Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTSGP: Two-Stage Generative Prompting for Unsupervised Commonsense Question Answering
Unsupervised commonsense question answering requires mining effective commonsense knowledge without the rely on the labeled task data. Previous methods typically retrieved from traditional knowledge bases or used pre-trained language models (PrLMs) to generate fixed types of knowledge, which have poor generalization ability. In this paper, we aim to address the above limitation by leveraging the implicit knowledge stored in PrLMs and propose a two-stage prompt-based unsupervised commonsense question answering framework (TSGP). Specifically, we first use knowledge generation prompts to generate the knowledge required for questions with unlimited types and possible candidate answers independent of specified choices. Then, we further utilize answer generation prompts to generate possible candidate answers independent of specified choices. Experimental results and analysis on three different commonsense reasoning tasks, CommonsenseQA, OpenBookQA, and SocialIQA, demonstrate that TSGP significantly improves the reasoning ability of language models in unsupervised settings. Our code is available at: https://github.com/Yueqing-Sun/TSGP.
It's All in the Heads: Using Attention Heads as a Baseline for Cross-Lingual Transfer in Commonsense Reasoning
Commonsense reasoning is one of the key problems in natural language processing, but the relative scarcity of labeled data holds back the progress for languages other than English. Pretrained cross-lingual models are a source of powerful language-agnostic representations, yet their inherent reasoning capabilities are still actively studied. In this work, we design a simple approach to commonsense reasoning which trains a linear classifier with weights of multi-head attention as features. To evaluate this approach, we create a multilingual Winograd Schema corpus by processing several datasets from prior work within a standardized pipeline and measure cross-lingual generalization ability in terms of out-of-sample performance. The method performs competitively with recent supervised and unsupervised approaches for commonsense reasoning, even when applied to other languages in a zero-shot manner. Also, we demonstrate that most of the performance is given by the same small subset of attention heads for all studied languages, which provides evidence of universal reasoning capabilities in multilingual encoders.
A Simple Method for Commonsense Reasoning
Commonsense reasoning is a long-standing challenge for deep learning. For example, it is difficult to use neural networks to tackle the Winograd Schema dataset (Levesque et al., 2011). In this paper, we present a simple method for commonsense reasoning with neural networks, using unsupervised learning. Key to our method is the use of language models, trained on a massive amount of unlabled data, to score multiple choice questions posed by commonsense reasoning tests. On both Pronoun Disambiguation and Winograd Schema challenges, our models outperform previous state-of-the-art methods by a large margin, without using expensive annotated knowledge bases or hand-engineered features. We train an array of large RNN language models that operate at word or character level on LM-1-Billion, CommonCrawl, SQuAD, Gutenberg Books, and a customized corpus for this task and show that diversity of training data plays an important role in test performance. Further analysis also shows that our system successfully discovers important features of the context that decide the correct answer, indicating a good grasp of commonsense knowledge.
Right Question is Already Half the Answer: Fully Unsupervised LLM Reasoning Incentivization
While large language models (LLMs) have demonstrated exceptional capabilities in challenging tasks such as mathematical reasoning, existing methods to enhance reasoning ability predominantly rely on supervised fine-tuning (SFT) followed by reinforcement learning (RL) on reasoning-specific data after pre-training. However, these approaches critically depend on external supervisions--such as human labelled reasoning traces, verified golden answers, or pre-trained reward models--which limits scalability and practical applicability. In this work, we propose Entropy Minimized Policy Optimization (EMPO), which makes an early attempt at fully unsupervised LLM reasoning incentivization. EMPO does not require any supervised information for incentivizing reasoning capabilities (i.e., neither verifiable reasoning traces, problems with golden answers, nor additional pre-trained reward models). By continuously minimizing the predictive entropy of LLMs on unlabeled user queries in a latent semantic space, EMPO enables purely self-supervised evolution of reasoning capabilities with strong flexibility and practicality. Our experiments demonstrate competitive performance of EMPO on both mathematical reasoning and free-form commonsense reasoning tasks. Specifically, without any supervised signals, EMPO boosts the accuracy of Qwen2.5-Math-7B Base from 30.7\% to 48.1\% on mathematical benchmarks and improves truthfulness accuracy of Qwen2.5-7B Instruct from 87.16\% to 97.25\% on TruthfulQA.
Attention Is (not) All You Need for Commonsense Reasoning
The recently introduced BERT model exhibits strong performance on several language understanding benchmarks. In this paper, we describe a simple re-implementation of BERT for commonsense reasoning. We show that the attentions produced by BERT can be directly utilized for tasks such as the Pronoun Disambiguation Problem and Winograd Schema Challenge. Our proposed attention-guided commonsense reasoning method is conceptually simple yet empirically powerful. Experimental analysis on multiple datasets demonstrates that our proposed system performs remarkably well on all cases while outperforming the previously reported state of the art by a margin. While results suggest that BERT seems to implicitly learn to establish complex relationships between entities, solving commonsense reasoning tasks might require more than unsupervised models learned from huge text corpora.
CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning
Recently, large-scale pre-trained language models have demonstrated impressive performance on several commonsense-reasoning benchmark datasets. However, building machines with commonsense to compose realistically plausible sentences remains challenging. In this paper, we present a constrained text generation task, CommonGen associated with a benchmark dataset, to explicitly test machines for the ability of generative commonsense reasoning. Given a set of common concepts (e.g., {dog, frisbee, catch, throw}); the task is to generate a coherent sentence describing an everyday scenario using these concepts (e.g., "a man throws a frisbee and his dog catches it"). The CommonGen task is challenging because it inherently requires 1) relational reasoning with background commonsense knowledge, and 2) compositional generalization ability to work on unseen concept combinations. Our dataset, constructed through a combination of crowdsourced and existing caption corpora, consists of 79k commonsense descriptions over 35k unique concept-sets. Experiments show that there is a large gap between state-of-the-art text generation models (e.g., T5) and human performance. Furthermore, we demonstrate that the learned generative commonsense reasoning capability can be transferred to improve downstream tasks such as CommonsenseQA by generating additional context.
Explain Yourself! Leveraging Language Models for Commonsense Reasoning
Deep learning models perform poorly on tasks that require commonsense reasoning, which often necessitates some form of world-knowledge or reasoning over information not immediately present in the input. We collect human explanations for commonsense reasoning in the form of natural language sequences and highlighted annotations in a new dataset called Common Sense Explanations (CoS-E). We use CoS-E to train language models to automatically generate explanations that can be used during training and inference in a novel Commonsense Auto-Generated Explanation (CAGE) framework. CAGE improves the state-of-the-art by 10% on the challenging CommonsenseQA task. We further study commonsense reasoning in DNNs using both human and auto-generated explanations including transfer to out-of-domain tasks. Empirical results indicate that we can effectively leverage language models for commonsense reasoning.
SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference
Given a partial description like "she opened the hood of the car," humans can reason about the situation and anticipate what might come next ("then, she examined the engine"). In this paper, we introduce the task of grounded commonsense inference, unifying natural language inference and commonsense reasoning. We present SWAG, a new dataset with 113k multiple choice questions about a rich spectrum of grounded situations. To address the recurring challenges of the annotation artifacts and human biases found in many existing datasets, we propose Adversarial Filtering (AF), a novel procedure that constructs a de-biased dataset by iteratively training an ensemble of stylistic classifiers, and using them to filter the data. To account for the aggressive adversarial filtering, we use state-of-the-art language models to massively oversample a diverse set of potential counterfactuals. Empirical results demonstrate that while humans can solve the resulting inference problems with high accuracy (88%), various competitive models struggle on our task. We provide comprehensive analysis that indicates significant opportunities for future research.
CSKG: The CommonSense Knowledge Graph
Sources of commonsense knowledge support applications in natural language understanding, computer vision, and knowledge graphs. Given their complementarity, their integration is desired. Yet, their different foci, modeling approaches, and sparse overlap make integration difficult. In this paper, we consolidate commonsense knowledge by following five principles, which we apply to combine seven key sources into a first integrated CommonSense Knowledge Graph (CSKG). We analyze CSKG and its various text and graph embeddings, showing that CSKG is well-connected and that its embeddings provide a useful entry point to the graph. We demonstrate how CSKG can provide evidence for generalizable downstream reasoning and for pre-training of language models. CSKG and all its embeddings are made publicly available to support further research on commonsense knowledge integration and reasoning.
Benchmarking Commonsense Knowledge Base Population with an Effective Evaluation Dataset
Reasoning over commonsense knowledge bases (CSKB) whose elements are in the form of free-text is an important yet hard task in NLP. While CSKB completion only fills the missing links within the domain of the CSKB, CSKB population is alternatively proposed with the goal of reasoning unseen assertions from external resources. In this task, CSKBs are grounded to a large-scale eventuality (activity, state, and event) graph to discriminate whether novel triples from the eventuality graph are plausible or not. However, existing evaluations on the population task are either not accurate (automatic evaluation with randomly sampled negative examples) or of small scale (human annotation). In this paper, we benchmark the CSKB population task with a new large-scale dataset by first aligning four popular CSKBs, and then presenting a high-quality human-annotated evaluation set to probe neural models' commonsense reasoning ability. We also propose a novel inductive commonsense reasoning model that reasons over graphs. Experimental results show that generalizing commonsense reasoning on unseen assertions is inherently a hard task. Models achieving high accuracy during training perform poorly on the evaluation set, with a large gap between human performance. We will make the data publicly available for future contributions. Codes and data are available at https://github.com/HKUST-KnowComp/CSKB-Population.
Diversifying Content Generation for Commonsense Reasoning with Mixture of Knowledge Graph Experts
Generative commonsense reasoning (GCR) in natural language is to reason about the commonsense while generating coherent text. Recent years have seen a surge of interest in improving the generation quality of commonsense reasoning tasks. Nevertheless, these approaches have seldom investigated diversity in the GCR tasks, which aims to generate alternative explanations for a real-world situation or predict all possible outcomes. Diversifying GCR is challenging as it expects to generate multiple outputs that are not only semantically different but also grounded in commonsense knowledge. In this paper, we propose MoKGE, a novel method that diversifies the generative reasoning by a mixture of expert (MoE) strategy on commonsense knowledge graphs (KG). A set of knowledge experts seek diverse reasoning on KG to encourage various generation outputs. Empirical experiments demonstrated that MoKGE can significantly improve the diversity while achieving on par performance on accuracy on two GCR benchmarks, based on both automatic and human evaluations.
UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations
Language technologies that accurately model the dynamics of events must perform commonsense reasoning. Existing work evaluating commonsense reasoning focuses on making inferences about common, everyday situations. To instead investigate the ability to model unusual, unexpected, and unlikely situations, we explore the task of uncommonsense abductive reasoning. Given a piece of context with an unexpected outcome, this task requires reasoning abductively to generate a natural language explanation that makes the unexpected outcome more likely in the context. To this end, we curate and release a new English language corpus called UNcommonsense. We characterize the differences between the performance of human explainers and the best performing large language models, finding that model-enhanced human-written explanations achieve the highest quality by trading off between specificity and diversity. Finally, we experiment with several online imitation learning algorithms to train open and accessible language models on this task. When compared with the vanilla supervised fine-tuning approach, these methods consistently reduce lose rates on both common and uncommonsense abductive reasoning judged by human evaluators.
Template Filling for Controllable Commonsense Reasoning
Large-scale sequence-to-sequence models have shown to be adept at both multiple-choice and open-domain commonsense reasoning tasks. However, the current systems do not provide the ability to control the various attributes of the reasoning chain. To enable better controllability, we propose to study the commonsense reasoning as a template filling task (TemplateCSR) -- where the language models fills reasoning templates with the given constraints as control factors. As an approach to TemplateCSR, we (i) propose a dataset of commonsense reasoning template-expansion pairs and (ii) introduce POTTER, a pretrained sequence-to-sequence model using prompts to perform commonsense reasoning across concepts. Our experiments show that our approach outperforms baselines both in generation metrics and factuality metrics. We also present a detailed error analysis on our approach's ability to reliably perform commonsense reasoning.
COMET: Commonsense Transformers for Automatic Knowledge Graph Construction
We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge with canonical templates, commonsense KBs only store loosely structured open-text descriptions of knowledge. We posit that an important step toward automatic commonsense completion is the development of generative models of commonsense knowledge, and propose COMmonsEnse Transformers (COMET) that learn to generate rich and diverse commonsense descriptions in natural language. Despite the challenges of commonsense modeling, our investigation reveals promising results when implicit knowledge from deep pre-trained language models is transferred to generate explicit knowledge in commonsense knowledge graphs. Empirical results demonstrate that COMET is able to generate novel knowledge that humans rate as high quality, with up to 77.5% (ATOMIC) and 91.7% (ConceptNet) precision at top 1, which approaches human performance for these resources. Our findings suggest that using generative commonsense models for automatic commonsense KB completion could soon be a plausible alternative to extractive methods.
KG-BART: Knowledge Graph-Augmented BART for Generative Commonsense Reasoning
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Retrieval Augmentation for Commonsense Reasoning: A Unified Approach
A common thread of retrieval-augmented methods in the existing literature focuses on retrieving encyclopedic knowledge, such as Wikipedia, which facilitates well-defined entity and relation spaces that can be modeled. However, applying such methods to commonsense reasoning tasks faces two unique challenges, i.e., the lack of a general large-scale corpus for retrieval and a corresponding effective commonsense retriever. In this paper, we systematically investigate how to leverage commonsense knowledge retrieval to improve commonsense reasoning tasks. We proposed a unified framework of retrieval-augmented commonsense reasoning (called RACo), including a newly constructed commonsense corpus with over 20 million documents and novel strategies for training a commonsense retriever. We conducted experiments on four different commonsense reasoning tasks. Extensive evaluation results showed that our proposed RACo can significantly outperform other knowledge-enhanced method counterparts, achieving new SoTA performance on the CommonGen and CREAK leaderboards.
