new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 6

AutoBackdoor: Automating Backdoor Attacks via LLM Agents

Backdoor attacks pose a serious threat to the secure deployment of large language models (LLMs), enabling adversaries to implant hidden behaviors triggered by specific inputs. However, existing methods often rely on manually crafted triggers and static data pipelines, which are rigid, labor-intensive, and inadequate for systematically evaluating modern defense robustness. As AI agents become increasingly capable, there is a growing need for more rigorous, diverse, and scalable red-teaming frameworks that can realistically simulate backdoor threats and assess model resilience under adversarial conditions. In this work, we introduce AutoBackdoor, a general framework for automating backdoor injection, encompassing trigger generation, poisoned data construction, and model fine-tuning via an autonomous agent-driven pipeline. Unlike prior approaches, AutoBackdoor uses a powerful language model agent to generate semantically coherent, context-aware trigger phrases, enabling scalable poisoning across arbitrary topics with minimal human effort. We evaluate AutoBackdoor under three realistic threat scenarios, including Bias Recommendation, Hallucination Injection, and Peer Review Manipulation, to simulate a broad range of attacks. Experiments on both open-source and commercial models, including LLaMA-3, Mistral, Qwen, and GPT-4o, demonstrate that our method achieves over 90\% attack success with only a small number of poisoned samples. More importantly, we find that existing defenses often fail to mitigate these attacks, underscoring the need for more rigorous and adaptive evaluation techniques against agent-driven threats as explored in this work. All code, datasets, and experimental configurations will be merged into our primary repository at https://github.com/bboylyg/BackdoorLLM.

  • 7 authors
·
Nov 19, 2025

RedSage: A Cybersecurity Generalist LLM

Cybersecurity operations demand assistant LLMs that support diverse workflows without exposing sensitive data. Existing solutions either rely on proprietary APIs with privacy risks or on open models lacking domain adaptation. To bridge this gap, we curate 11.8B tokens of cybersecurity-focused continual pretraining data via large-scale web filtering and manual collection of high-quality resources, spanning 28.6K documents across frameworks, offensive techniques, and security tools. Building on this, we design an agentic augmentation pipeline that simulates expert workflows to generate 266K multi-turn cybersecurity samples for supervised fine-tuning. Combined with general open-source LLM data, these resources enable the training of RedSage, an open-source, locally deployable cybersecurity assistant with domain-aware pretraining and post-training. To rigorously evaluate the models, we introduce RedSage-Bench, a benchmark with 30K multiple-choice and 240 open-ended Q&A items covering cybersecurity knowledge, skills, and tool expertise. RedSage is further evaluated on established cybersecurity benchmarks (e.g., CTI-Bench, CyberMetric, SECURE) and general LLM benchmarks to assess broader generalization. At the 8B scale, RedSage achieves consistently better results, surpassing the baseline models by up to +5.59 points on cybersecurity benchmarks and +5.05 points on Open LLM Leaderboard tasks. These findings demonstrate that domain-aware agentic augmentation and pre/post-training can not only enhance cybersecurity-specific expertise but also help to improve general reasoning and instruction-following. All models, datasets, and code are publicly available.

Automated Red-Teaming Framework for Large Language Model Security Assessment: A Comprehensive Attack Generation and Detection System

As large language models (LLMs) are increasingly deployed in high-stakes domains, ensuring their security and alignment has become a critical challenge. Existing red-teaming practices depend heavily on manual testing, which limits scalability and fails to comprehensively cover the vast space of potential adversarial behaviors. This paper introduces an automated red-teaming framework that systematically generates, executes, and evaluates adversarial prompts to uncover security vulnerabilities in LLMs. Our framework integrates meta-prompting-based attack synthesis, multi-modal vulnerability detection, and standardized evaluation protocols spanning six major threat categories -- reward hacking, deceptive alignment, data exfiltration, sandbagging, inappropriate tool use, and chain-of-thought manipulation. Experiments on the GPT-OSS-20B model reveal 47 distinct vulnerabilities, including 21 high-severity and 12 novel attack patterns, achieving a 3.9times improvement in vulnerability discovery rate over manual expert testing while maintaining 89\% detection accuracy. These results demonstrate the framework's effectiveness in enabling scalable, systematic, and reproducible AI safety evaluations. By providing actionable insights for improving alignment robustness, this work advances the state of automated LLM red-teaming and contributes to the broader goal of building secure and trustworthy AI systems.

  • 9 authors
·
Dec 21, 2025

AutoRedTeamer: Autonomous Red Teaming with Lifelong Attack Integration

As large language models (LLMs) become increasingly capable, security and safety evaluation are crucial. While current red teaming approaches have made strides in assessing LLM vulnerabilities, they often rely heavily on human input and lack comprehensive coverage of emerging attack vectors. This paper introduces AutoRedTeamer, a novel framework for fully automated, end-to-end red teaming against LLMs. AutoRedTeamer combines a multi-agent architecture with a memory-guided attack selection mechanism to enable continuous discovery and integration of new attack vectors. The dual-agent framework consists of a red teaming agent that can operate from high-level risk categories alone to generate and execute test cases and a strategy proposer agent that autonomously discovers and implements new attacks by analyzing recent research. This modular design allows AutoRedTeamer to adapt to emerging threats while maintaining strong performance on existing attack vectors. We demonstrate AutoRedTeamer's effectiveness across diverse evaluation settings, achieving 20% higher attack success rates on HarmBench against Llama-3.1-70B while reducing computational costs by 46% compared to existing approaches. AutoRedTeamer also matches the diversity of human-curated benchmarks in generating test cases, providing a comprehensive, scalable, and continuously evolving framework for evaluating the security of AI systems.

  • 10 authors
·
Mar 19, 2025

CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model

This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.

