new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 19

A Digital Twin for Diesel Engines: Operator-infused Physics-Informed Neural Networks with Transfer Learning for Engine Health Monitoring

Improving diesel engine efficiency, reducing emissions, and enabling robust health monitoring have been critical research topics in engine modelling. While recent advancements in the use of neural networks for system monitoring have shown promising results, such methods often focus on component-level analysis, lack generalizability, and physical interpretability. In this study, we propose a novel hybrid framework that combines physics-informed neural networks (PINNs) with deep operator networks (DeepONet) to enable accurate and computationally efficient parameter identification in mean-value diesel engine models. Our method leverages physics-based system knowledge in combination with data-driven training of neural networks to enhance model applicability. Incorporating offline-trained DeepONets to predict actuator dynamics significantly lowers the online computation cost when compared to the existing PINN framework. To address the re-training burden typical of PINNs under varying input conditions, we propose two transfer learning (TL) strategies: (i) a multi-stage TL scheme offering better runtime efficiency than full online training of the PINN model and (ii) a few-shot TL scheme that freezes a shared multi-head network body and computes physics-based derivatives required for model training outside the training loop. The second strategy offers a computationally inexpensive and physics-based approach for predicting engine dynamics and parameter identification, offering computational efficiency over the existing PINN framework. Compared to existing health monitoring methods, our framework combines the interpretability of physics-based models with the flexibility of deep learning, offering substantial gains in generalization, accuracy, and deployment efficiency for diesel engine diagnostics.

  • 4 authors
·
Dec 16, 2024

Monitoring Monitorability

Observability into the decision making of modern AI systems may be required to safely deploy increasingly capable agents. Monitoring the chain-of-thought (CoT) of today's reasoning models has proven effective for detecting misbehavior. However, this "monitorability" may be fragile under different training procedures, data sources, or even continued system scaling. To measure and track monitorability, we propose three evaluation archetypes (intervention, process, and outcome-property) and a new monitorability metric, and introduce a broad evaluation suite. We demonstrate that these evaluations can catch simple model organisms trained to have obfuscated CoTs, and that CoT monitoring is more effective than action-only monitoring in practical settings. We compare the monitorability of various frontier models and find that most models are fairly, but not perfectly, monitorable. We also evaluate how monitorability scales with inference-time compute, reinforcement learning optimization, and pre-training model size. We find that longer CoTs are generally more monitorable and that RL optimization does not materially decrease monitorability even at the current frontier scale. Notably, we find that for a model at a low reasoning effort, we could instead deploy a smaller model at a higher reasoning effort (thereby matching capabilities) and obtain a higher monitorability, albeit at a higher overall inference compute cost. We further investigate agent-monitor scaling trends and find that scaling a weak monitor's test-time compute when monitoring a strong agent increases monitorability. Giving the weak monitor access to CoT not only improves monitorability, but it steepens the monitor's test-time compute to monitorability scaling trend. Finally, we show we can improve monitorability by asking models follow-up questions and giving their follow-up CoT to the monitor.

  • 12 authors
·
Dec 20, 2025