Pre-training Is (Almost) All You Need: An Application to Commonsense Reasoning
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks. Most of the existing approaches rely on a randomly initialized classifier on top of such networks. We argue that this fine-tuning procedure is sub-optimal as the pre-trained model has no prior on the specific classifier labels, while it might have already learned an intrinsic textual representation of the task. In this paper, we introduce a new scoring method that casts a plausibility ranking task in a full-text format and leverages the masked language modeling head tuned during the pre-training phase. We study commonsense reasoning tasks where the model must rank a set of hypotheses given a premise, focusing on the COPA, Swag, HellaSwag and CommonsenseQA datasets. By exploiting our scoring method without fine-tuning, we are able to produce strong baselines (e.g. 80% test accuracy on COPA) that are comparable to supervised approaches. Moreover, when fine-tuning directly on the proposed scoring function, we show that our method provides a much more stable training phase across random restarts (e.g times 10 standard deviation reduction on COPA test accuracy) and requires less annotated data than the standard classifier approach to reach equivalent performances.
Crystal: Introspective Reasoners Reinforced with Self-Feedback
Extensive work has shown that the performance and interpretability of commonsense reasoning can be improved via knowledge-augmented reasoning methods, where the knowledge that underpins the reasoning process is explicitly verbalized and utilized. However, existing implementations, including "chain-of-thought" and its variants, fall short in capturing the introspective nature of knowledge required in commonsense reasoning, and in accounting for the mutual adaptation between the generation and utilization of knowledge. We propose a novel method to develop an introspective commonsense reasoner, Crystal. To tackle commonsense problems, it first introspects for knowledge statements related to the given question, and subsequently makes an informed prediction that is grounded in the previously introspected knowledge. The knowledge introspection and knowledge-grounded reasoning modes of the model are tuned via reinforcement learning to mutually adapt, where the reward derives from the feedback given by the model itself. Experiments show that Crystal significantly outperforms both the standard supervised finetuning and chain-of-thought distilled methods, and enhances the transparency of the commonsense reasoning process. Our work ultimately validates the feasibility and potential of reinforcing a neural model with self-feedback.
ConvoSense: Overcoming Monotonous Commonsense Inferences for Conversational AI
Mastering commonsense understanding and reasoning is a pivotal skill essential for conducting engaging conversations. While there have been several attempts to create datasets that facilitate commonsense inferences in dialogue contexts, existing datasets tend to lack in-depth details, restate information already present in the conversation, and often fail to capture the multifaceted nature of commonsense reasoning. In response to these limitations, we compile a new synthetic dataset for commonsense reasoning in dialogue contexts using GPT, ConvoSense, that boasts greater contextual novelty, offers a higher volume of inferences per example, and substantially enriches the detail conveyed by the inferences. Our dataset contains over 500,000 inferences across 12,000 dialogues with 10 popular inference types, which empowers the training of generative commonsense models for dialogue that are superior in producing plausible inferences with high novelty when compared to models trained on the previous datasets. To the best of our knowledge, ConvoSense is the first of its kind to provide such a multitude of novel inferences at such a large scale.
CODAH: An Adversarially Authored Question-Answer Dataset for Common Sense
Commonsense reasoning is a critical AI capability, but it is difficult to construct challenging datasets that test common sense. Recent neural question answering systems, based on large pre-trained models of language, have already achieved near-human-level performance on commonsense knowledge benchmarks. These systems do not possess human-level common sense, but are able to exploit limitations of the datasets to achieve human-level scores. We introduce the CODAH dataset, an adversarially-constructed evaluation dataset for testing common sense. CODAH forms a challenging extension to the recently-proposed SWAG dataset, which tests commonsense knowledge using sentence-completion questions that describe situations observed in video. To produce a more difficult dataset, we introduce a novel procedure for question acquisition in which workers author questions designed to target weaknesses of state-of-the-art neural question answering systems. Workers are rewarded for submissions that models fail to answer correctly both before and after fine-tuning (in cross-validation). We create 2.8k questions via this procedure and evaluate the performance of multiple state-of-the-art question answering systems on our dataset. We observe a significant gap between human performance, which is 95.3%, and the performance of the best baseline accuracy of 67.5% by the BERT-Large model.
Commonsense Knowledge Transfer for Pre-trained Language Models
Despite serving as the foundation models for a wide range of NLP benchmarks, pre-trained language models have shown limited capabilities of acquiring implicit commonsense knowledge from self-supervision alone, compared to learning linguistic and factual knowledge that appear more explicitly in the surface patterns in text. In this work, we introduce commonsense knowledge transfer, a framework to transfer the commonsense knowledge stored in a neural commonsense knowledge model to a general-purpose pre-trained language model. It first exploits general texts to form queries for extracting commonsense knowledge from the neural commonsense knowledge model and then refines the language model with two self-supervised objectives: commonsense mask infilling and commonsense relation prediction, which align human language with the underlying commonsense knowledge. Empirical results show that our approach consistently improves the model's performance on downstream tasks that require commonsense reasoning. Moreover, we find that the improvement is more significant in the few-shot setting. This suggests that our approach helps language models better transfer to downstream tasks without extensive supervision by injecting commonsense knowledge into their parameters.
Commonsense-Focused Dialogues for Response Generation: An Empirical Study
Smooth and effective communication requires the ability to perform latent or explicit commonsense inference. Prior commonsense reasoning benchmarks (such as SocialIQA and CommonsenseQA) mainly focus on the discriminative task of choosing the right answer from a set of candidates, and do not involve interactive language generation as in dialogue. Moreover, existing dialogue datasets do not explicitly focus on exhibiting commonsense as a facet. In this paper, we present an empirical study of commonsense in dialogue response generation. We first auto-extract commonsensical dialogues from existing dialogue datasets by leveraging ConceptNet, a commonsense knowledge graph. Furthermore, building on social contexts/situations in SocialIQA, we collect a new dialogue dataset with 25K dialogues aimed at exhibiting social commonsense in an interactive setting. We evaluate response generation models trained using these datasets and find that models trained on both extracted and our collected data produce responses that consistently exhibit more commonsense than baselines. Finally we propose an approach for automatic evaluation of commonsense that relies on features derived from ConceptNet and pre-trained language and dialog models, and show reasonable correlation with human evaluation of responses' commonsense quality. We are releasing a subset of our collected data, Commonsense-Dialogues, containing about 11K dialogs.
Mind the Gap! Injecting Commonsense Knowledge for Abstractive Dialogue Summarization
In this paper, we propose to leverage the unique characteristics of dialogues sharing commonsense knowledge across participants, to resolve the difficulties in summarizing them. We present SICK, a framework that uses commonsense inferences as additional context. Compared to previous work that solely relies on the input dialogue, SICK uses an external knowledge model to generate a rich set of commonsense inferences and selects the most probable one with a similarity-based selection method. Built upon SICK, SICK++ utilizes commonsense as supervision, where the task of generating commonsense inferences is added upon summarizing the dialogue in a multi-task learning setting. Experimental results show that with injected commonsense knowledge, our framework generates more informative and consistent summaries than existing methods.
CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general background. To investigate question answering with prior knowledge, we present CommonsenseQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from ConceptNet (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%.
Large Language Models Are Also Good Prototypical Commonsense Reasoners
Commonsense reasoning is a pivotal skill for large language models, yet it presents persistent challenges in specific tasks requiring this competence. Traditional fine-tuning approaches can be resource-intensive and potentially compromise a model's generalization capacity. Furthermore, state-of-the-art language models like GPT-3.5 and Claude are primarily accessible through API calls, which makes fine-tuning models challenging. To address these challenges, we draw inspiration from the outputs of large models for tailored tasks and semi-automatically developed a set of novel prompts from several perspectives, including task-relevance, supportive evidence generation (e.g. chain-of-thought and knowledge), diverse path decoding to aid the model. Experimental results on ProtoQA dataset demonstrate that with better designed prompts we can achieve the new state-of-art(SOTA) on the ProtoQA leaderboard, improving the Max Answer@1 score by 8%, Max Incorrect@1 score by 4% (breakthrough 50% for the first time) compared to the previous SOTA model and achieved an improvement on StrategyQA and CommonsenseQA2.0 (3% and 1%, respectively). Furthermore, with the generated Chain-of-Thought and knowledge, we can improve the interpretability of the model while also surpassing the previous SOTA models. We hope that our work can provide insight for the NLP community to develop better prompts and explore the potential of large language models for more complex reasoning tasks.
Can a Gorilla Ride a Camel? Learning Semantic Plausibility from Text
Modeling semantic plausibility requires commonsense knowledge about the world and has been used as a testbed for exploring various knowledge representations. Previous work has focused specifically on modeling physical plausibility and shown that distributional methods fail when tested in a supervised setting. At the same time, distributional models, namely large pretrained language models, have led to improved results for many natural language understanding tasks. In this work, we show that these pretrained language models are in fact effective at modeling physical plausibility in the supervised setting. We therefore present the more difficult problem of learning to model physical plausibility directly from text. We create a training set by extracting attested events from a large corpus, and we provide a baseline for training on these attested events in a self-supervised manner and testing on a physical plausibility task. We believe results could be further improved by injecting explicit commonsense knowledge into a distributional model.
Multi-hop Commonsense Knowledge Injection Framework for Zero-Shot Commonsense Question Answering
Commonsense question answering (QA) research requires machines to answer questions based on commonsense knowledge. However, this research requires expensive labor costs to annotate data as the basis of research, and models that rely on fine-tuning paradigms only apply to specific tasks, rather than learn a general commonsense reasoning ability. As a more robust method, zero-shot commonsense question answering shows a good prospect. The current zero-shot framework tries to convert triples in commonsense knowledge graphs (KGs) into QA-form samples as the pre-trained data source to incorporate commonsense knowledge into the model. However, this method ignores the multi-hop relationship in the KG, which is also an important central problem in commonsense reasoning. In this paper, we propose a novel multi-hop commonsense knowledge injection framework. Specifically, it explores multi-hop reasoning paradigm in KGs that conform to linguistic logic, and we further propose two multi-hop QA generation methods based on KGs. Then, we utilize contrastive learning to pre-train the model with the synthetic QA dataset to inject multi-hop commonsense knowledge. Extensive experiments on five commonsense question answering benchmarks demonstrate that our framework achieves state-of-art performance.
CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering
The task of zero-shot commonsense question answering evaluates models on their capacity to reason about general scenarios beyond those presented in specific datasets. Existing approaches for tackling this task leverage external knowledge from CommonSense Knowledge Bases (CSKBs) by pretraining the model on synthetic QA pairs constructed from CSKBs. In these approaches, negative examples (distractors) are formulated by randomly sampling from CSKBs using fairly primitive keyword constraints. However, two bottlenecks limit these approaches: the inherent incompleteness of CSKBs limits the semantic coverage of synthetic QA pairs, and the lack of human annotations makes the sampled negative examples potentially uninformative and contradictory. To tackle these limitations above, we propose Conceptualization-Augmented Reasoner (CAR), a zero-shot commonsense question-answering framework that fully leverages the power of conceptualization. Specifically, CAR abstracts a commonsense knowledge triple to many higher-level instances, which increases the coverage of CSKB and expands the ground-truth answer space, reducing the likelihood of selecting false-negative distractors. Extensive experiments demonstrate that CAR more robustly generalizes to answering questions about zero-shot commonsense scenarios than existing methods, including large language models, such as GPT3.5 and ChatGPT. Our codes, data, and model checkpoints are available at https://github.com/HKUST-KnowComp/CAR.
Language Models of Code are Few-Shot Commonsense Learners
We address the general task of structured commonsense reasoning: given a natural language input, the goal is to generate a graph such as an event -- or a reasoning-graph. To employ large language models (LMs) for this task, existing approaches ``serialize'' the output graph as a flat list of nodes and edges. Although feasible, these serialized graphs strongly deviate from the natural language corpora that LMs were pre-trained on, hindering LMs from generating them correctly. In this paper, we show that when we instead frame structured commonsense reasoning tasks as code generation tasks, pre-trained LMs of code are better structured commonsense reasoners than LMs of natural language, even when the downstream task does not involve source code at all. We demonstrate our approach across three diverse structured commonsense reasoning tasks. In all these natural language tasks, we show that using our approach, a code generation LM (CODEX) outperforms natural-LMs that are fine-tuned on the target task (e.g., T5) and other strong LMs such as GPT-3 in the few-shot setting.
Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering
Knowledge underpins reasoning. Recent research demonstrates that when relevant knowledge is provided as additional context to commonsense question answering (QA), it can substantially enhance the performance even on top of state-of-the-art. The fundamental challenge is where and how to find such knowledge that is high quality and on point with respect to the question; knowledge retrieved from knowledge bases are incomplete and knowledge generated from language models are inconsistent. We present Rainier, or Reinforced Knowledge Introspector, that learns to generate contextually relevant knowledge in response to given questions. Our approach starts by imitating knowledge generated by GPT-3, then learns to generate its own knowledge via reinforcement learning where rewards are shaped based on the increased performance on the resulting question answering. Rainier demonstrates substantial and consistent performance gains when tested over 9 different commonsense benchmarks: including 5 datasets that are seen during model training, as well as 4 datasets that are kept unseen. Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.