  • 2 authors
·
Sep 6, 2023

LLM-Assisted Proactive Threat Intelligence for Automated Reasoning

Successful defense against dynamically evolving cyber threats requires advanced and sophisticated techniques. This research presents a novel approach to enhance real-time cybersecurity threat detection and response by integrating large language models (LLMs) and Retrieval-Augmented Generation (RAG) systems with continuous threat intelligence feeds. Leveraging recent advancements in LLMs, specifically GPT-4o, and the innovative application of RAG techniques, our approach addresses the limitations of traditional static threat analysis by incorporating dynamic, real-time data sources. We leveraged RAG to get the latest information in real-time for threat intelligence, which is not possible in the existing GPT-4o model. We employ the Patrowl framework to automate the retrieval of diverse cybersecurity threat intelligence feeds, including Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration (CWE), Exploit Prediction Scoring System (EPSS), and Known Exploited Vulnerabilities (KEV) databases, and integrate these with the all-mpnet-base-v2 model for high-dimensional vector embeddings, stored and queried in Milvus. We demonstrate our system's efficacy through a series of case studies, revealing significant improvements in addressing recently disclosed vulnerabilities, KEVs, and high-EPSS-score CVEs compared to the baseline GPT-4o. This work not only advances the role of LLMs in cybersecurity but also establishes a robust foundation for the development of automated intelligent cyberthreat information management systems, addressing crucial gaps in current cybersecurity practices.

  • 3 authors
·
Apr 1, 2025

RedCoder: Automated Multi-Turn Red Teaming for Code LLMs

Large Language Models (LLMs) for code generation (i.e., Code LLMs) have demonstrated impressive capabilities in AI-assisted software development and testing. However, recent studies have shown that these models are prone to generating vulnerable or even malicious code under adversarial settings. Existing red-teaming approaches rely on extensive human effort, limiting their scalability and practicality, and generally overlook the interactive nature of real-world AI-assisted programming, which often unfolds over multiple turns. To bridge these gaps, we present RedCoder, a red-teaming agent that engages victim models in multi-turn conversation to elicit vulnerable code. The pipeline to construct RedCoder begins with a multi-agent gaming process that simulates adversarial interactions, yielding a set of prototype conversations and an arsenal of reusable attack strategies. We then fine-tune an LLM on these prototype conversations to serve as the backbone of RedCoder. Once deployed, RedCoder autonomously engages Code LLMs in multi-turn conversations, dynamically retrieving relevant strategies from the arsenal to steer the dialogue toward vulnerability-inducing outputs. Experiments across multiple Code LLMs show that our approach outperforms prior single-turn and multi-turn red-team methods in inducing vulnerabilities in code generation, offering a scalable and effective tool for evaluating the security boundaries of modern code-generation systems.

  • 8 authors
·
Jun 25, 2025

AEGIS : Automated Co-Evolutionary Framework for Guarding Prompt Injections Schema

Prompt injection attacks pose a significant challenge to the safe deployment of Large Language Models (LLMs) in real-world applications. While prompt-based detection offers a lightweight and interpretable defense strategy, its effectiveness has been hindered by the need for manual prompt engineering. To address this issue, we propose AEGIS , an Automated co-Evolutionary framework for Guarding prompt Injections Schema. Both attack and defense prompts are iteratively optimized against each other using a gradient-like natural language prompt optimization technique. This framework enables both attackers and defenders to autonomously evolve via a Textual Gradient Optimization (TGO) module, leveraging feedback from an LLM-guided evaluation loop. We evaluate our system on a real-world assignment grading dataset of prompt injection attacks and demonstrate that our method consistently outperforms existing baselines, achieving superior robustness in both attack success and detection. Specifically, the attack success rate (ASR) reaches 1.0, representing an improvement of 0.26 over the baseline. For detection, the true positive rate (TPR) improves by 0.23 compared to the previous best work, reaching 0.84, and the true negative rate (TNR) remains comparable at 0.89. Ablation studies confirm the importance of co-evolution, gradient buffering, and multi-objective optimization. We also confirm that this framework is effective in different LLMs. Our results highlight the promise of adversarial training as a scalable and effective approach for guarding prompt injections.

  • 5 authors
·
Aug 27, 2025

Multi-Agent Penetration Testing AI for the Web

AI-powered development platforms are making software creation accessible to a broader audience, but this democratization has triggered a scalability crisis in security auditing. With studies showing that up to 40% of AI-generated code contains vulnerabilities, the pace of development now vastly outstrips the capacity for thorough security assessment. We present MAPTA, a multi-agent system for autonomous web application security assessment that combines large language model orchestration with tool-grounded execution and end-to-end exploit validation. On the 104-challenge XBOW benchmark, MAPTA achieves 76.9% overall success with perfect performance on SSRF and misconfiguration vulnerabilities, 83% success on broken authorization, and strong results on injection attacks including server-side template injection (85%) and SQL injection (83%). Cross-site scripting (57%) and blind SQL injection (0%) remain challenging. Our comprehensive cost analysis across all challenges totals 21.38 with a median cost of 0.073 for successful attempts versus 0.357 for failures. Success correlates strongly with resource efficiency, enabling practical early-stopping thresholds at approximately 40 tool calls or 0.30 per challenge. MAPTA's real-world findings are impactful given both the popularity of the respective scanned GitHub repositories (8K-70K stars) and MAPTA's low average operating cost of $3.67 per open-source assessment: MAPTA discovered critical vulnerabilities including RCEs, command injections, secret exposure, and arbitrary file write vulnerabilities. Findings are responsibly disclosed, 10 findings are under CVE review.

