50 authors · Oct 6, 2023
- ChatGPT vs. DeepSeek: A Comparative Study on AI-Based Code Generation Background: AI-powered code generation, fueled by Large Language Models (LLMs), is revolutionizing software development. Models like OpenAI's Codex and GPT-4, alongside DeepSeek, leverage vast code and natural language datasets. However, ensuring code quality, correctness, and managing complex tasks remains challenging, necessitating thorough evaluation. Methodology: This research compares ChatGPT (version o1) and DeepSeek (version R1) for Python code generation using online judge coding challenges. It evaluates correctness (online judge verdicts, up to three attempts), code quality (Pylint/Flake8), and efficiency (execution time/memory usage). Results: DeepSeek demonstrated higher correctness, particularly on algorithmic tasks, often achieving 'Accepted' on the first attempt. ChatGPT sometimes requires multiple attempts or failures. ChatGPT encountered fewer issues, used comparable or slightly less memory, consumed less execution times and wrote fewer lines of code. Conclusion: DeepSeek exhibited superior correctness in Python code generation, often requiring fewer attempts, suggesting an advantage in algorithmic problem-solving. Both models showed almost similar efficiency in execution time and memory use. Finally, this research provides insights for developers choosing AI coding assistants and informs future AI-driven software development research. 1 authors · Jan 30, 2025
2 PATMAT: Person Aware Tuning of Mask-Aware Transformer for Face Inpainting Generative models such as StyleGAN2 and Stable Diffusion have achieved state-of-the-art performance in computer vision tasks such as image synthesis, inpainting, and de-noising. However, current generative models for face inpainting often fail to preserve fine facial details and the identity of the person, despite creating aesthetically convincing image structures and textures. In this work, we propose Person Aware Tuning (PAT) of Mask-Aware Transformer (MAT) for face inpainting, which addresses this issue. Our proposed method, PATMAT, effectively preserves identity by incorporating reference images of a subject and fine-tuning a MAT architecture trained on faces. By using ~40 reference images, PATMAT creates anchor points in MAT's style module, and tunes the model using the fixed anchors to adapt the model to a new face identity. Moreover, PATMAT's use of multiple images per anchor during training allows the model to use fewer reference images than competing methods. We demonstrate that PATMAT outperforms state-of-the-art models in terms of image quality, the preservation of person-specific details, and the identity of the subject. Our results suggest that PATMAT can be a promising approach for improving the quality of personalized face inpainting. 4 authors · Apr 12, 2023
1 Robustness Evaluation of Machine Learning Models for Robot Arm Action Recognition in Noisy Environments In the realm of robot action recognition, identifying distinct but spatially proximate arm movements using vision systems in noisy environments poses a significant challenge. This paper studies robot arm action recognition in noisy environments using machine learning techniques. Specifically, a vision system is used to track the robot's movements followed by a deep learning model to extract the arm's key points. Through a comparative analysis of machine learning methods, the effectiveness and robustness of this model are assessed in noisy environments. A case study was conducted using the Tic-Tac-Toe game in a 3-by-3 grid environment, where the focus is to accurately identify the actions of the arms in selecting specific locations within this constrained environment. Experimental results show that our approach can achieve precise key point detection and action classification despite the addition of noise and uncertainties to the dataset. 5 authors · Jan 17, 2024
1 BanglaBait: Semi-Supervised Adversarial Approach for Clickbait Detection on Bangla Clickbait Dataset Intentionally luring readers to click on a particular content by exploiting their curiosity defines a title as clickbait. Although several studies focused on detecting clickbait titles in English articles, low resource language like Bangla has not been given adequate attention. To tackle clickbait titles in Bangla, we have constructed the first Bangla clickbait detection dataset containing 15,056 labeled news articles and 65,406 unlabelled news articles extracted from clickbait dense news sites. Each article has been labeled by three expert linguists and includes an article's title, body, and other metadata. By incorporating labeled and unlabelled data, we finetune a pretrained Bangla transformer model in an adversarial fashion using Semi Supervised Generative Adversarial Networks (SS GANs). The proposed model acts as a good baseline for this dataset, outperforming traditional neural network models (LSTM, GRU, CNN) and linguistic feature based models. We expect that this dataset and the detailed analysis and comparison of these clickbait detection models will provide a fundamental basis for future research into detecting clickbait titles in Bengali articles. We have released the corresponding code and dataset. 4 authors · Nov 10, 2023
128 Baseer: A Vision-Language Model for Arabic Document-to-Markdown OCR Arabic document OCR remains a challenging task due to the language's cursive script, diverse fonts, diacritics, and right-to-left orientation. While modern Multimodal Large Language Models (MLLMs) have advanced document understanding for high-resource languages, their performance on Arabic remains limited. In this work, we introduce Baseer, a vision-language model fine- tuned specifically for Arabic document OCR. Leveraging a large-scale dataset combining synthetic and real-world documents, Baseer is trained using a decoder-only fine-tuning strategy to adapt a pre-trained MLLM while preserving general visual features. We also present Misraj-DocOCR, a high-quality, expert-verified benchmark designed for rigorous evaluation of Arabic OCR systems. Our experiments show that Baseer significantly outperforms existing open-source and commercial solutions, achieving a WER of 0.25 and establishing a new state-of-the-art in the domain of Arabic document OCR. Our results highlight the benefits of domain-specific adaptation of general-purpose MLLMs and establish a strong baseline for high-accuracy OCR on morphologically rich languages like Arabic. Misraj Ai · Sep 17, 2025 12