ViCor: Bridging Visual Understanding and Commonsense Reasoning with Large Language Models
In our work, we explore the synergistic capabilities of pre-trained vision-and-language models (VLMs) and large language models (LLMs) for visual commonsense reasoning (VCR). We categorize the problem of VCR into visual commonsense understanding (VCU) and visual commonsense inference (VCI). For VCU, which involves perceiving the literal visual content, pre-trained VLMs exhibit strong cross-dataset generalization. On the other hand, in VCI, where the goal is to infer conclusions beyond image content, VLMs face difficulties. We find that a baseline where VLMs provide perception results (image captions) to LLMs leads to improved performance on VCI. However, we identify a challenge with VLMs' passive perception, which often misses crucial context information, leading to incorrect or uncertain reasoning by LLMs. To mitigate this issue, we suggest a collaborative approach where LLMs, when uncertain about their reasoning, actively direct VLMs to concentrate on and gather relevant visual elements to support potential commonsense inferences. In our method, named ViCor, pre-trained LLMs serve as problem classifiers to analyze the problem category, VLM commanders to leverage VLMs differently based on the problem classification, and visual commonsense reasoners to answer the question. VLMs will perform visual recognition and understanding. We evaluate our framework on two VCR benchmark datasets and outperform all other methods that do not require in-domain supervised fine-tuning.
NLKI: A lightweight Natural Language Knowledge Integration Framework for Improving Small VLMs in Commonsense VQA Tasks
Commonsense visual-question answering often hinges on knowledge that is missing from the image or the question. Small vision-language models (sVLMs) such as ViLT, VisualBERT and FLAVA therefore lag behind their larger generative counterparts. To study the effect of careful commonsense knowledge integration on sVLMs, we present an end-to-end framework (NLKI) that (i) retrieves natural language facts, (ii) prompts an LLM to craft natural language explanations, and (iii) feeds both signals to sVLMs respectively across two commonsense VQA datasets (CRIC, AOKVQA) and a visual-entailment dataset (e-SNLI-VE). Facts retrieved using a fine-tuned ColBERTv2 and an object information-enriched prompt yield explanations that largely cut down hallucinations, while lifting the end-to-end answer accuracy by up to 7% (across 3 datasets), making FLAVA and other models in NLKI match or exceed medium-sized VLMs such as Qwen-2 VL-2B and SmolVLM-2.5B. As these benchmarks contain 10-25% label noise, additional finetuning using noise-robust losses (such as symmetric cross entropy and generalised cross entropy) adds another 2.5% in CRIC, and 5.5% in AOKVQA. Our findings expose when LLM-based commonsense knowledge beats retrieval from commonsense knowledge bases, how noise-aware training stabilises small models in the context of external knowledge augmentation, and why parameter-efficient commonsense reasoning is now within reach for 250M models.
From Recognition to Cognition: Visual Commonsense Reasoning
Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world. We formalize this task as Visual Commonsense Reasoning. Given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer. Next, we introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe for generating non-trivial and high-quality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-the-art vision models struggle (~45%). To move towards cognition-level understanding, we present a new reasoning engine, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. R2C helps narrow the gap between humans and machines (~65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.
Premise-based Multimodal Reasoning: Conditional Inference on Joint Textual and Visual Clues
It is a common practice for recent works in vision language cross-modal reasoning to adopt a binary or multi-choice classification formulation taking as input a set of source image(s) and textual query. In this work, we take a sober look at such an unconditional formulation in the sense that no prior knowledge is specified with respect to the source image(s). Inspired by the designs of both visual commonsense reasoning and natural language inference tasks, we propose a new task termed Premise-based Multi-modal Reasoning(PMR) where a textual premise is the background presumption on each source image. The PMR dataset contains 15,360 manually annotated samples which are created by a multi-phase crowd-sourcing process. With selected high-quality movie screenshots and human-curated premise templates from 6 pre-defined categories, we ask crowd-source workers to write one true hypothesis and three distractors (4 choices) given the premise and image through a cross-check procedure. Besides, we generate adversarial samples to alleviate the annotation artifacts and double the size of PMR. We benchmark various state-of-the-art (pretrained) multi-modal inference models on PMR and conduct comprehensive experimental analyses to showcase the utility of our dataset.
Gemini in Reasoning: Unveiling Commonsense in Multimodal Large Language Models
The burgeoning interest in Multimodal Large Language Models (MLLMs), such as OpenAI's GPT-4V(ision), has significantly impacted both academic and industrial realms. These models enhance Large Language Models (LLMs) with advanced visual understanding capabilities, facilitating their application in a variety of multimodal tasks. Recently, Google introduced Gemini, a cutting-edge MLLM designed specifically for multimodal integration. Despite its advancements, preliminary benchmarks indicate that Gemini lags behind GPT models in commonsense reasoning tasks. However, this assessment, based on a limited dataset (i.e., HellaSWAG), does not fully capture Gemini's authentic commonsense reasoning potential. To address this gap, our study undertakes a thorough evaluation of Gemini's performance in complex reasoning tasks that necessitate the integration of commonsense knowledge across modalities. We carry out a comprehensive analysis of 12 commonsense reasoning datasets, ranging from general to domain-specific tasks. This includes 11 datasets focused solely on language, as well as one that incorporates multimodal elements. Our experiments across four LLMs and two MLLMs demonstrate Gemini's competitive commonsense reasoning capabilities. Additionally, we identify common challenges faced by current LLMs and MLLMs in addressing commonsense problems, underscoring the need for further advancements in enhancing the commonsense reasoning abilities of these models.
CoLoTa: A Dataset for Entity-based Commonsense Reasoning over Long-Tail Knowledge
The rise of Large Language Models (LLMs) has redefined the AI landscape, particularly due to their ability to encode factual and commonsense knowledge, and their outstanding performance in tasks requiring reasoning. Despite these advances, hallucinations and reasoning errors remain a significant barrier to their deployment in high-stakes settings. In this work, we observe that even the most prominent LLMs, such as OpenAI-o1, suffer from high rates of reasoning errors and hallucinations on tasks requiring commonsense reasoning over obscure, long-tail entities. To investigate this limitation, we present a new dataset for Commonsense reasoning over Long-Tail entities (CoLoTa), that consists of 3,300 queries from question answering and claim verification tasks and covers a diverse range of commonsense reasoning skills. We remark that CoLoTa can also serve as a Knowledge Graph Question Answering (KGQA) dataset since the support of knowledge required to answer its queries is present in the Wikidata knowledge graph. However, as opposed to existing KGQA benchmarks that merely focus on factoid questions, our CoLoTa queries also require commonsense reasoning. Our experiments with strong LLM-based KGQA methodologies indicate their severe inability to answer queries involving commonsense reasoning. Hence, we propose CoLoTa as a novel benchmark for assessing both (i) LLM commonsense reasoning capabilities and their robustness to hallucinations on long-tail entities and (ii) the commonsense reasoning capabilities of KGQA methods.
Common Sense Beyond English: Evaluating and Improving Multilingual Language Models for Commonsense Reasoning
Commonsense reasoning research has so far been limited to English. We aim to evaluate and improve popular multilingual language models (ML-LMs) to help advance commonsense reasoning (CSR) beyond English. We collect the Mickey Corpus, consisting of 561k sentences in 11 different languages, which can be used for analyzing and improving ML-LMs. We propose Mickey Probe, a language-agnostic probing task for fairly evaluating the common sense of popular ML-LMs across different languages. In addition, we also create two new datasets, X-CSQA and X-CODAH, by translating their English versions to 15 other languages, so that we can evaluate popular ML-LMs for cross-lingual commonsense reasoning. To improve the performance beyond English, we propose a simple yet effective method -- multilingual contrastive pre-training (MCP). It significantly enhances sentence representations, yielding a large performance gain on both benchmarks.
DiscoSense: Commonsense Reasoning with Discourse Connectives
We present DiscoSense, a benchmark for commonsense reasoning via understanding a wide variety of discourse connectives. We generate compelling distractors in DiscoSense using Conditional Adversarial Filtering, an extension of Adversarial Filtering that employs conditional generation. We show that state-of-the-art pre-trained language models struggle to perform well on DiscoSense, which makes this dataset ideal for evaluating next-generation commonsense reasoning systems.
Improving Visual Commonsense in Language Models via Multiple Image Generation
Commonsense reasoning is fundamentally based on multimodal knowledge. However, existing large language models (LLMs) are primarily trained using textual data only, limiting their ability to incorporate essential visual information. In contrast, Visual Language Models, which excel at visually-oriented tasks, often fail at non-visual tasks such as basic commonsense reasoning. This divergence highlights a critical challenge - the integration of robust visual understanding with foundational text-based language reasoning. To this end, we introduce a method aimed at enhancing LLMs' visual commonsense. Specifically, our method generates multiple images based on the input text prompt and integrates these into the model's decision-making process by mixing their prediction probabilities. To facilitate multimodal grounded language modeling, we employ a late-fusion layer that combines the projected visual features with the output of a pre-trained LLM conditioned on text only. This late-fusion layer enables predictions based on comprehensive image-text knowledge as well as text only when this is required. We evaluate our approach using several visual commonsense reasoning tasks together with traditional NLP tasks, including common sense reasoning and reading comprehension. Our experimental results demonstrate significant superiority over existing baselines. When applied to recent state-of-the-art LLMs (e.g., Llama3), we observe improvements not only in visual common sense but also in traditional NLP benchmarks. Code and models are available under https://github.com/guyyariv/vLMIG.
CR-LT-KGQA: A Knowledge Graph Question Answering Dataset Requiring Commonsense Reasoning and Long-Tail Knowledge
Knowledge graph question answering (KGQA) is a well-established field that seeks to provide factual answers to natural language (NL) questions by leveraging knowledge graphs (KGs). However, existing KGQA datasets suffer from two significant limitations: (1) no existing KGQA dataset requires commonsense reasoning to arrive at an answer and (2) existing KGQA datasets focus on popular entities for which large language models (LLMs) can directly answer without hallucinating and without leveraging the KG. In this work, we seek a novel KGQA dataset that supports commonsense reasoning and focuses on long-tail entities (e.g., non-mainstream and recent entities) where LLMs frequently hallucinate, and thus create the need for novel methodologies that leverage the KG for factual and attributable commonsense inference. We create a novel Commonsense Reasoning (CR) and Long-Tail (LT) KGQA dataset with two subtasks -- question answering and claim verification -- that address both limitations (1) and (2). We construct CR-LT-KGQA by building extensions to existing reasoning datasets StrategyQA and CREAK over Wikidata. While existing KGQA methods are not applicable due to their lack of commonsense inference support, baseline evaluation of LLMs on CR-LT KGQA demonstrate a high rate of hallucination. Thus, CR-LT KGQA poses significant challenges for hallucination-prone LLMs, hence paving the way for future commonsense KGQA research to provide accurate and factual answers for long-tail entities in the era of LLMs.
CICERO: A Dataset for Contextualized Commonsense Inference in Dialogues
This paper addresses the problem of dialogue reasoning with contextualized commonsense inference. We curate CICERO, a dataset of dyadic conversations with five types of utterance-level reasoning-based inferences: cause, subsequent event, prerequisite, motivation, and emotional reaction. The dataset contains 53,105 of such inferences from 5,672 dialogues. We use this dataset to solve relevant generative and discriminative tasks: generation of cause and subsequent event; generation of prerequisite, motivation, and listener's emotional reaction; and selection of plausible alternatives. Our results ascertain the value of such dialogue-centric commonsense knowledge datasets. It is our hope that CICERO will open new research avenues into commonsense-based dialogue reasoning.
Symbolic Knowledge Distillation: from General Language Models to Commonsense Models
The common practice for training commonsense models has gone from-human-to-corpus-to-machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from-machine-to-corpus-to-machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al., 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically-as text-in addition to the neural model. We also distill only one aspect-the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model's commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.
ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning
Given questions regarding some prototypical situation such as Name something that people usually do before they leave the house for work? a human can easily answer them via acquired experiences. There can be multiple right answers for such questions, with some more common for a situation than others. This paper introduces a new question answering dataset for training and evaluating common sense reasoning capabilities of artificial intelligence systems in such prototypical situations. The training set is gathered from an existing set of questions played in a long-running international game show FAMILY- FEUD. The hidden evaluation set is created by gathering answers for each question from 100 crowd-workers. We also propose a generative evaluation task where a model has to output a ranked list of answers, ideally covering all prototypical answers for a question. After presenting multiple competitive baseline models, we find that human performance still exceeds model scores on all evaluation metrics with a meaningful gap, supporting the challenging nature of the task.
HellaSwag-Pro: A Large-Scale Bilingual Benchmark for Evaluating the Robustness of LLMs in Commonsense Reasoning
Large language models (LLMs) have shown remarkable capabilities in commonsense reasoning; however, some variations in questions can trigger incorrect responses. Do these models truly understand commonsense knowledge, or just memorize expression patterns? To investigate this question, we present the first extensive robustness evaluation of LLMs in commonsense reasoning. We introduce HellaSwag-Pro, a large-scale bilingual benchmark consisting of 11,200 cases, by designing and compiling seven types of question variants. To construct this benchmark, we propose a two-stage method to develop Chinese HellaSwag, a finely annotated dataset comprising 12,000 instances across 56 categories. We conduct extensive experiments on 41 representative LLMs, revealing that these LLMs are far from robust in commonsense reasoning. Furthermore, this robustness varies depending on the language in which the LLM is tested. This work establishes a high-quality evaluation benchmark, with extensive experiments offering valuable insights to the community in commonsense reasoning for LLMs.
BERTić -- The Transformer Language Model for Bosnian, Croatian, Montenegrin and Serbian
In this paper we describe a transformer model pre-trained on 8 billion tokens of crawled text from the Croatian, Bosnian, Serbian and Montenegrin web domains. We evaluate the transformer model on the tasks of part-of-speech tagging, named-entity-recognition, geo-location prediction and commonsense causal reasoning, showing improvements on all tasks over state-of-the-art models. For commonsense reasoning evaluation, we introduce COPA-HR -- a translation of the Choice of Plausible Alternatives (COPA) dataset into Croatian. The BERTi\'c model is made available for free usage and further task-specific fine-tuning through HuggingFace.