  • 2 authors
·
Aug 28, 2025

Black-Box Adversarial Attacks on LLM-Based Code Completion

Modern code completion engines, powered by large language models (LLMs), assist millions of developers with their strong capabilities to generate functionally correct code. Due to this popularity, it is crucial to investigate the security implications of relying on LLM-based code completion. In this work, we demonstrate that state-of-the-art black-box LLM-based code completion engines can be stealthily biased by adversaries to significantly increase their rate of insecure code generation. We present the first attack, named INSEC, that achieves this goal. INSEC works by injecting an attack string as a short comment in the completion input. The attack string is crafted through a query-based optimization procedure starting from a set of carefully designed initialization schemes. We demonstrate INSEC's broad applicability and effectiveness by evaluating it on various state-of-the-art open-source models and black-box commercial services (e.g., OpenAI API and GitHub Copilot). On a diverse set of security-critical test cases, covering 16 CWEs across 5 programming languages, INSEC increases the rate of generated insecure code by more than 50%, while maintaining the functional correctness of generated code. We consider INSEC practical -- it requires low resources and costs less than 10 US dollars to develop on commodity hardware. Moreover, we showcase the attack's real-world deployability, by developing an IDE plug-in that stealthily injects INSEC into the GitHub Copilot extension.

  • 5 authors
·
Aug 5, 2024

Monitoring Decomposition Attacks in LLMs with Lightweight Sequential Monitors

Current LLM safety defenses fail under decomposition attacks, where a malicious goal is decomposed into benign subtasks that circumvent refusals. The challenge lies in the existing shallow safety alignment techniques: they only detect harm in the immediate prompt and do not reason about long-range intent, leaving them blind to malicious intent that emerges over a sequence of seemingly benign instructions. We therefore propose adding an external monitor that observes the conversation at a higher granularity. To facilitate our study of monitoring decomposition attacks, we curate the largest and most diverse dataset to date, including question-answering, text-to-image, and agentic tasks. We verify our datasets by testing them on frontier LLMs and show an 87% attack success rate on average on GPT-4o. This confirms that decomposition attack is broadly effective. Additionally, we find that random tasks can be injected into the decomposed subtasks to further obfuscate malicious intents. To defend in real time, we propose a lightweight sequential monitoring framework that cumulatively evaluates each subtask. We show that a carefully prompt engineered lightweight monitor achieves a 93% defense success rate, beating reasoning models like o3 mini as a monitor. Moreover, it remains robust against random task injection and cuts cost by 90% and latency by 50%. Our findings suggest that lightweight sequential monitors are highly effective in mitigating decomposition attacks and are viable in deployment.

  • 6 authors
·
Jun 12, 2025

"Your AI, My Shell": Demystifying Prompt Injection Attacks on Agentic AI Coding Editors

Agentic AI coding editors driven by large language models have recently become more popular due to their ability to improve developer productivity during software development. Modern editors such as Cursor are designed not just for code completion, but also with more system privileges for complex coding tasks (e.g., run commands in the terminal, access development environments, and interact with external systems). While this brings us closer to the "fully automated programming" dream, it also raises new security concerns. In this study, we present the first empirical analysis of prompt injection attacks targeting these high-privilege agentic AI coding editors. We show how attackers can remotely exploit these systems by poisoning external development resources with malicious instructions, effectively hijacking AI agents to run malicious commands, turning "your AI" into "attacker's shell". To perform this analysis, we implement AIShellJack, an automated testing framework for assessing prompt injection vulnerabilities in agentic AI coding editors. AIShellJack contains 314 unique attack payloads that cover 70 techniques from the MITRE ATT&CK framework. Using AIShellJack, we conduct a large-scale evaluation on GitHub Copilot and Cursor, and our evaluation results show that attack success rates can reach as high as 84% for executing malicious commands. Moreover, these attacks are proven effective across a wide range of objectives, ranging from initial access and system discovery to credential theft and data exfiltration.

  • 6 authors
·
Sep 26, 2025

MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits

To reduce development overhead and enable seamless integration between potential components comprising any given generative AI application, the Model Context Protocol (MCP) (Anthropic, 2024) has recently been released and subsequently widely adopted. The MCP is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools. By connecting multiple MCP servers, each defined with a set of tools, resources, and prompts, users are able to define automated workflows fully driven by LLMs. However, we show that the current MCP design carries a wide range of security risks for end users. In particular, we demonstrate that industry-leading LLMs may be coerced into using MCP tools to compromise an AI developer's system through various attacks, such as malicious code execution, remote access control, and credential theft. To proactively mitigate these and related attacks, we introduce a safety auditing tool, MCPSafetyScanner, the first agentic tool to assess the security of an arbitrary MCP server. MCPScanner uses several agents to (a) automatically determine adversarial samples given an MCP server's tools and resources; (b) search for related vulnerabilities and remediations based on those samples; and (c) generate a security report detailing all findings. Our work highlights serious security issues with general-purpose agentic workflows while also providing a proactive tool to audit MCP server safety and address detected vulnerabilities before deployment. The described MCP server auditing tool, MCPSafetyScanner, is freely available at: https://github.com/johnhalloran321/mcpSafetyScanner

  • 2 authors
·
Apr 2, 2025 2

Generative AI and Large Language Models for Cyber Security: All Insights You Need

This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs). We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection. We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA. Our analysis extends to LLM vulnerabilities, such as prompt injection, insecure output handling, data poisoning, DDoS attacks, and adversarial instructions. We delve into mitigation strategies to protect these models, providing a comprehensive look at potential attack scenarios and prevention techniques. Furthermore, we evaluate the performance of 42 LLM models in cybersecurity knowledge and hardware security, highlighting their strengths and weaknesses. We thoroughly evaluate cybersecurity datasets for LLM training and testing, covering the lifecycle from data creation to usage and identifying gaps for future research. In addition, we review new strategies for leveraging LLMs, including techniques like Half-Quadratic Quantization (HQQ), Reinforcement Learning with Human Feedback (RLHF), Direct Preference Optimization (DPO), Quantized Low-Rank Adapters (QLoRA), and Retrieval-Augmented Generation (RAG). These insights aim to enhance real-time cybersecurity defenses and improve the sophistication of LLM applications in threat detection and response. Our paper provides a foundational understanding and strategic direction for integrating LLMs into future cybersecurity frameworks, emphasizing innovation and robust model deployment to safeguard against evolving cyber threats.