1 Personalized Face Inpainting with Diffusion Models by Parallel Visual Attention Face inpainting is important in various applications, such as photo restoration, image editing, and virtual reality. Despite the significant advances in face generative models, ensuring that a person's unique facial identity is maintained during the inpainting process is still an elusive goal. Current state-of-the-art techniques, exemplified by MyStyle, necessitate resource-intensive fine-tuning and a substantial number of images for each new identity. Furthermore, existing methods often fall short in accommodating user-specified semantic attributes, such as beard or expression. To improve inpainting results, and reduce the computational complexity during inference, this paper proposes the use of Parallel Visual Attention (PVA) in conjunction with diffusion models. Specifically, we insert parallel attention matrices to each cross-attention module in the denoising network, which attends to features extracted from reference images by an identity encoder. We train the added attention modules and identity encoder on CelebAHQ-IDI, a dataset proposed for identity-preserving face inpainting. Experiments demonstrate that PVA attains unparalleled identity resemblance in both face inpainting and face inpainting with language guidance tasks, in comparison to various benchmarks, including MyStyle, Paint by Example, and Custom Diffusion. Our findings reveal that PVA ensures good identity preservation while offering effective language-controllability. Additionally, in contrast to Custom Diffusion, PVA requires just 40 fine-tuning steps for each new identity, which translates to a significant speed increase of over 20 times. 7 authors · Dec 6, 2023 2
59 Sadeed: Advancing Arabic Diacritization Through Small Language Model Arabic text diacritization remains a persistent challenge in natural language processing due to the language's morphological richness. In this paper, we introduce Sadeed, a novel approach based on a fine-tuned decoder-only language model adapted from Kuwain 1.5B Hennara et al. [2025], a compact model originally trained on diverse Arabic corpora. Sadeed is fine-tuned on carefully curated, high-quality diacritized datasets, constructed through a rigorous data-cleaning and normalization pipeline. Despite utilizing modest computational resources, Sadeed achieves competitive results compared to proprietary large language models and outperforms traditional models trained on similar domains. Additionally, we highlight key limitations in current benchmarking practices for Arabic diacritization. To address these issues, we introduce SadeedDiac-25, a new benchmark designed to enable fairer and more comprehensive evaluation across diverse text genres and complexity levels. Together, Sadeed and SadeedDiac-25 provide a robust foundation for advancing Arabic NLP applications, including machine translation, text-to-speech, and language learning tools. Misraj Ai · Apr 30, 2025 2
121 Kuwain 1.5B: An Arabic SLM via Language Injection Enhancing existing models with new knowledge is a crucial aspect of AI development. This paper introduces a novel method for integrating a new language into a large language model (LLM). Our approach successfully incorporates a previously unseen target language into an existing LLM without compromising its prior knowledge. We trained a tiny model with 1.5 billion parameters named Kuwain by injecting the Arabic language into a small open-source model mainly trained in English. Our method demonstrates significant improvements in Arabic language performance, with an average 8% improvement across various benchmarks, while retaining the model's existing knowledge with a minimum amount of the original model's data. This offers a cost-effective alternative to training a comprehensive model in both English and Arabic. The results highlight the potential for efficient, targeted language model expansion without extensive retraining or resource-intensive processes. Misraj Ai · Apr 21, 2025 8
1 Masks Can Be Distracting: On Context Comprehension in Diffusion Language Models Masked Diffusion Language Models (MDLMs) have recently emerged as a promising alternative to Autoregressive Language Models (ARLMs), leveraging a denoising objective that, in principle, should enable more uniform context utilisation. In this work, we examine the context comprehension abilities of MDLMs and uncover two key limitations. First, despite their more global training objective and bidirectional attention mechanism, similarly to ARLMS, MDLMs exhibit a strong locality bias: performance is highly sensitive to the position of relevant information within the input, favouring local over distant context. Second, we show that appending a large number of mask tokens--required for generation--can significantly degrade context comprehension. Through systematic ablations, we find that these masks act as distractors, reducing the model's ability to process relevant information. To address this, we introduce a mask-agnostic loss function that encourages predictions to remain invariant to the number of appended masks. Fine-tuning with this objective substantially mitigates the distracting effect of masks, improving robustness of MDLMs. Overall, our findings reveal critical limitations of the current MDLM training paradigm and provide actionable insights for building diffusion-based language models with stronger context comprehension. Qualcomm · Nov 26, 2025 2