ZEBRA: Zero-Shot Example-Based Retrieval Augmentation for Commonsense Question Answering
Current Large Language Models (LLMs) have shown strong reasoning capabilities in commonsense question answering benchmarks, but the process underlying their success remains largely opaque. As a consequence, recent approaches have equipped LLMs with mechanisms for knowledge retrieval, reasoning and introspection, not only to improve their capabilities but also to enhance the interpretability of their outputs. However, these methods require additional training, hand-crafted templates or human-written explanations. To address these issues, we introduce ZEBRA, a zero-shot question answering framework that combines retrieval, case-based reasoning and introspection and dispenses with the need for additional training of the LLM. Given an input question, ZEBRA retrieves relevant question-knowledge pairs from a knowledge base and generates new knowledge by reasoning over the relationships in these pairs. This generated knowledge is then used to answer the input question, improving the model's performance and interpretability. We evaluate our approach across 8 well-established commonsense reasoning benchmarks, demonstrating that ZEBRA consistently outperforms strong LLMs and previous knowledge integration approaches, achieving an average accuracy improvement of up to 4.5 points.
Prompting Contrastive Explanations for Commonsense Reasoning Tasks
Many commonsense reasoning NLP tasks involve choosing between one or more possible answers to a question or prompt based on knowledge that is often implicit. Large pretrained language models (PLMs) can achieve near-human performance on such tasks, while providing little human-interpretable evidence of the underlying reasoning they use. In this work, we show how to use these same models to generate such evidence: inspired by the contrastive nature of human explanations, we use PLMs to complete explanation prompts which contrast alternatives according to the key attribute(s) required to justify the correct answer (for example, peanuts are usually salty while raisins are sweet). Conditioning model decisions on these explanations improves performance on two commonsense reasoning benchmarks, as compared to previous non-contrastive alternatives. These explanations are also judged by humans to be more relevant for solving the task, and facilitate a novel method to evaluate explanation faithfulfness.
Hybrid Reasoning Network for Video-based Commonsense Captioning
The task of video-based commonsense captioning aims to generate event-wise captions and meanwhile provide multiple commonsense descriptions (e.g., attribute, effect and intention) about the underlying event in the video. Prior works explore the commonsense captions by using separate networks for different commonsense types, which is time-consuming and lacks mining the interaction of different commonsense. In this paper, we propose a Hybrid Reasoning Network (HybridNet) to endow the neural networks with the capability of semantic-level reasoning and word-level reasoning. Firstly, we develop multi-commonsense learning for semantic-level reasoning by jointly training different commonsense types in a unified network, which encourages the interaction between the clues of multiple commonsense descriptions, event-wise captions and videos. Then, there are two steps to achieve the word-level reasoning: (1) a memory module records the history predicted sequence from the previous generation processes; (2) a memory-routed multi-head attention (MMHA) module updates the word-level attention maps by incorporating the history information from the memory module into the transformer decoder for word-level reasoning. Moreover, the multimodal features are used to make full use of diverse knowledge for commonsense reasoning. Experiments and abundant analysis on the large-scale Video-to-Commonsense benchmark show that our HybridNet achieves state-of-the-art performance compared with other methods.
Vera: A General-Purpose Plausibility Estimation Model for Commonsense Statements
Despite the much discussed capabilities of today's language models, they are still prone to silly and unexpected commonsense failures. We consider a retrospective verification approach that reflects on the correctness of LM outputs, and introduce Vera, a general-purpose model that estimates the plausibility of declarative statements based on commonsense knowledge. Trained on ~7M commonsense statements created from 19 QA datasets and two large-scale knowledge bases, and with a combination of three training objectives, Vera is a versatile model that effectively separates correct from incorrect statements across diverse commonsense domains. When applied to solving commonsense problems in the verification format, Vera substantially outperforms existing models that can be repurposed for commonsense verification, and it further exhibits generalization capabilities to unseen tasks and provides well-calibrated outputs. We find that Vera excels at filtering LM-generated commonsense knowledge and is useful in detecting erroneous commonsense statements generated by models like ChatGPT in real-world settings.
mSCoRe: a Multilingual and Scalable Benchmark for Skill-based Commonsense Reasoning
Recent advancements in reasoning-reinforced Large Language Models (LLMs) have shown remarkable capabilities in complex reasoning tasks. However, the mechanism underlying their utilization of different human reasoning skills remains poorly investigated, especially for multilingual commonsense reasoning that involves everyday knowledge across different languages and cultures. To address this gap, we propose a Multilingual and Scalable Benchmark for Skill-based Commonsense Reasoning (mSCoRe). Our benchmark incorporates three key components that are designed to systematically evaluate LLM's reasoning capabilities, including: (1) a novel taxonomy of reasoning skills that enables fine-grained analysis of models' reasoning processes, (2) a robust data synthesis pipeline tailored specifically for commonsense reasoning evaluation, and (3) a complexity scaling framework allowing task difficulty to scale dynamically alongside future improvements in LLM abilities. Extensive experiments on eights state-of-the-art LLMs of varying sizes and training approaches demonstrate that mSCoRe remains significantly challenging for current models, particularly at higher complexity levels. Our results reveal the limitations of such reasoning-reinforced models when confronted with nuanced multilingual general and cultural commonsense. We further provide detailed analysis on the models' reasoning processes, suggesting future directions for improving multilingual commonsense reasoning capabilities.
This is not a Dataset: A Large Negation Benchmark to Challenge Large Language Models
Although large language models (LLMs) have apparently acquired a certain level of grammatical knowledge and the ability to make generalizations, they fail to interpret negation, a crucial step in Natural Language Processing. We try to clarify the reasons for the sub-optimal performance of LLMs understanding negation. We introduce a large semi-automatically generated dataset of circa 400,000 descriptive sentences about commonsense knowledge that can be true or false in which negation is present in about 2/3 of the corpus in different forms. We have used our dataset with the largest available open LLMs in a zero-shot approach to grasp their generalization and inference capability and we have also fine-tuned some of the models to assess whether the understanding of negation can be trained. Our findings show that, while LLMs are proficient at classifying affirmative sentences, they struggle with negative sentences and lack a deep understanding of negation, often relying on superficial cues. Although fine-tuning the models on negative sentences improves their performance, the lack of generalization in handling negation is persistent, highlighting the ongoing challenges of LLMs regarding negation understanding and generalization. The dataset and code are publicly available.
GLUCOSE: GeneraLized and COntextualized Story Explanations
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context. To construct GLUCOSE, we drew on cognitive psychology to identify ten dimensions of causal explanation, focusing on events, states, motivations, and emotions. Each GLUCOSE entry includes a story-specific causal statement paired with an inference rule generalized from the statement. This paper details two concrete contributions. First, we present our platform for effectively crowdsourcing GLUCOSE data at scale, which uses semi-structured templates to elicit causal explanations. Using this platform, we collected a total of ~670K specific statements and general rules that capture implicit commonsense knowledge about everyday situations. Second, we show that existing knowledge resources and pretrained language models do not include or readily predict GLUCOSE's rich inferential content. However, when state-of-the-art neural models are trained on this knowledge, they can start to make commonsense inferences on unseen stories that match humans' mental models.
TinyThinker: Distilling Reasoning through Coarse-to-Fine Knowledge Internalization with Self-Reflection
Large Language Models exhibit impressive reasoning capabilities across diverse tasks, motivating efforts to distill these capabilities into smaller models through generated reasoning data. However, direct training on such synthesized reasoning data may lead to superficial imitation of reasoning process, rather than fostering a genuine integration of reasoning capabilities with underlying knowledge. To address this, we propose TinyThinker, a framework introducing two novel approaches. First, we introduce a three-stage process that incrementally guides the student model through the reasoning process, progressively refining knowledge from coarse to fine granularity. Second, we develop a two-phase training framework comprising an initial reasoning acquisition phase followed by a self-reflection phase utilizing self-generated data. Experiments on commonsense reasoning benchmarks demonstrate that TinyThinker achieves superior performance compared to baselines. Ablation studies further validate the effectiveness of each component in our framework. TinyThinker is extendable to other knowledge-intensive reasoning tasks, offering an alternative strategy for developing effective reasoning capabilities in smaller language models. Codes are available at https://github.com/shengminp/TinyThinker
An Enhanced Knowledge Injection Model for Commonsense Generation
Commonsense generation aims at generating plausible everyday scenario description based on a set of provided concepts. Digging the relationship of concepts from scratch is non-trivial, therefore, we retrieve prototypes from external knowledge to assist the understanding of the scenario for better description generation. We integrate two additional modules, namely position indicator and scaling module, into the pretrained encoder-decoder model for prototype modeling to enhance the knowledge injection procedure. We conduct experiment on CommonGen benchmark, and experimental results show that our method significantly improves the performance on all the metrics.
Multi-Step Reasoning in Korean and the Emergent Mirage
We introduce HRMCR (HAE-RAE Multi-Step Commonsense Reasoning), a benchmark designed to evaluate large language models' ability to perform multi-step reasoning in culturally specific contexts, focusing on Korean. The questions are automatically generated via templates and algorithms, requiring LLMs to integrate Korean cultural knowledge into sequential reasoning steps. Consistent with prior observations on emergent abilities, our experiments reveal that models trained on fewer than \(2 \cdot 10^{25}\) training FLOPs struggle to solve any questions, showing near-zero performance. Beyond this threshold, performance improves sharply. State-of-the-art models (e.g., O1) still score under 50\%, underscoring the difficulty of our tasks. Notably, stepwise analysis suggests the observed emergent behavior may stem from compounding errors across multiple steps rather than reflecting a genuinely new capability. We publicly release the benchmark and commit to regularly updating the dataset to prevent contamination.
NovaCOMET: Open Commonsense Foundation Models with Symbolic Knowledge Distillation
We present NovaCOMET, an open commonsense knowledge model, that combines the best aspects of knowledge and general task models. Compared to previous knowledge models, NovaCOMET allows open-format relations enabling direct application to reasoning tasks; compared to general task models like Flan-T5, it explicitly centers knowledge, enabling superior performance for commonsense reasoning. NovaCOMET leverages the knowledge of opaque proprietary models to create an open knowledge pipeline. First, knowledge is symbolically distilled into NovATOMIC, a publicly-released discrete knowledge graph which can be audited, critiqued, and filtered. Next, we train NovaCOMET on NovATOMIC by fine-tuning an open-source pretrained model. NovaCOMET uses an open-format training objective, replacing the fixed relation sets of past knowledge models, enabling arbitrary structures within the data to serve as inputs or outputs. The resulting generation model, optionally augmented with human annotation, matches or exceeds comparable open task models like Flan-T5 on a range of commonsense generation tasks. NovaCOMET serves as a counterexample to the contemporary focus on instruction tuning only, demonstrating a distinct advantage to explicitly modeling commonsense knowledge as well.
Event2Mind: Commonsense Inference on Events, Intents, and Reactions
We investigate a new commonsense inference task: given an event described in a short free-form text ("X drinks coffee in the morning"), a system reasons about the likely intents ("X wants to stay awake") and reactions ("X feels alert") of the event's participants. To support this study, we construct a new crowdsourced corpus of 25,000 event phrases covering a diverse range of everyday events and situations. We report baseline performance on this task, demonstrating that neural encoder-decoder models can successfully compose embedding representations of previously unseen events and reason about the likely intents and reactions of the event participants. In addition, we demonstrate how commonsense inference on people's intents and reactions can help unveil the implicit gender inequality prevalent in modern movie scripts.
Black Swan: Abductive and Defeasible Video Reasoning in Unpredictable Events
The commonsense reasoning capabilities of vision-language models (VLMs), especially in abductive reasoning and defeasible reasoning, remain poorly understood. Most benchmarks focus on typical visual scenarios, making it difficult to discern whether model performance stems from keen perception and reasoning skills, or reliance on pure statistical recall. We argue that by focusing on atypical events in videos, clearer insights can be gained on the core capabilities of VLMs. Explaining and understanding such out-of-distribution events requires models to extend beyond basic pattern recognition and regurgitation of their prior knowledge. To this end, we introduce BlackSwanSuite, a benchmark for evaluating VLMs' ability to reason about unexpected events through abductive and defeasible tasks. Our tasks artificially limit the amount of visual information provided to models while questioning them about hidden unexpected events, or provide new visual information that could change an existing hypothesis about the event. We curate a comprehensive benchmark suite comprising over 3,800 MCQ, 4,900 generative and 6,700 yes/no tasks, spanning 1,655 videos. After extensively evaluating various state-of-the-art VLMs, including GPT-4o and Gemini 1.5 Pro, as well as open-source VLMs such as LLaVA-Video, we find significant performance gaps of up to 32% from humans on these tasks. Our findings reveal key limitations in current VLMs, emphasizing the need for enhanced model architectures and training strategies.
Multiview Contextual Commonsense Inference: A New Dataset and Task
Contextual commonsense inference is the task of generating various types of explanations around the events in a dyadic dialogue, including cause, motivation, emotional reaction, and others. Producing a coherent and non-trivial explanation requires awareness of the dialogue's structure and of how an event is grounded in the context. In this work, we create CICEROv2, a dataset consisting of 8,351 instances from 2,379 dialogues, containing multiple human-written answers for each contextual commonsense inference question, representing a type of explanation on cause, subsequent event, motivation, and emotional reaction. We show that the inferences in CICEROv2 are more semantically diverse than other contextual commonsense inference datasets. To solve the inference task, we propose a collection of pre-training objectives, including concept denoising and utterance sorting to prepare a pre-trained model for the downstream contextual commonsense inference task. Our results show that the proposed pre-training objectives are effective at adapting the pre-trained T5-Large model for the contextual commonsense inference task.