  • 6 authors
·
May 21, 2024

The Trojan Knowledge: Bypassing Commercial LLM Guardrails via Harmless Prompt Weaving and Adaptive Tree Search

Large language models (LLMs) remain vulnerable to jailbreak attacks that bypass safety guardrails to elicit harmful outputs. Existing approaches overwhelmingly operate within the prompt-optimization paradigm: whether through traditional algorithmic search or recent agent-based workflows, the resulting prompts typically retain malicious semantic signals that modern guardrails are primed to detect. In contrast, we identify a deeper, largely overlooked vulnerability stemming from the highly interconnected nature of an LLM's internal knowledge. This structure allows harmful objectives to be realized by weaving together sequences of benign sub-queries, each of which individually evades detection. To exploit this loophole, we introduce the Correlated Knowledge Attack Agent (CKA-Agent), a dynamic framework that reframes jailbreaking as an adaptive, tree-structured exploration of the target model's knowledge base. The CKA-Agent issues locally innocuous queries, uses model responses to guide exploration across multiple paths, and ultimately assembles the aggregated information to achieve the original harmful objective. Evaluated across state-of-the-art commercial LLMs (Gemini2.5-Flash/Pro, GPT-oss-120B, Claude-Haiku-4.5), CKA-Agent consistently achieves over 95% success rates even against strong guardrails, underscoring the severity of this vulnerability and the urgent need for defenses against such knowledge-decomposition attacks. Our codes are available at https://github.com/Graph-COM/CKA-Agent.

  • 10 authors
·
Dec 1, 2025

Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment

To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.

  • 2 authors
·
Nov 15, 2023

MultiPhishGuard: An LLM-based Multi-Agent System for Phishing Email Detection

Phishing email detection faces critical challenges from evolving adversarial tactics and heterogeneous attack patterns. Traditional detection methods, such as rule-based filters and denylists, often struggle to keep pace with these evolving tactics, leading to false negatives and compromised security. While machine learning approaches have improved detection accuracy, they still face challenges adapting to novel phishing strategies. We present MultiPhishGuard, a dynamic LLM-based multi-agent detection system that synergizes specialized expertise with adversarial-aware reinforcement learning. Our framework employs five cooperative agents (text, URL, metadata, explanation simplifier, and adversarial agents) with automatically adjusted decision weights powered by a Proximal Policy Optimization reinforcement learning algorithm. To address emerging threats, we introduce an adversarial training loop featuring an adversarial agent that generates subtle context-aware email variants, creating a self-improving defense ecosystem and enhancing system robustness. Experimental evaluations on public datasets demonstrate that MultiPhishGuard significantly outperforms Chain-of-Thoughts, single-agent baselines and state-of-the-art detectors, as validated by ablation studies and comparative analyses. Experiments demonstrate that MultiPhishGuard achieves high accuracy (97.89\%) with low false positive (2.73\%) and false negative rates (0.20\%). Additionally, we incorporate an explanation simplifier agent, which provides users with clear and easily understandable explanations for why an email is classified as phishing or legitimate. This work advances phishing defense through dynamic multi-agent collaboration and generative adversarial resilience.

  • 4 authors
·
May 26, 2025

Systematic Analysis of MCP Security

The Model Context Protocol (MCP) has emerged as a universal standard that enables AI agents to seamlessly connect with external tools, significantly enhancing their functionality. However, while MCP brings notable benefits, it also introduces significant vulnerabilities, such as Tool Poisoning Attacks (TPA), where hidden malicious instructions exploit the sycophancy of large language models (LLMs) to manipulate agent behavior. Despite these risks, current academic research on MCP security remains limited, with most studies focusing on narrow or qualitative analyses that fail to capture the diversity of real-world threats. To address this gap, we present the MCP Attack Library (MCPLIB), which categorizes and implements 31 distinct attack methods under four key classifications: direct tool injection, indirect tool injection, malicious user attacks, and LLM inherent attack. We further conduct a quantitative analysis of the efficacy of each attack. Our experiments reveal key insights into MCP vulnerabilities, including agents' blind reliance on tool descriptions, sensitivity to file-based attacks, chain attacks exploiting shared context, and difficulty distinguishing external data from executable commands. These insights, validated through attack experiments, underscore the urgency for robust defense strategies and informed MCP design. Our contributions include 1) constructing a comprehensive MCP attack taxonomy, 2) introducing a unified attack framework MCPLIB, and 3) conducting empirical vulnerability analysis to enhance MCP security mechanisms. This work provides a foundational framework, supporting the secure evolution of MCP ecosystems.

  • 8 authors
·
Aug 17, 2025

An Automated Framework for Strategy Discovery, Retrieval, and Evolution in LLM Jailbreak Attacks

The widespread deployment of Large Language Models (LLMs) as public-facing web services and APIs has made their security a core concern for the web ecosystem. Jailbreak attacks, as one of the significant threats to LLMs, have recently attracted extensive research. In this paper, we reveal a jailbreak strategy which can effectively evade current defense strategies. It can extract valuable information from failed or partially successful attack attempts and contains self-evolution from attack interactions, resulting in sufficient strategy diversity and adaptability. Inspired by continuous learning and modular design principles, we propose ASTRA, a jailbreak framework that autonomously discovers, retrieves, and evolves attack strategies to achieve more efficient and adaptive attacks. To enable this autonomous evolution, we design a closed-loop "attack-evaluate-distill-reuse" core mechanism that not only generates attack prompts but also automatically distills and generalizes reusable attack strategies from every interaction. To systematically accumulate and apply this attack knowledge, we introduce a three-tier strategy library that categorizes strategies into Effective, Promising, and Ineffective based on their performance scores. The strategy library not only provides precise guidance for attack generation but also possesses exceptional extensibility and transferability. We conduct extensive experiments under a black-box setting, and the results show that ASTRA achieves an average Attack Success Rate (ASR) of 82.7%, significantly outperforming baselines.