Activating Visual Context and Commonsense Reasoning through Masked Prediction in VLMs
Recent breakthroughs in reasoning models have markedly advanced the reasoning capabilities of large language models, particularly via training on tasks with verifiable rewards. Yet, a significant gap persists in their adaptation to real world multimodal scenarios, most notably, vision language tasks, due to a heavy focus on single modal language settings. While efforts to transplant reinforcement learning techniques from NLP to VLMs have emerged, these approaches often remain confined to perception centric tasks or reduce images to textual summaries, failing to fully exploit visual context and commonsense knowledge, ultimately constraining the generalization of reasoning capabilities across diverse multimodal environments. To address this limitation, we introduce a novel fine tuning task, Masked Prediction via Context and Commonsense, which forces models to integrate visual context and commonsense reasoning by reconstructing semantically meaningful content from occluded images, thereby laying the foundation for generalized reasoning. To systematically evaluate the model performance in generalized reasoning, we developed a specialized evaluation benchmark, MPCC Eval, and employed various fine tuning strategies to guide reasoning. Among these, we introduced an innovative training method, Reinforcement Fine tuning with Prior Sampling, which not only enhances model performance but also improves its generalized reasoning capabilities in OOD and cross task scenarios.
A Corpus and Evaluation Framework for Deeper Understanding of Commonsense Stories
Representation and learning of commonsense knowledge is one of the foundational problems in the quest to enable deep language understanding. This issue is particularly challenging for understanding casual and correlational relationships between events. While this topic has received a lot of interest in the NLP community, research has been hindered by the lack of a proper evaluation framework. This paper attempts to address this problem with a new framework for evaluating story understanding and script learning: the 'Story Cloze Test'. This test requires a system to choose the correct ending to a four-sentence story. We created a new corpus of ~50k five-sentence commonsense stories, ROCStories, to enable this evaluation. This corpus is unique in two ways: (1) it captures a rich set of causal and temporal commonsense relations between daily events, and (2) it is a high quality collection of everyday life stories that can also be used for story generation. Experimental evaluation shows that a host of baselines and state-of-the-art models based on shallow language understanding struggle to achieve a high score on the Story Cloze Test. We discuss these implications for script and story learning, and offer suggestions for deeper language understanding.
Dialogue Chain-of-Thought Distillation for Commonsense-aware Conversational Agents
Human-like chatbots necessitate the use of commonsense reasoning in order to effectively comprehend and respond to implicit information present within conversations. Achieving such coherence and informativeness in responses, however, is a non-trivial task. Even for large language models (LLMs), the task of identifying and aggregating key evidence within a single hop presents a substantial challenge. This complexity arises because such evidence is scattered across multiple turns in a conversation, thus necessitating integration over multiple hops. Hence, our focus is to facilitate such multi-hop reasoning over a dialogue context, namely dialogue chain-of-thought (CoT) reasoning. To this end, we propose a knowledge distillation framework that leverages LLMs as unreliable teachers and selectively distills consistent and helpful rationales via alignment filters. We further present DOCTOR, a DialOgue Chain-of-ThOught Reasoner that provides reliable CoT rationales for response generation. We conduct extensive experiments to show that enhancing dialogue agents with high-quality rationales from DOCTOR significantly improves the quality of their responses.
I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation
Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.
ComFact: A Benchmark for Linking Contextual Commonsense Knowledge
Understanding rich narratives, such as dialogues and stories, often requires natural language processing systems to access relevant knowledge from commonsense knowledge graphs. However, these systems typically retrieve facts from KGs using simple heuristics that disregard the complex challenges of identifying situationally-relevant commonsense knowledge (e.g., contextualization, implicitness, ambiguity). In this work, we propose the new task of commonsense fact linking, where models are given contexts and trained to identify situationally-relevant commonsense knowledge from KGs. Our novel benchmark, ComFact, contains ~293k in-context relevance annotations for commonsense triplets across four stylistically diverse dialogue and storytelling datasets. Experimental results confirm that heuristic fact linking approaches are imprecise knowledge extractors. Learned fact linking models demonstrate across-the-board performance improvements (~34.6% F1) over these heuristics. Furthermore, improved knowledge retrieval yielded average downstream improvements of 9.8% for a dialogue response generation task. However, fact linking models still significantly underperform humans, suggesting our benchmark is a promising testbed for research in commonsense augmentation of NLP systems.
Eliciting Better Multilingual Structured Reasoning from LLMs through Code
The development of large language models (LLM) has shown progress on reasoning, though studies have largely considered either English or simple reasoning tasks. To address this, we introduce a multilingual structured reasoning and explanation dataset, termed xSTREET, that covers four tasks across six languages. xSTREET exposes a gap in base LLM performance between English and non-English reasoning tasks. We then propose two methods to remedy this gap, building on the insight that LLMs trained on code are better reasoners. First, at training time, we augment a code dataset with multilingual comments using machine translation while keeping program code as-is. Second, at inference time, we bridge the gap between training and inference by employing a prompt structure that incorporates step-by-step code primitives to derive new facts and find a solution. Our methods show improved multilingual performance on xSTREET, most notably on the scientific commonsense reasoning subtask. Furthermore, the models show no regression on non-reasoning tasks, thus demonstrating our techniques maintain general-purpose abilities.
CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning
The sequential process of conceptualization and instantiation is essential to generalizable commonsense reasoning as it allows the application of existing knowledge to unfamiliar scenarios. However, existing works tend to undervalue the step of instantiation and heavily rely on pre-built concept taxonomies and human annotations to collect both types of knowledge, resulting in a lack of instantiated knowledge to complete reasoning, high cost, and limited scalability. To tackle these challenges, we introduce CANDLE, a distillation framework that iteratively performs contextualized conceptualization and instantiation over commonsense knowledge bases by instructing large language models to generate both types of knowledge with critic filtering. By applying CANDLE to ATOMIC, we construct a comprehensive knowledge base comprising six million conceptualizations and instantiated commonsense knowledge triples. Both types of knowledge are firmly rooted in the original ATOMIC dataset, and intrinsic evaluations demonstrate their exceptional quality and diversity. Empirical results indicate that distilling CANDLE on student models provides benefits across four downstream tasks. Our code, data, and models are publicly available at https://github.com/HKUST-KnowComp/CANDLE.
WinoGrande: An Adversarial Winograd Schema Challenge at Scale
The Winograd Schema Challenge (WSC) (Levesque, Davis, and Morgenstern 2011), a benchmark for commonsense reasoning, is a set of 273 expert-crafted pronoun resolution problems originally designed to be unsolvable for statistical models that rely on selectional preferences or word associations. However, recent advances in neural language models have already reached around 90% accuracy on variants of WSC. This raises an important question whether these models have truly acquired robust commonsense capabilities or whether they rely on spurious biases in the datasets that lead to an overestimation of the true capabilities of machine commonsense. To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. The best state-of-the-art methods on WinoGrande achieve 59.4-79.1%, which are 15-35% below human performance of 94.0%, depending on the amount of the training data allowed. Furthermore, we establish new state-of-the-art results on five related benchmarks - WSC (90.1%), DPR (93.1%), COPA (90.6%), KnowRef (85.6%), and Winogender (97.1%). These results have dual implications: on one hand, they demonstrate the effectiveness of WinoGrande when used as a resource for transfer learning. On the other hand, they raise a concern that we are likely to be overestimating the true capabilities of machine commonsense across all these benchmarks. We emphasize the importance of algorithmic bias reduction in existing and future benchmarks to mitigate such overestimation.
Natural Language Reasoning, A Survey
This survey paper proposes a clearer view of natural language reasoning in the field of Natural Language Processing (NLP), both conceptually and practically. Conceptually, we provide a distinct definition for natural language reasoning in NLP, based on both philosophy and NLP scenarios, discuss what types of tasks require reasoning, and introduce a taxonomy of reasoning. Practically, we conduct a comprehensive literature review on natural language reasoning in NLP, mainly covering classical logical reasoning, natural language inference, multi-hop question answering, and commonsense reasoning. The paper also identifies and views backward reasoning, a powerful paradigm for multi-step reasoning, and introduces defeasible reasoning as one of the most important future directions in natural language reasoning research. We focus on single-modality unstructured natural language text, excluding neuro-symbolic techniques and mathematical reasoning.
Do Large Language Models Perform Latent Multi-Hop Reasoning without Exploiting Shortcuts?
We evaluate how well Large Language Models (LLMs) latently recall and compose facts to answer multi-hop queries like "In the year Scarlett Johansson was born, the Summer Olympics were hosted in the country of". One major challenge in evaluating this ability is that LLMs may have developed shortcuts by encounters of the head entity "Scarlett Johansson" and the answer entity "United States" in the same training sequences or merely guess the answer based on frequency-based priors. To prevent shortcuts, we exclude test queries where the head and answer entities co-appear in pretraining corpora. Through careful selection of relations and facts and systematic removal of cases where models might guess answers or exploit partial matches, we construct an evaluation dataset SOCRATES (ShOrtCut-fRee lATent rEaSoning). We observe that LLMs demonstrate promising latent multi-hop reasoning abilities without exploiting shortcuts, but only for certain types of queries. For queries requiring latent recall of countries as the intermediate answer, the best models achieve 80% latent composability, but this drops to just 5% for the recall of years. Comparisons with Chain-of-Thought composability highlight a significant gap between the ability of models to reason latently versus explicitly. Analysis reveals that latent representations of the intermediate answer are constructed more often in queries with higher latent composability, and shows the emergence of latent multi-hop reasoning during pretraining.
From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought
How does language inform our downstream thinking? In particular, how do humans make meaning from language -- and how can we leverage a theory of linguistic meaning to build machines that think in more human-like ways? In this paper, we propose rational meaning construction, a computational framework for language-informed thinking that combines neural models of language with probabilistic models for rational inference. We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought (PLoT) -- a general-purpose symbolic substrate for probabilistic, generative world modeling. Our architecture integrates two powerful computational tools that have not previously come together: we model thinking with probabilistic programs, an expressive representation for flexible commonsense reasoning; and we model meaning construction with large language models (LLMs), which support broad-coverage translation from natural language utterances to code expressions in a probabilistic programming language. We illustrate our framework in action through examples covering four core domains from cognitive science: probabilistic reasoning, logical and relational reasoning, visual and physical reasoning, and social reasoning about agents and their plans. In each, we show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings, while Bayesian inference with the generated programs supports coherent and robust commonsense reasoning. We extend our framework to integrate cognitively-motivated symbolic modules to provide a unified commonsense thinking interface from language. Finally, we explore how language can drive the construction of world models themselves.
Commonsense-T2I Challenge: Can Text-to-Image Generation Models Understand Commonsense?
We present a novel task and benchmark for evaluating the ability of text-to-image(T2I) generation models to produce images that fit commonsense in real life, which we call Commonsense-T2I. Given two adversarial text prompts containing an identical set of action words with minor differences, such as "a lightbulb without electricity" v.s. "a lightbulb with electricity", we evaluate whether T2I models can conduct visual-commonsense reasoning, e.g. produce images that fit "the lightbulb is unlit" vs. "the lightbulb is lit" correspondingly. Commonsense-T2I presents an adversarial challenge, providing pairwise text prompts along with expected outputs. The dataset is carefully hand-curated by experts and annotated with fine-grained labels, such as commonsense type and likelihood of the expected outputs, to assist analyzing model behavior. We benchmark a variety of state-of-the-art (sota) T2I models and surprisingly find that, there is still a large gap between image synthesis and real life photos--even the DALL-E 3 model could only achieve 48.92% on Commonsense-T2I, and the stable diffusion XL model only achieves 24.92% accuracy. Our experiments show that GPT-enriched prompts cannot solve this challenge, and we include a detailed analysis about possible reasons for such deficiency. We aim for Commonsense-T2I to serve as a high-quality evaluation benchmark for T2I commonsense checking, fostering advancements in real life image generation.
Enhance Reasoning by Learning from Mistakes: Peer-Review Knowledge Distillation from Multiple Large Language Models
Large language models (LLMs) have exhibited complex reasoning abilities by generating question rationales and demonstrated exceptional performance in natural language processing (NLP) tasks. However, these reasoning capabilities generally emerge in models with tens of billions of parameters, creating significant computational challenges for real-world deployment. Recent research has concentrated on improving open-source smaller models through knowledge distillation (KD) from commercial LLMs. Nevertheless, most of these studies rely solely on the responses from one single LLM as the gold rationale for training. In this paper, we introduce a novel Mistake-Aware Peer-Review Distillation (MAPD) approach: 1) Instead of merely obtaining gold rationales from teachers, our method asks teachers to identify and explain the student's mistakes, providing customized instruction learning data. 2) We design a simulated peer-review process between teacher LLMs, which selects only the generated rationales above the acceptance threshold. This reduces the chance of teachers guessing correctly with flawed rationale, improving instructional data quality. Comprehensive experiments and analysis on mathematical, commonsense, and logical reasoning tasks demonstrate the effectiveness of our method.