  • 7 authors
·
Nov 4, 2025

SPADE: Enhancing Adaptive Cyber Deception Strategies with Generative AI and Structured Prompt Engineering

The rapid evolution of modern malware presents significant challenges to the development of effective defense mechanisms. Traditional cyber deception techniques often rely on static or manually configured parameters, limiting their adaptability to dynamic and sophisticated threats. This study leverages Generative AI (GenAI) models to automate the creation of adaptive cyber deception ploys, focusing on structured prompt engineering (PE) to enhance relevance, actionability, and deployability. We introduce a systematic framework (SPADE) to address inherent challenges large language models (LLMs) pose to adaptive deceptions, including generalized outputs, ambiguity, under-utilization of contextual information, and scalability constraints. Evaluations across diverse malware scenarios using metrics such as Recall, Exact Match (EM), BLEU Score, and expert quality assessments identified ChatGPT-4o as the top performer. Additionally, it achieved high engagement (93%) and accuracy (96%) with minimal refinements. Gemini and ChatGPT-4o Mini demonstrated competitive performance, with Llama3.2 showing promise despite requiring further optimization. These findings highlight the transformative potential of GenAI in automating scalable, adaptive deception strategies and underscore the critical role of structured PE in advancing real-world cybersecurity applications.

  • 4 authors
·
Jan 1, 2025

Countermind: A Multi-Layered Security Architecture for Large Language Models

The security of Large Language Model (LLM) applications is fundamentally challenged by "form-first" attacks like prompt injection and jailbreaking, where malicious instructions are embedded within user inputs. Conventional defenses, which rely on post hoc output filtering, are often brittle and fail to address the root cause: the model's inability to distinguish trusted instructions from untrusted data. This paper proposes Countermind, a multi-layered security architecture intended to shift defenses from a reactive, post hoc posture to a proactive, pre-inference, and intra-inference enforcement model. The architecture proposes a fortified perimeter designed to structurally validate and transform all inputs, and an internal governance mechanism intended to constrain the model's semantic processing pathways before an output is generated. The primary contributions of this work are conceptual designs for: (1) A Semantic Boundary Logic (SBL) with a mandatory, time-coupled Text Crypter intended to reduce the plaintext prompt injection attack surface, provided all ingestion paths are enforced. (2) A Parameter-Space Restriction (PSR) mechanism, leveraging principles from representation engineering, to dynamically control the LLM's access to internal semantic clusters, with the goal of mitigating semantic drift and dangerous emergent behaviors. (3) A Secure, Self-Regulating Core that uses an OODA loop and a learning security module to adapt its defenses based on an immutable audit log. (4) A Multimodal Input Sandbox and Context-Defense mechanisms to address threats from non-textual data and long-term semantic poisoning. This paper outlines an evaluation plan designed to quantify the proposed architecture's effectiveness in reducing the Attack Success Rate (ASR) for form-first attacks and to measure its potential latency overhead.

  • 1 authors
·
Oct 13, 2025

AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents

The strong planning and reasoning capabilities of Large Language Models (LLMs) have fostered the development of agent-based systems capable of leveraging external tools and interacting with increasingly complex environments. However, these powerful features also introduce a critical security risk: indirect prompt injection, a sophisticated attack vector that compromises the core of these agents, the LLM, by manipulating contextual information rather than direct user prompts. In this work, we propose a generic black-box fuzzing framework, AgentVigil, designed to automatically discover and exploit indirect prompt injection vulnerabilities across diverse LLM agents. Our approach starts by constructing a high-quality initial seed corpus, then employs a seed selection algorithm based on Monte Carlo Tree Search (MCTS) to iteratively refine inputs, thereby maximizing the likelihood of uncovering agent weaknesses. We evaluate AgentVigil on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o, respectively, nearly doubling the performance of baseline attacks. Moreover, AgentVigil exhibits strong transferability across unseen tasks and internal LLMs, as well as promising results against defenses. Beyond benchmark evaluations, we apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.

  • 9 authors
·
May 9, 2025

Clone What You Can't Steal: Black-Box LLM Replication via Logit Leakage and Distillation

Large Language Models (LLMs) are increasingly deployed in mission-critical systems, facilitating tasks such as satellite operations, command-and-control, military decision support, and cyber defense. Many of these systems are accessed through application programming interfaces (APIs). When such APIs lack robust access controls, they can expose full or top-k logits, creating a significant and often overlooked attack surface. Prior art has mainly focused on reconstructing the output projection layer or distilling surface-level behaviors. However, regenerating a black-box model under tight query constraints remains underexplored. We address that gap by introducing a constrained replication pipeline that transforms partial logit leakage into a functional deployable substitute model clone. Our two-stage approach (i) reconstructs the output projection matrix by collecting top-k logits from under 10k black-box queries via singular value decomposition (SVD) over the logits, then (ii) distills the remaining architecture into compact student models with varying transformer depths, trained on an open source dataset. A 6-layer student recreates 97.6% of the 6-layer teacher model's hidden-state geometry, with only a 7.31% perplexity increase, and a 7.58 Negative Log-Likelihood (NLL). A 4-layer variant achieves 17.1% faster inference and 18.1% parameter reduction with comparable performance. The entire attack completes in under 24 graphics processing unit (GPU) hours and avoids triggering API rate-limit defenses. These results demonstrate how quickly a cost-limited adversary can clone an LLM, underscoring the urgent need for hardened inference APIs and secure on-premise defense deployments.

  • 4 authors
·
Aug 31, 2025

CRAKEN: Cybersecurity LLM Agent with Knowledge-Based Execution

Large Language Model (LLM) agents can automate cybersecurity tasks and can adapt to the evolving cybersecurity landscape without re-engineering. While LLM agents have demonstrated cybersecurity capabilities on Capture-The-Flag (CTF) competitions, they have two key limitations: accessing latest cybersecurity expertise beyond training data, and integrating new knowledge into complex task planning. Knowledge-based approaches that incorporate technical understanding into the task-solving automation can tackle these limitations. We present CRAKEN, a knowledge-based LLM agent framework that improves cybersecurity capability through three core mechanisms: contextual decomposition of task-critical information, iterative self-reflected knowledge retrieval, and knowledge-hint injection that transforms insights into adaptive attack strategies. Comprehensive evaluations with different configurations show CRAKEN's effectiveness in multi-stage vulnerability detection and exploitation compared to previous approaches. Our extensible architecture establishes new methodologies for embedding new security knowledge into LLM-driven cybersecurity agentic systems. With a knowledge database of CTF writeups, CRAKEN obtained an accuracy of 22% on NYU CTF Bench, outperforming prior works by 3% and achieving state-of-the-art results. On evaluation of MITRE ATT&CK techniques, CRAKEN solves 25-30% more techniques than prior work, demonstrating improved cybersecurity capabilities via knowledge-based execution. We make our framework open source to public https://github.com/NYU-LLM-CTF/nyuctf_agents_craken.

  • 12 authors
·
May 21, 2025

AttackSeqBench: Benchmarking Large Language Models' Understanding of Sequential Patterns in Cyber Attacks

The observations documented in Cyber Threat Intelligence (CTI) reports play a critical role in describing adversarial behaviors, providing valuable insights for security practitioners to respond to evolving threats. Recent advancements of Large Language Models (LLMs) have demonstrated significant potential in various cybersecurity applications, including CTI report understanding and attack knowledge graph construction. While previous works have proposed benchmarks that focus on the CTI extraction ability of LLMs, the sequential characteristic of adversarial behaviors within CTI reports remains largely unexplored, which holds considerable significance in developing a comprehensive understanding of how adversaries operate. To address this gap, we introduce AttackSeqBench, a benchmark tailored to systematically evaluate LLMs' capability to understand and reason attack sequences in CTI reports. Our benchmark encompasses three distinct Question Answering (QA) tasks, each task focuses on the varying granularity in adversarial behavior. To alleviate the laborious effort of QA construction, we carefully design an automated dataset construction pipeline to create scalable and well-formulated QA datasets based on real-world CTI reports. To ensure the quality of our dataset, we adopt a hybrid approach of combining human evaluation and systematic evaluation metrics. We conduct extensive experiments and analysis with both fast-thinking and slow-thinking LLMs, while highlighting their strengths and limitations in analyzing the sequential patterns in cyber attacks. The overarching goal of this work is to provide a benchmark that advances LLM-driven CTI report understanding and fosters its application in real-world cybersecurity operations. Our dataset and code are available at https://github.com/Javiery3889/AttackSeqBench .

  • 6 authors
·
Mar 4, 2025

An In-kernel Forensics Engine for Investigating Evasive Attacks

Over the years, adversarial attempts against critical services have become more effective and sophisticated in launching low-profile attacks. This trend has always been concerning. However, an even more alarming trend is the increasing difficulty of collecting relevant evidence about these attacks and the involved threat actors in the early stages before significant damage is done. This issue puts defenders at a significant disadvantage, as it becomes exceedingly difficult to understand the attack details and formulate an appropriate response. Developing robust forensics tools to collect evidence about modern threats has never been easy. One main challenge is to provide a robust trade-off between achieving sufficient visibility while leaving minimal detectable artifacts. This paper will introduce LASE, an open-source Low-Artifact Forensics Engine to perform threat analysis and forensics in Windows operating system. LASE augments current analysis tools by providing detailed, system-wide monitoring capabilities while minimizing detectable artifacts. We designed multiple deployment scenarios, showing LASE's potential in evidence gathering and threat reasoning in a real-world setting. By making LASE and its execution trace data available to the broader research community, this work encourages further exploration in the field by reducing the engineering costs for threat analysis and building a longitudinal behavioral analysis catalog for diverse security domains.

  • 3 authors
·
May 9, 2025

Pentest-R1: Towards Autonomous Penetration Testing Reasoning Optimized via Two-Stage Reinforcement Learning

Automating penetration testing is crucial for enhancing cybersecurity, yet current Large Language Models (LLMs) face significant limitations in this domain, including poor error handling, inefficient reasoning, and an inability to perform complex end-to-end tasks autonomously. To address these challenges, we introduce Pentest-R1, a novel framework designed to optimize LLM reasoning capabilities for this task through a two-stage reinforcement learning pipeline. We first construct a dataset of over 500 real-world, multi-step walkthroughs, which Pentest-R1 leverages for offline reinforcement learning (RL) to instill foundational attack logic. Subsequently, the LLM is fine-tuned via online RL in an interactive Capture The Flag (CTF) environment, where it learns directly from environmental feedback to develop robust error self-correction and adaptive strategies. Our extensive experiments on the Cybench and AutoPenBench benchmarks demonstrate the framework's effectiveness. On AutoPenBench, Pentest-R1 achieves a 24.2\% success rate, surpassing most state-of-the-art models and ranking second only to Gemini 2.5 Flash. On Cybench, it attains a 15.0\% success rate in unguided tasks, establishing a new state-of-the-art for open-source LLMs and matching the performance of top proprietary models. Ablation studies confirm that the synergy of both training stages is critical to its success.