GreaseLM: Graph REASoning Enhanced Language Models for Question Answering
Answering complex questions about textual narratives requires reasoning over both stated context and the world knowledge that underlies it. However, pretrained language models (LM), the foundation of most modern QA systems, do not robustly represent latent relationships between concepts, which is necessary for reasoning. While knowledge graphs (KG) are often used to augment LMs with structured representations of world knowledge, it remains an open question how to effectively fuse and reason over the KG representations and the language context, which provides situational constraints and nuances. In this work, we propose GreaseLM, a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations. Information from both modalities propagates to the other, allowing language context representations to be grounded by structured world knowledge, and allowing linguistic nuances (e.g., negation, hedging) in the context to inform the graph representations of knowledge. Our results on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMLE) domains demonstrate that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
CREAK: A Dataset for Commonsense Reasoning over Entity Knowledge
Most benchmark datasets targeting commonsense reasoning focus on everyday scenarios: physical knowledge like knowing that you could fill a cup under a waterfall [Talmor et al., 2019], social knowledge like bumping into someone is awkward [Sap et al., 2019], and other generic situations. However, there is a rich space of commonsense inferences anchored to knowledge about specific entities: for example, deciding the truthfulness of a claim "Harry Potter can teach classes on how to fly on a broomstick." Can models learn to combine entity knowledge with commonsense reasoning in this fashion? We introduce CREAK, a testbed for commonsense reasoning about entity knowledge, bridging fact-checking about entities (Harry Potter is a wizard and is skilled at riding a broomstick) with commonsense inferences (if you're good at a skill you can teach others how to do it). Our dataset consists of 13k human-authored English claims about entities that are either true or false, in addition to a small contrast set. Crowdworkers can easily come up with these statements and human performance on the dataset is high (high 90s); we argue that models should be able to blend entity knowledge and commonsense reasoning to do well here. In our experiments, we focus on the closed-book setting and observe that a baseline model finetuned on existing fact verification benchmark struggles on CREAK. Training a model on CREAK improves accuracy by a substantial margin, but still falls short of human performance. Our benchmark provides a unique probe into natural language understanding models, testing both its ability to retrieve facts (e.g., who teaches at the University of Chicago?) and unstated commonsense knowledge (e.g., butlers do not yell at guests).
Generated Knowledge Prompting for Commonsense Reasoning
It remains an open question whether incorporating external knowledge benefits commonsense reasoning while maintaining the flexibility of pretrained sequence models. To investigate this question, we develop generated knowledge prompting, which consists of generating knowledge from a language model, then providing the knowledge as additional input when answering a question. Our method does not require task-specific supervision for knowledge integration, or access to a structured knowledge base, yet it improves performance of large-scale, state-of-the-art models on four commonsense reasoning tasks, achieving state-of-the-art results on numerical commonsense (NumerSense), general commonsense (CommonsenseQA 2.0), and scientific commonsense (QASC) benchmarks. Generated knowledge prompting highlights large-scale language models as flexible sources of external knowledge for improving commonsense reasoning. Our code is available at https://github.com/liujch1998/GKP
Latent Reasoning in LLMs as a Vocabulary-Space Superposition
Large language models (LLMs) demonstrate strong reasoning abilities with chain-of-thought prompting, but explicit reasoning introduces substantial computational overhead. Recent work on latent reasoning reduces this cost by reasoning in latent space without explicit supervision, but performance drops significantly. Our preliminary experiments suggest that this degradation stems from the unstructured latent space, which makes fitting latent tokens difficult. To address this, we restrict the latent space to the column space of the LLM vocabulary, treating latent reasoning as a superposition over vocabulary probabilities. Once latent reasoning concludes, it collapses into an eigenstate of explicit reasoning to yield the final answer. Based on this idea, we propose Latent-SFT, a two-stage learning framework. In the first stage, we design two specialized attention masks to guide the Latent Token Encoder in generating latent tokens, allowing the LLM to produce the correct answer conditioned on them. In the second stage, the Latent Token Encoder is discarded, and the LLM is directly trained to generate these latent tokens autonomously for latent reasoning, optimized with KL and CE losses. Latent-SFT sets a new state of the art on GSM8k, matching explicit SFT performance while cutting reasoning chains by up to 4 times and outperforming prior latent methods. On Math500 and AIME24, lexical probability-based latent reasoning also clearly surpasses hidden-state-based approaches. Our metrics of effective compression rate and effective global parallelism further show that latent reasoning is both the compression of a single path and the superposition of multiple paths.
PIQA: Reasoning about Physical Commonsense in Natural Language
To apply eyeshadow without a brush, should I use a cotton swab or a toothpick? Questions requiring this kind of physical commonsense pose a challenge to today's natural language understanding systems. While recent pretrained models (such as BERT) have made progress on question answering over more abstract domains - such as news articles and encyclopedia entries, where text is plentiful - in more physical domains, text is inherently limited due to reporting bias. Can AI systems learn to reliably answer physical common-sense questions without experiencing the physical world? In this paper, we introduce the task of physical commonsense reasoning and a corresponding benchmark dataset Physical Interaction: Question Answering or PIQA. Though humans find the dataset easy (95% accuracy), large pretrained models struggle (77%). We provide analysis about the dimensions of knowledge that existing models lack, which offers significant opportunities for future research.
Large Language Models are In-Context Semantic Reasoners rather than Symbolic Reasoners
The emergent few-shot reasoning capabilities of Large Language Models (LLMs) have excited the natural language and machine learning community over recent years. Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear. In this work, we hypothesize that the learned semantics of language tokens do the most heavy lifting during the reasoning process. Different from human's symbolic reasoning process, the semantic representations of LLMs could create strong connections among tokens, thus composing a superficial logical chain. To test our hypothesis, we decouple semantics from the language reasoning process and evaluate three kinds of reasoning abilities, i.e., deduction, induction and abduction. Our findings reveal that semantics play a vital role in LLMs' in-context reasoning -- LLMs perform significantly better when semantics are consistent with commonsense but struggle to solve symbolic or counter-commonsense reasoning tasks by leveraging in-context new knowledge. The surprising observations question whether modern LLMs have mastered the inductive, deductive and abductive reasoning abilities as in human intelligence, and motivate research on unveiling the magic existing within the black-box LLMs. On the whole, our analysis provides a novel perspective on the role of semantics in developing and evaluating language models' reasoning abilities. Code is available at {https://github.com/XiaojuanTang/ICSR}.
Localized Symbolic Knowledge Distillation for Visual Commonsense Models
Instruction following vision-language (VL) models offer a flexible interface that supports a broad range of multimodal tasks in a zero-shot fashion. However, interfaces that operate on full images do not directly enable the user to "point to" and access specific regions within images. This capability is important not only to support reference-grounded VL benchmarks, but also, for practical applications that require precise within-image reasoning. We build Localized Visual Commonsense models, which allow users to specify (multiple) regions as input. We train our model by sampling localized commonsense knowledge from a large language model (LLM): specifically, we prompt an LLM to collect commonsense knowledge given a global literal image description and a local literal region description automatically generated by a set of VL models. With a separately trained critic model that selects high-quality examples, we find that training on the localized commonsense corpus can successfully distill existing VL models to support a reference-as-input interface. Empirical results and human evaluations in a zero-shot setup demonstrate that our distillation method results in more precise VL models of reasoning compared to a baseline of passing a generated referring expression to an LLM.
The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models
Improving the reasoning capabilities of large language models (LLMs) typically requires supervised fine-tuning with labeled data or computationally expensive sampling. We introduce Unsupervised Prefix Fine-Tuning (UPFT), which leverages the observation of Prefix Self-Consistency -- the shared initial reasoning steps across diverse solution trajectories -- to enhance LLM reasoning efficiency. By training exclusively on the initial prefix substrings (as few as 8 tokens), UPFT removes the need for labeled data or exhaustive sampling. Experiments on reasoning benchmarks show that UPFT matches the performance of supervised methods such as Rejection Sampling Fine-Tuning, while reducing training time by 75% and sampling cost by 99%. Further analysis reveals that errors tend to appear in later stages of the reasoning process and that prefix-based training preserves the model's structural knowledge. This work demonstrates how minimal unsupervised fine-tuning can unlock substantial reasoning gains in LLMs, offering a scalable and resource-efficient alternative to conventional approaches.
Physical Reasoning and Object Planning for Household Embodied Agents
In this study, we explore the sophisticated domain of task planning for robust household embodied agents, with a particular emphasis on the intricate task of selecting substitute objects. We introduce the CommonSense Object Affordance Task (COAT), a novel framework designed to analyze reasoning capabilities in commonsense scenarios. This approach is centered on understanding how these agents can effectively identify and utilize alternative objects when executing household tasks, thereby offering insights into the complexities of practical decision-making in real-world environments.Drawing inspiration from human decision-making, we explore how large language models tackle this challenge through three meticulously crafted commonsense question-and-answer datasets, featuring refined rules and human annotations. Our evaluation of state-of-the-art language models on these datasets sheds light on three pivotal considerations: 1) aligning an object's inherent utility with the task at hand, 2) navigating contextual dependencies (societal norms, safety, appropriateness, and efficiency), and 3) accounting for the current physical state of the object. To maintain accessibility, we introduce five abstract variables reflecting an object's physical condition, modulated by human insights to simulate diverse household scenarios. Our contributions include insightful Object-Utility mappings addressing the first consideration and two extensive QA datasets (15k and 130k questions) probing the intricacies of contextual dependencies and object states. The datasets, along with our findings, are accessible at: https://github.com/com-phy-affordance/COAT. This research not only advances our understanding of physical commonsense reasoning in language models but also paves the way for future improvements in household agent intelligence.
Towards General Natural Language Understanding with Probabilistic Worldbuilding
We introduce the Probabilistic Worldbuilding Model (PWM), a new fully-symbolic Bayesian model of semantic parsing and reasoning, as a first step in a research program toward more domain- and task-general NLU and AI. Humans create internal mental models of their observations which greatly aid in their ability to understand and reason about a large variety of problems. In PWM, the meanings of sentences, acquired facts about the world, and intermediate steps in reasoning are all expressed in a human-readable formal language, with the design goal of interpretability. PWM is Bayesian, designed specifically to be able to generalize to new domains and new tasks. We derive and implement an inference algorithm that reads sentences by parsing and abducing updates to its latent world model that capture the semantics of those sentences, and evaluate it on two out-of-domain question-answering datasets: (1) ProofWriter and (2) a new dataset we call FictionalGeoQA, designed to be more representative of real language but still simple enough to focus on evaluating reasoning ability, while being robust against heuristics. Our method outperforms baselines on both, thereby demonstrating its value as a proof-of-concept.
COFAR: Commonsense and Factual Reasoning in Image Search
One characteristic that makes humans superior to modern artificially intelligent models is the ability to interpret images beyond what is visually apparent. Consider the following two natural language search queries - (i) "a queue of customers patiently waiting to buy ice cream" and (ii) "a queue of tourists going to see a famous Mughal architecture in India." Interpreting these queries requires one to reason with (i) Commonsense such as interpreting people as customers or tourists, actions as waiting to buy or going to see; and (ii) Fact or world knowledge associated with named visual entities, for example, whether the store in the image sells ice cream or whether the landmark in the image is a Mughal architecture located in India. Such reasoning goes beyond just visual recognition. To enable both commonsense and factual reasoning in the image search, we present a unified framework, namely Knowledge Retrieval-Augmented Multimodal Transformer (KRAMT), that treats the named visual entities in an image as a gateway to encyclopedic knowledge and leverages them along with natural language query to ground relevant knowledge. Further, KRAMT seamlessly integrates visual content and grounded knowledge to learn alignment between images and search queries. This unified framework is then used to perform image search requiring commonsense and factual reasoning. The retrieval performance of KRAMT is evaluated and compared with related approaches on a new dataset we introduce - namely COFAR. We make our code and dataset available at https://vl2g.github.io/projects/cofar
Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning
Large Language Models (LLMs) excel at reasoning and planning when trained on chainof-thought (CoT) data, where the step-by-step thought process is explicitly outlined by text tokens. However, this results in lengthy inputs where many words support textual coherence rather than core reasoning information, and processing these inputs consumes substantial computation resources. In this work, we propose a hybrid representation of the reasoning process, where we partially abstract away the initial reasoning steps using latent discrete tokens generated by VQ-VAE, significantly reducing the length of reasoning traces. We explore the use of latent trace abstractions in two scenarios: 1) training the model from scratch for the Keys-Finding Maze problem, 2) fine-tuning LLMs on this hybrid data with an extended vocabulary including unseen latent tokens, for both logical and mathematical reasoning problems. To facilitate effective learning, we introduce a simple training procedure that randomly mixes latent and text tokens, which enables fast adaptation to new latent tokens. Our approach consistently outperforms the baselines methods in various benchmarks.
NaturalReasoning: Reasoning in the Wild with 2.8M Challenging Questions
Scaling reasoning capabilities beyond traditional domains such as math and coding is hindered by the lack of diverse and high-quality questions. To overcome this limitation, we introduce a scalable approach for generating diverse and challenging reasoning questions, accompanied by reference answers. We present NaturalReasoning, a comprehensive dataset comprising 2.8 million questions that span multiple domains, including STEM fields (e.g., Physics, Computer Science), Economics, Social Sciences, and more. We demonstrate the utility of the questions in NaturalReasoning through knowledge distillation experiments which show that NaturalReasoning can effectively elicit and transfer reasoning capabilities from a strong teacher model. Furthermore, we demonstrate that NaturalReasoning is also effective for unsupervised self-training using external reward models or self-rewarding.
SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.
Causal Reasoning in Large Language Models: A Knowledge Graph Approach
Large language models (LLMs) typically improve performance by either retrieving semantically similar information, or enhancing reasoning abilities through structured prompts like chain-of-thought. While both strategies are considered crucial, it remains unclear which has a greater impact on model performance or whether a combination of both is necessary. This paper answers this question by proposing a knowledge graph (KG)-based random-walk reasoning approach that leverages causal relationships. We conduct experiments on the commonsense question answering task that is based on a KG. The KG inherently provides both relevant information, such as related entity keywords, and a reasoning structure through the connections between nodes. Experimental results show that the proposed KG-based random-walk reasoning method improves the reasoning ability and performance of LLMs. Interestingly, incorporating three seemingly irrelevant sentences into the query using KG-based random-walk reasoning enhances LLM performance, contrary to conventional wisdom. These findings suggest that integrating causal structures into prompts can significantly improve reasoning capabilities, providing new insights into the role of causality in optimizing LLM performance.