  • 6 authors
·
Aug 10, 2025

Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification

Recently, autonomous agents built on large language models (LLMs) have experienced significant development and are being deployed in real-world applications. These agents can extend the base LLM's capabilities in multiple ways. For example, a well-built agent using GPT-3.5-Turbo as its core can outperform the more advanced GPT-4 model by leveraging external components. More importantly, the usage of tools enables these systems to perform actions in the real world, moving from merely generating text to actively interacting with their environment. Given the agents' practical applications and their ability to execute consequential actions, it is crucial to assess potential vulnerabilities. Such autonomous systems can cause more severe damage than a standalone language model if compromised. While some existing research has explored harmful actions by LLM agents, our study approaches the vulnerability from a different perspective. We introduce a new type of attack that causes malfunctions by misleading the agent into executing repetitive or irrelevant actions. We conduct comprehensive evaluations using various attack methods, surfaces, and properties to pinpoint areas of susceptibility. Our experiments reveal that these attacks can induce failure rates exceeding 80\% in multiple scenarios. Through attacks on implemented and deployable agents in multi-agent scenarios, we accentuate the realistic risks associated with these vulnerabilities. To mitigate such attacks, we propose self-examination detection methods. However, our findings indicate these attacks are difficult to detect effectively using LLMs alone, highlighting the substantial risks associated with this vulnerability.

  • 7 authors
·
Jul 30, 2024

Not what you've signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection

Large Language Models (LLMs) are increasingly being integrated into various applications. The functionalities of recent LLMs can be flexibly modulated via natural language prompts. This renders them susceptible to targeted adversarial prompting, e.g., Prompt Injection (PI) attacks enable attackers to override original instructions and employed controls. So far, it was assumed that the user is directly prompting the LLM. But, what if it is not the user prompting? We argue that LLM-Integrated Applications blur the line between data and instructions. We reveal new attack vectors, using Indirect Prompt Injection, that enable adversaries to remotely (without a direct interface) exploit LLM-integrated applications by strategically injecting prompts into data likely to be retrieved. We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities, including data theft, worming, information ecosystem contamination, and other novel security risks. We demonstrate our attacks' practical viability against both real-world systems, such as Bing's GPT-4 powered Chat and code-completion engines, and synthetic applications built on GPT-4. We show how processing retrieved prompts can act as arbitrary code execution, manipulate the application's functionality, and control how and if other APIs are called. Despite the increasing integration and reliance on LLMs, effective mitigations of these emerging threats are currently lacking. By raising awareness of these vulnerabilities and providing key insights into their implications, we aim to promote the safe and responsible deployment of these powerful models and the development of robust defenses that protect users and systems from potential attacks.

  • 6 authors
·
Feb 23, 2023 1

Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs

The proliferation of Large Language Models (LLMs) accessed via black-box APIs introduces a significant trust challenge: users pay for services based on advertised model capabilities (e.g., size, performance), but providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs. This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking. Detecting such substitutions is difficult due to the black-box nature, typically limiting interaction to input-output queries. This paper formalizes the problem of model substitution detection in LLM APIs. We systematically evaluate existing verification techniques, including output-based statistical tests, benchmark evaluations, and log probability analysis, under various realistic attack scenarios like model quantization, randomized substitution, and benchmark evasion. Our findings reveal the limitations of methods relying solely on text outputs, especially against subtle or adaptive attacks. While log probability analysis offers stronger guarantees when available, its accessibility is often limited. We conclude by discussing the potential of hardware-based solutions like Trusted Execution Environments (TEEs) as a pathway towards provable model integrity, highlighting the trade-offs between security, performance, and provider adoption. Code is available at https://github.com/sunblaze-ucb/llm-api-audit

  • 4 authors
·
Apr 6, 2025 2

Tree-based Dialogue Reinforced Policy Optimization for Red-Teaming Attacks

Despite recent rapid progress in AI safety, current large language models remain vulnerable to adversarial attacks in multi-turn interaction settings, where attackers strategically adapt their prompts across conversation turns and pose a more critical yet realistic challenge. Existing approaches that discover safety vulnerabilities either rely on manual red-teaming with human experts or employ automated methods using pre-defined templates and human-curated attack data, with most focusing on single-turn attacks. However, these methods did not explore the vast space of possible multi-turn attacks, failing to consider novel attack trajectories that emerge from complex dialogue dynamics and strategic conversation planning. This gap is particularly critical given recent findings that LLMs exhibit significantly higher vulnerability to multi-turn attacks compared to single-turn attacks. We propose DialTree-RPO, an on-policy reinforcement learning framework integrated with tree search that autonomously discovers diverse multi-turn attack strategies by treating the dialogue as a sequential decision-making problem, enabling systematic exploration without manually curated data. Through extensive experiments, our approach not only achieves more than 25.9% higher ASR across 10 target models compared to previous state-of-the-art approaches, but also effectively uncovers new attack strategies by learning optimal dialogue policies that maximize attack success across multiple turns.

  • 6 authors
·
Oct 2, 2025 3

AutoPentester: An LLM Agent-based Framework for Automated Pentesting

Penetration testing and vulnerability assessment are essential industry practices for safeguarding computer systems. As cyber threats grow in scale and complexity, the demand for pentesting has surged, surpassing the capacity of human professionals to meet it effectively. With advances in AI, particularly Large Language Models (LLMs), there have been attempts to automate the pentesting process. However, existing tools such as PentestGPT are still semi-manual, requiring significant professional human interaction to conduct pentests. To this end, we propose a novel LLM agent-based framework, AutoPentester, which automates the pentesting process. Given a target IP, AutoPentester automatically conducts pentesting steps using common security tools in an iterative process. It can dynamically generate attack strategies based on the tool outputs from the previous iteration, mimicking the human pentester approach. We evaluate AutoPentester using Hack The Box and custom-made VMs, comparing the results with the state-of-the-art PentestGPT. Results show that AutoPentester achieves a 27.0% better subtask completion rate and 39.5% more vulnerability coverage with fewer steps. Most importantly, it requires significantly fewer human interactions and interventions compared to PentestGPT. Furthermore, we recruit a group of security industry professional volunteers for a user survey and perform a qualitative analysis to evaluate AutoPentester against industry practices and compare it with PentestGPT. On average, AutoPentester received a score of 3.93 out of 5 based on user reviews, which was 19.8% higher than PentestGPT.