A Survey on Knowledge Graphs: Representation, Acquisition and Applications
Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions.
A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge
The Visual Question Answering (VQA) task aspires to provide a meaningful testbed for the development of AI models that can jointly reason over visual and natural language inputs. Despite a proliferation of VQA datasets, this goal is hindered by a set of common limitations. These include a reliance on relatively simplistic questions that are repetitive in both concepts and linguistic structure, little world knowledge needed outside of the paired image, and limited reasoning required to arrive at the correct answer. We introduce A-OKVQA, a crowdsourced dataset composed of a diverse set of about 25K questions requiring a broad base of commonsense and world knowledge to answer. In contrast to the existing knowledge-based VQA datasets, the questions generally cannot be answered by simply querying a knowledge base, and instead require some form of commonsense reasoning about the scene depicted in the image. We demonstrate the potential of this new dataset through a detailed analysis of its contents and baseline performance measurements over a variety of state-of-the-art vision-language models. Project page: http://a-okvqa.allenai.org/
Do LLMs exhibit the same commonsense capabilities across languages?
This paper explores the multilingual commonsense generation abilities of Large Language Models (LLMs). To facilitate this investigation, we introduce MULTICOM, a novel benchmark that extends the COCOTEROS dataset to four languages: English, Spanish, Dutch, and Valencian. The task involves generating a commonsensical sentence that includes a given triplet of words. We evaluate a range of open-source LLMs, including LLaMA, Qwen, Gemma, EuroLLM, and Salamandra, on this benchmark. Our evaluation combines automatic metrics, LLM-as-a-judge approaches (using Prometheus and JudgeLM), and human annotations. Results consistently show superior performance in English, with significantly lower performance in less-resourced languages. While contextual support yields mixed results, it tends to benefit underrepresented languages. These findings underscore the current limitations of LLMs in multilingual commonsense generation. The dataset is publicly available at https://huggingface.co/datasets/gplsi/MULTICOM.
RATIONALYST: Pre-training Process-Supervision for Improving Reasoning
The reasoning steps generated by LLMs might be incomplete, as they mimic logical leaps common in everyday communication found in their pre-training data: underlying rationales are frequently left implicit (unstated). To address this challenge, we introduce RATIONALYST, a model for process-supervision of reasoning based on pre-training on a vast collection of rationale annotations extracted from unlabeled data. We extract 79k rationales from web-scale unlabelled dataset (the Pile) and a combination of reasoning datasets with minimal human intervention. This web-scale pre-training for reasoning allows RATIONALYST to consistently generalize across diverse reasoning tasks, including mathematical, commonsense, scientific, and logical reasoning. Fine-tuned from LLaMa-3-8B, RATIONALYST improves the accuracy of reasoning by an average of 3.9% on 7 representative reasoning benchmarks. It also demonstrates superior performance compared to significantly larger verifiers like GPT-4 and similarly sized models fine-tuned on matching training sets.
Transformers as Soft Reasoners over Language
Beginning with McCarthy's Advice Taker (1959), AI has pursued the goal of providing a system with explicit, general knowledge and having the system reason over that knowledge. However, expressing the knowledge in a formal (logical or probabilistic) representation has been a major obstacle to this research. This paper investigates a modern approach to this problem where the facts and rules are provided as natural language sentences, thus bypassing a formal representation. We train transformers to reason (or emulate reasoning) over these sentences using synthetically generated data. Our models, that we call RuleTakers, provide the first empirical demonstration that this kind of soft reasoning over language is learnable, can achieve high (99%) accuracy, and generalizes to test data requiring substantially deeper chaining than seen during training (95%+ scores). We also demonstrate that the models transfer well to two hand-authored rulebases, and to rulebases paraphrased into more natural language. These findings are significant as it suggests a new role for transformers, namely as limited "soft theorem provers" operating over explicit theories in language. This in turn suggests new possibilities for explainability, correctability, and counterfactual reasoning in question-answering.
PHALM: Building a Knowledge Graph from Scratch by Prompting Humans and a Language Model
Despite the remarkable progress in natural language understanding with pretrained Transformers, neural language models often do not handle commonsense knowledge well. Toward commonsense-aware models, there have been attempts to obtain knowledge, ranging from automatic acquisition to crowdsourcing. However, it is difficult to obtain a high-quality knowledge base at a low cost, especially from scratch. In this paper, we propose PHALM, a method of building a knowledge graph from scratch, by prompting both crowdworkers and a large language model (LLM). We used this method to build a Japanese event knowledge graph and trained Japanese commonsense generation models. Experimental results revealed the acceptability of the built graph and inferences generated by the trained models. We also report the difference in prompting humans and an LLM. Our code, data, and models are available at github.com/nlp-waseda/comet-atomic-ja.
Empirically evaluating commonsense intelligence in large language models with large-scale human judgments
Commonsense intelligence in machines is often assessed by static benchmarks that compare a model's output against human-prescribed correct labels. An important, albeit implicit, assumption of these labels is that they accurately capture what any human would think, effectively treating human common sense as homogeneous. However, recent empirical work has shown that humans vary enormously in what they consider commonsensical; thus what appears self-evident to one benchmark designer may not be so to another. Here, we propose a novel method for evaluating common sense in artificial intelligence (AI), specifically in large language models (LLMs), that incorporates empirically observed heterogeneity among humans by measuring the correspondence between a model's judgment and that of a human population. We first find that, when treated as independent survey respondents, most LLMs remain below the human median in their individual commonsense competence. Second, when used as simulators of a hypothetical population, LLMs correlate with real humans only modestly in the extent to which they agree on the same set of statements. In both cases, smaller, open-weight models are surprisingly more competitive than larger, proprietary frontier models. Our evaluation framework, which ties commonsense intelligence to its cultural basis, contributes to the growing call for adapting AI models to human collectivities that possess different, often incompatible, social stocks of knowledge.
Are LLMs classical or nonmonotonic reasoners? Lessons from generics
Recent scholarship on reasoning in LLMs has supplied evidence of impressive performance and flexible adaptation to machine generated or human feedback. Nonmonotonic reasoning, crucial to human cognition for navigating the real world, remains a challenging, yet understudied task. In this work, we study nonmonotonic reasoning capabilities of seven state-of-the-art LLMs in one abstract and one commonsense reasoning task featuring generics, such as 'Birds fly', and exceptions, 'Penguins don't fly' (see Fig. 1). While LLMs exhibit reasoning patterns in accordance with human nonmonotonic reasoning abilities, they fail to maintain stable beliefs on truth conditions of generics at the addition of supporting examples ('Owls fly') or unrelated information ('Lions have manes'). Our findings highlight pitfalls in attributing human reasoning behaviours to LLMs, as well as assessing general capabilities, while consistent reasoning remains elusive.
Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge, yet it falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts. This survey synthesizes both strands under a unified reasoning-retrieval perspective. We first map how advanced reasoning optimizes each stage of RAG (Reasoning-Enhanced RAG). Then, we show how retrieved knowledge of different type supply missing premises and expand context for complex inference (RAG-Enhanced Reasoning). Finally, we spotlight emerging Synergized RAG-Reasoning frameworks, where (agentic) LLMs iteratively interleave search and reasoning to achieve state-of-the-art performance across knowledge-intensive benchmarks. We categorize methods, datasets, and open challenges, and outline research avenues toward deeper RAG-Reasoning systems that are more effective, multimodally-adaptive, trustworthy, and human-centric. The collection is available at https://github.com/DavidZWZ/Awesome-RAG-Reasoning.
General Reasoning Requires Learning to Reason from the Get-go
Large Language Models (LLMs) have demonstrated impressive real-world utility, exemplifying artificial useful intelligence (AUI). However, their ability to reason adaptively and robustly -- the hallmarks of artificial general intelligence (AGI) -- remains fragile. While LLMs seemingly succeed in commonsense reasoning, programming, and mathematics, they struggle to generalize algorithmic understanding across novel contexts. Our experiments with algorithmic tasks in esoteric programming languages reveal that LLM's reasoning overfits to the training data and is limited in its transferability. We hypothesize that the core issue underlying such limited transferability is the coupling of reasoning and knowledge in LLMs. To transition from AUI to AGI, we propose disentangling knowledge and reasoning through three key directions: (1) pretaining to reason using RL from scratch as an alternative to the widely used next-token prediction pretraining, (2) using a curriculum of synthetic tasks to ease the learning of a reasoning prior for RL that can then be transferred to natural language tasks, and (3) learning more generalizable reasoning functions using a small context window to reduce exploiting spurious correlations between tokens. Such a reasoning system coupled with a trained retrieval system and a large external memory bank as a knowledge store can overcome several limitations of existing architectures at learning to reason in novel scenarios.
C3KG: A Chinese Commonsense Conversation Knowledge Graph
Existing commonsense knowledge bases often organize tuples in an isolated manner, which is deficient for commonsense conversational models to plan the next steps. To fill the gap, we curate a large-scale multi-turn human-written conversation corpus, and create the first Chinese commonsense conversation knowledge graph which incorporates both social commonsense knowledge and dialog flow information. To show the potential of our graph, we develop a graph-conversation matching approach, and benchmark two graph-grounded conversational tasks.
CK-Transformer: Commonsense Knowledge Enhanced Transformers for Referring Expression Comprehension
The task of multimodal referring expression comprehension (REC), aiming at localizing an image region described by a natural language expression, has recently received increasing attention within the research comminity. In this paper, we specifically focus on referring expression comprehension with commonsense knowledge (KB-Ref), a task which typically requires reasoning beyond spatial, visual or semantic information. We propose a novel framework for Commonsense Knowledge Enhanced Transformers (CK-Transformer) which effectively integrates commonsense knowledge into the representations of objects in an image, facilitating identification of the target objects referred to by the expressions. We conduct extensive experiments on several benchmarks for the task of KB-Ref. Our results show that the proposed CK-Transformer achieves a new state of the art, with an absolute improvement of 3.14% accuracy over the existing state of the art.
Breaking Common Sense: WHOOPS! A Vision-and-Language Benchmark of Synthetic and Compositional Images
Weird, unusual, and uncanny images pique the curiosity of observers because they challenge commonsense. For example, an image released during the 2022 world cup depicts the famous soccer stars Lionel Messi and Cristiano Ronaldo playing chess, which playfully violates our expectation that their competition should occur on the football field. Humans can easily recognize and interpret these unconventional images, but can AI models do the same? We introduce WHOOPS!, a new dataset and benchmark for visual commonsense. The dataset is comprised of purposefully commonsense-defying images created by designers using publicly-available image generation tools like Midjourney. We consider several tasks posed over the dataset. In addition to image captioning, cross-modal matching, and visual question answering, we introduce a difficult explanation generation task, where models must identify and explain why a given image is unusual. Our results show that state-of-the-art models such as GPT3 and BLIP2 still lag behind human performance on WHOOPS!. We hope our dataset will inspire the development of AI models with stronger visual commonsense reasoning abilities. Data, models and code are available at the project website: whoops-benchmark.github.io
SciReasoner: Laying the Scientific Reasoning Ground Across Disciplines
We present a scientific reasoning foundation model that aligns natural language with heterogeneous scientific representations. The model is pretrained on a 206B-token corpus spanning scientific text, pure sequences, and sequence-text pairs, then aligned via SFT on 40M instructions, annealed cold-start bootstrapping to elicit long-form chain-of-thought, and reinforcement learning with task-specific reward shaping, which instills deliberate scientific reasoning. It supports four capability families, covering up to 103 tasks across workflows: (i) faithful translation between text and scientific formats, (ii) text/knowledge extraction, (iii) property prediction, (iv) property classification, (v) unconditional and conditional sequence generation and design. Compared with specialist systems, our approach broadens instruction coverage, improves cross-domain generalization, and enhances fidelity. We detail data curation and training and show that cross-discipline learning strengthens transfer and downstream reliability. The model, instruct tuning datasets and the evaluation code are open-sourced at https://huggingface.co/SciReason and https://github.com/open-sciencelab/SciReason.
Advanced Semantics for Commonsense Knowledge Extraction
Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB and others compiled large CSK collections, but are restricted in their expressiveness to subject-predicate-object (SPO) triples with simple concepts for S and monolithic strings for P and O. Also, these projects have either prioritized precision or recall, but hardly reconcile these complementary goals. This paper presents a methodology, called Ascent, to automatically build a large-scale knowledge base (KB) of CSK assertions, with advanced expressiveness and both better precision and recall than prior works. Ascent goes beyond triples by capturing composite concepts with subgroups and aspects, and by refining assertions with semantic facets. The latter are important to express temporal and spatial validity of assertions and further qualifiers. Ascent combines open information extraction with judicious cleaning using language models. Intrinsic evaluation shows the superior size and quality of the Ascent KB, and an extrinsic evaluation for QA-support tasks underlines the benefits of Ascent. A web interface, data and code can be found at https://ascent.mpi-inf.mpg.de/.
KaSA: Knowledge-Aware Singular-Value Adaptation of Large Language Models
The increasing sizes of large language models (LLMs) result in significant computational overhead and memory usage when adapting these models to specific tasks or domains. Various parameter-efficient fine-tuning (PEFT) methods have been devised to mitigate these challenges by training a small set of parameters for the task-specific updates of the model weights. Among PEFT methods, LoRA stands out for its simplicity and efficiency, inspiring the development of a series of variants. However, LoRA and its successors disregard the knowledge that is noisy or irrelevant to the targeted task, detrimentally impacting model performance and leading to suboptimality. To address this limitation, we introduce Knowledge-aware Singular-value Adaptation (KaSA), a PEFT method that leverages singular value decomposition (SVD) with knowledge-aware singular values to dynamically activate knowledge based on its relevance to the task at hand. We conduct extensive experiments across a range of LLMs on tasks spanning natural language understanding (NLU), generation (NLG), instruction following, and commonsense reasoning. The experimental results demonstrate that KaSA consistently outperforms FFT and 14 popular PEFT baselines across 16 benchmarks and 4 synthetic datasets, underscoring our method's efficacy and adaptability. The source code of our method is available at https://github.com/juyongjiang/KaSA.
Experimental Support for a Categorical Compositional Distributional Model of Meaning
Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.
"John is 50 years old, can his son be 65?" Evaluating NLP Models' Understanding of Feasibility
In current NLP research, large-scale language models and their abilities are widely being discussed. Some recent works have also found notable failures of these models. Often these failure examples involve complex reasoning abilities. This work focuses on a simple commonsense ability, reasoning about when an action (or its effect) is feasible. To this end, we introduce FeasibilityQA, a question-answering dataset involving binary classification (BCQ) and multi-choice multi-correct questions (MCQ) that test understanding of feasibility. We show that even state-of-the-art models such as GPT-3, GPT-2, and T5 struggle to answer the feasibility questions correctly. Specifically, on MCQ and BCQ questions, GPT-3 achieves an accuracy of just (19%, 62%) and (25%, 64%) in zero-shot and few-shot settings, respectively. We also evaluate models by providing relevant knowledge statements required to answer the question. We find that the additional knowledge leads to a 7% gain in performance, but the overall performance still remains low. These results make one wonder how much commonsense knowledge about action feasibility is encoded in state-of-the-art models and how well they can reason about it.
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks. However, they lack up-to-date knowledge and experience hallucinations during reasoning, which can lead to incorrect reasoning processes and diminish their performance and trustworthiness. Knowledge graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. Nevertheless, existing KG-based LLM reasoning methods only treat KGs as factual knowledge bases and overlook the importance of their structural information for reasoning. In this paper, we propose a novel method called reasoning on graphs (RoG) that synergizes LLMs with KGs to enable faithful and interpretable reasoning. Specifically, we present a planning-retrieval-reasoning framework, where RoG first generates relation paths grounded by KGs as faithful plans. These plans are then used to retrieve valid reasoning paths from the KGs for LLMs to conduct faithful reasoning. Furthermore, RoG not only distills knowledge from KGs to improve the reasoning ability of LLMs through training but also allows seamless integration with any arbitrary LLMs during inference. Extensive experiments on two benchmark KGQA datasets demonstrate that RoG achieves state-of-the-art performance on KG reasoning tasks and generates faithful and interpretable reasoning results.
Self-Training Elicits Concise Reasoning in Large Language Models
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens to solve complex tasks. However, we posit that typical reasoning traces contain many redundant tokens, incurring extraneous inference costs. Upon examination of the output distribution of current LLMs, we find evidence on their latent ability to reason more concisely, relative to their default behavior. To elicit this capability, we propose simple fine-tuning methods which leverage self-generated concise reasoning paths obtained by best-of-N sampling and few-shot conditioning, in task-specific settings. Our combined method achieves a 30% reduction in output tokens on average, across five model families on GSM8K and MATH, while maintaining average accuracy. By exploiting the fundamental stochasticity and in-context learning capabilities of LLMs, our self-training approach robustly elicits concise reasoning on a wide range of models, including those with extensive post-training. Code is available at https://github.com/TergelMunkhbat/concise-reasoning
Challenges with unsupervised LLM knowledge discovery
We show that existing unsupervised methods on large language model (LLM) activations do not discover knowledge -- instead they seem to discover whatever feature of the activations is most prominent. The idea behind unsupervised knowledge elicitation is that knowledge satisfies a consistency structure, which can be used to discover knowledge. We first prove theoretically that arbitrary features (not just knowledge) satisfy the consistency structure of a particular leading unsupervised knowledge-elicitation method, contrast-consistent search (Burns et al. - arXiv:2212.03827). We then present a series of experiments showing settings in which unsupervised methods result in classifiers that do not predict knowledge, but instead predict a different prominent feature. We conclude that existing unsupervised methods for discovering latent knowledge are insufficient, and we contribute sanity checks to apply to evaluating future knowledge elicitation methods. Conceptually, we hypothesise that the identification issues explored here, e.g. distinguishing a model's knowledge from that of a simulated character's, will persist for future unsupervised methods.
Prompt Engineering and Calibration for Zero-Shot Commonsense Reasoning
Prompt engineering and calibration make large language models excel at reasoning tasks, including multiple choice commonsense reasoning. From a practical perspective, we investigate and evaluate these strategies on smaller language models. Through experiments on five commonsense reasoning benchmarks, we find that each strategy favors certain models, but their joint effects are mostly negative.
Concise and Organized Perception Facilitates Large Language Models for Deductive Reasoning
Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.
Quantifying Logical Consistency in Transformers via Query-Key Alignment
Large language models (LLMs) have demonstrated impressive performance in various natural language processing tasks, yet their ability to perform multi-step logical reasoning remains an open challenge. Although Chain-of-Thought prompting has improved logical reasoning by enabling models to generate intermediate steps, it lacks mechanisms to assess the coherence of these logical transitions. In this paper, we propose a novel, lightweight evaluation strategy for logical reasoning that uses query-key alignments inside transformer attention heads. By computing a single forward pass and extracting a "QK-score" from carefully chosen heads, our method reveals latent representations that reliably separate valid from invalid inferences, offering a scalable alternative to traditional ablation-based techniques. We also provide an empirical validation on multiple logical reasoning benchmarks, demonstrating improved robustness of our evaluation method against distractors and increased reasoning depth. The experiments were conducted on a diverse set of models, ranging from 1.5B to 70B parameters.
Decomposition Enhances Reasoning via Self-Evaluation Guided Decoding
We endow Large Language Models (LLMs) with fine-grained self-evaluation to refine multi-step reasoning inference. We propose an effective prompting approach that integrates self-evaluation guidance through stochastic beam search. Our approach explores the reasoning search space using a well-calibrated automatic criterion. This enables an efficient search to produce higher-quality final predictions. With the self-evaluation guided stochastic beam search, we also balance the quality-diversity trade-off in the generation of reasoning chains. This allows our approach to adapt well with majority voting and surpass the corresponding Codex-backboned baselines by 6.34%, 9.56%, and 5.46% on the GSM8K, AQuA, and StrategyQA benchmarks, respectively, in few-shot accuracy. Analysis of our decompositional reasoning finds it pinpoints logic failures and leads to higher consistency and robustness. Our code is publicly available at https://github.com/YuxiXie/SelfEval-Guided-Decoding.
Beyond Word Embeddings: Learning Entity and Concept Representations from Large Scale Knowledge Bases
Text representations using neural word embeddings have proven effective in many NLP applications. Recent researches adapt the traditional word embedding models to learn vectors of multiword expressions (concepts/entities). However, these methods are limited to textual knowledge bases (e.g., Wikipedia). In this paper, we propose a novel and simple technique for integrating the knowledge about concepts from two large scale knowledge bases of different structure (Wikipedia and Probase) in order to learn concept representations. We adapt the efficient skip-gram model to seamlessly learn from the knowledge in Wikipedia text and Probase concept graph. We evaluate our concept embedding models on two tasks: (1) analogical reasoning, where we achieve a state-of-the-art performance of 91% on semantic analogies, (2) concept categorization, where we achieve a state-of-the-art performance on two benchmark datasets achieving categorization accuracy of 100% on one and 98% on the other. Additionally, we present a case study to evaluate our model on unsupervised argument type identification for neural semantic parsing. We demonstrate the competitive accuracy of our unsupervised method and its ability to better generalize to out of vocabulary entity mentions compared to the tedious and error prone methods which depend on gazetteers and regular expressions.
HellaSwag: Can a Machine Really Finish Your Sentence?
Recent work by Zellers et al. (2018) introduced a new task of commonsense natural language inference: given an event description such as "A woman sits at a piano," a machine must select the most likely followup: "She sets her fingers on the keys." With the introduction of BERT, near human-level performance was reached. Does this mean that machines can perform human level commonsense inference? In this paper, we show that commonsense inference still proves difficult for even state-of-the-art models, by presenting HellaSwag, a new challenge dataset. Though its questions are trivial for humans (>95% accuracy), state-of-the-art models struggle (<48%). We achieve this via Adversarial Filtering (AF), a data collection paradigm wherein a series of discriminators iteratively select an adversarial set of machine-generated wrong answers. AF proves to be surprisingly robust. The key insight is to scale up the length and complexity of the dataset examples towards a critical 'Goldilocks' zone wherein generated text is ridiculous to humans, yet often misclassified by state-of-the-art models. Our construction of HellaSwag, and its resulting difficulty, sheds light on the inner workings of deep pretrained models. More broadly, it suggests a new path forward for NLP research, in which benchmarks co-evolve with the evolving state-of-the-art in an adversarial way, so as to present ever-harder challenges.
Keyword-Guided Neural Conversational Model
We study the problem of imposing conversational goals/keywords on open-domain conversational agents, where the agent is required to lead the conversation to a target keyword smoothly and fast. Solving this problem enables the application of conversational agents in many real-world scenarios, e.g., recommendation and psychotherapy. The dominant paradigm for tackling this problem is to 1) train a next-turn keyword classifier, and 2) train a keyword-augmented response retrieval model. However, existing approaches in this paradigm have two limitations: 1) the training and evaluation datasets for next-turn keyword classification are directly extracted from conversations without human annotations, thus, they are noisy and have low correlation with human judgements, and 2) during keyword transition, the agents solely rely on the similarities between word embeddings to move closer to the target keyword, which may not reflect how humans converse. In this paper, we assume that human conversations are grounded on commonsense and propose a keyword-guided neural conversational model that can leverage external commonsense knowledge graphs (CKG) for both keyword transition and response retrieval. Automatic evaluations suggest that commonsense improves the performance of both next-turn keyword prediction and keyword-augmented response retrieval. In addition, both self-play and human evaluations show that our model produces responses with smoother keyword transition and reaches the target keyword faster than competitive baselines.
Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models
Large language models (LLMs) have demonstrated impressive reasoning abilities, but they still struggle with faithful reasoning due to knowledge gaps and hallucinations. To address these issues, knowledge graphs (KGs) have been utilized to enhance LLM reasoning through their structured knowledge. However, existing KG-enhanced methods, either retrieval-based or agent-based, encounter difficulties in accurately retrieving knowledge and efficiently traversing KGs at scale. In this work, we introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs. To eliminate hallucinations, GCR ensures faithful KG-grounded reasoning by integrating KG structure into the LLM decoding process through KG-Trie, a trie-based index that encodes KG reasoning paths. KG-Trie constrains the decoding process, allowing LLMs to directly reason on graphs and generate faithful reasoning paths grounded in KGs. Additionally, GCR leverages a lightweight KG-specialized LLM for graph-constrained reasoning alongside a powerful general LLM for inductive reasoning over multiple reasoning paths, resulting in accurate reasoning with zero reasoning hallucination. Extensive experiments on several KGQA benchmarks demonstrate that GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
RaDeR: Reasoning-aware Dense Retrieval Models
We propose RaDeR, a set of reasoning-based dense retrieval models trained with data derived from mathematical problem solving using large language models (LLMs). Our method leverages retrieval-augmented reasoning trajectories of an LLM and self-reflective relevance evaluation, enabling the creation of both diverse and hard-negative samples for reasoning-intensive relevance. RaDeR retrievers, trained for mathematical reasoning, effectively generalize to diverse reasoning tasks in the BRIGHT and RAR-b benchmarks, consistently outperforming strong baselines in overall performance. Notably, RaDeR achieves significantly higher performance than baselines on the Math and Coding splits. In addition, RaDeR presents the first dense retriever that outperforms BM25 when queries are Chain-of-Thought reasoning steps, underscoring the critical role of reasoning-based retrieval to augment reasoning language models. Furthermore, RaDeR achieves comparable or superior performance while using only 2.5% of the training data used by the concurrent work REASONIR, highlighting the quality of our synthesized training data.
Is this sentence valid? An Arabic Dataset for Commonsense Validation
The commonsense understanding and validation remains a challenging task in the field of natural language understanding. Therefore, several research papers have been published that studied the capability of proposed systems to evaluate the models ability to validate commonsense in text. In this paper, we present a benchmark Arabic dataset for commonsense understanding and validation as well as a baseline research and models trained using the same dataset. To the best of our knowledge, this dataset is considered as the first in the field of Arabic text commonsense validation. The dataset is distributed under the Creative Commons BY-SA 4.0 license and can be found on GitHub.
CKBP v2: Better Annotation and Reasoning for Commonsense Knowledge Base Population
Commonsense Knowledge Bases (CSKB) Population, which aims at automatically expanding knowledge in CSKBs with external resources, is an important yet hard task in NLP. Fang et al. (2021a) proposed a CSKB Population (CKBP) framework with an evaluation set CKBP v1. However, CKBP v1 relies on crowdsourced annotations that suffer from a considerable number of mislabeled answers, and the evaluationset lacks alignment with the external knowledge source due to random sampling. In this paper, we introduce CKBP v2, a new high-quality CSKB Population evaluation set that addresses the two aforementioned issues by employing domain experts as annotators and incorporating diversified adversarial samples to make the evaluation data more representative. We show that CKBP v2 serves as a challenging and representative evaluation dataset for the CSKB Population task, while its development set aids in selecting a population model that leads to improved knowledge acquisition for downstream commonsense reasoning. A better population model can also help acquire more informative commonsense knowledge as additional supervision signals for both generative commonsense inference and zero-shot commonsense question answering. Specifically, the question-answering model based on DeBERTa-v3-large (He et al., 2023b) even outperforms powerful large language models in a zero-shot setting, including ChatGPT and GPT-3.5.