  • 4 authors
·
Oct 7, 2025

SecureCode v2.0: A Production-Grade Dataset for Training Security-Aware Code Generation Models

AI assistants produce vulnerable code in 45% of security-relevant scenarios, introducing flaws into production systems at scale. Yet existing secure coding datasets fall short. They lack incident grounding, don't provide the scale modern training requires, and miss the operational security context developers need for production deployments. We present SecureCode v2.0, a production-grade dataset of 1,215 security-focused coding examples that passed structural validation and expert security review. Every example ties to actual documented security incidents with CVE references, provides vulnerable and secure implementations, demonstrates concrete attacks, and includes defense-in-depth operational guidance. The dataset covers 11 vulnerability categories (complete OWASP Top 10:2025 plus AI/ML Security Threats) across 11 languages (Python, JavaScript, Java, Go, PHP, C#, TypeScript, Ruby, Rust, Kotlin, and YAML for infrastructure-as-code). Our quality assurance framework ensures complete incident grounding. Each example includes SIEM integration strategies, infrastructure hardening recommendations (Docker, AppArmor, WAF configurations), and testing approaches using language-appropriate frameworks. The dataset uses a 4-turn conversational structure mirroring actual developer-AI interactions, escalating from basic implementations to advanced security considerations and defense-in-depth guidance. Our contributions: (1) 1,215 rigorously validated examples split into 989 training, 122 validation, and 104 test sets, (2) an automated validation framework ensuring dataset consistency, (3) a 4-turn conversational structure capturing realistic security workflows, (4) comprehensive operational security guidance with SIEM integration strategies, (5) complete language-specific implementation fidelity, and (6) open-source release of data, validation tools, and benchmarking protocols.

  • 1 authors
·
Dec 20, 2025 1

From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows

Autonomous AI agents powered by large language models (LLMs) with structured function-calling interfaces have dramatically expanded capabilities for real-time data retrieval, complex computation, and multi-step orchestration. Yet, the explosive proliferation of plugins, connectors, and inter-agent protocols has outpaced discovery mechanisms and security practices, resulting in brittle integrations vulnerable to diverse threats. In this survey, we introduce the first unified, end-to-end threat model for LLM-agent ecosystems, spanning host-to-tool and agent-to-agent communications, formalize adversary capabilities and attacker objectives, and catalog over thirty attack techniques. Specifically, we organized the threat model into four domains: Input Manipulation (e.g., prompt injections, long-context hijacks, multimodal adversarial inputs), Model Compromise (e.g., prompt- and parameter-level backdoors, composite and encrypted multi-backdoors, poisoning strategies), System and Privacy Attacks (e.g., speculative side-channels, membership inference, retrieval poisoning, social-engineering simulations), and Protocol Vulnerabilities (e.g., exploits in Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent Network Protocol (ANP), and Agent-to-Agent (A2A) protocol). For each category, we review representative scenarios, assess real-world feasibility, and evaluate existing defenses. Building on our threat taxonomy, we identify key open challenges and future research directions, such as securing MCP deployments through dynamic trust management and cryptographic provenance tracking; designing and hardening Agentic Web Interfaces; and achieving resilience in multi-agent and federated environments. Our work provides a comprehensive reference to guide the design of robust defense mechanisms and establish best practices for resilient LLM-agent workflows.

  • 5 authors
·
Jun 29, 2025

Code Agent can be an End-to-end System Hacker: Benchmarking Real-world Threats of Computer-use Agent

Computer-use agent (CUA) frameworks, powered by large language models (LLMs) or multimodal LLMs (MLLMs), are rapidly maturing as assistants that can perceive context, reason, and act directly within software environments. Among their most critical applications is operating system (OS) control. As CUAs in the OS domain become increasingly embedded in daily operations, it is imperative to examine their real-world security implications, specifically whether CUAs can be misused to perform realistic, security-relevant attacks. Existing works exhibit four major limitations: Missing attacker-knowledge model on tactics, techniques, and procedures (TTP), Incomplete coverage for end-to-end kill chains, unrealistic environment without multi-host and encrypted user credentials, and unreliable judgment dependent on LLM-as-a-Judge. To address these gaps, we propose AdvCUA, the first benchmark aligned with real-world TTPs in MITRE ATT&CK Enterprise Matrix, which comprises 140 tasks, including 40 direct malicious tasks, 74 TTP-based malicious tasks, and 26 end-to-end kill chains, systematically evaluates CUAs under a realistic enterprise OS security threat in a multi-host environment sandbox by hard-coded evaluation. We evaluate the existing five mainstream CUAs, including ReAct, AutoGPT, Gemini CLI, Cursor CLI, and Cursor IDE based on 8 foundation LLMs. The results demonstrate that current frontier CUAs do not adequately cover OS security-centric threats. These capabilities of CUAs reduce dependence on custom malware and deep domain expertise, enabling even inexperienced attackers to mount complex enterprise intrusions, which raises social concern about the responsibility and security of CUAs.

MomoUchi
·
Oct 7, 2025 2

CaMeLs Can Use Computers Too: System-level Security for Computer Use Agents

AI agents are vulnerable to prompt injection attacks, where malicious content hijacks agent behavior to steal credentials or cause financial loss. The only known robust defense is architectural isolation that strictly separates trusted task planning from untrusted environment observations. However, applying this design to Computer Use Agents (CUAs) -- systems that automate tasks by viewing screens and executing actions -- presents a fundamental challenge: current agents require continuous observation of UI state to determine each action, conflicting with the isolation required for security. We resolve this tension by demonstrating that UI workflows, while dynamic, are structurally predictable. We introduce Single-Shot Planning for CUAs, where a trusted planner generates a complete execution graph with conditional branches before any observation of potentially malicious content, providing provable control flow integrity guarantees against arbitrary instruction injections. Although this architectural isolation successfully prevents instruction injections, we show that additional measures are needed to prevent Branch Steering attacks, which manipulate UI elements to trigger unintended valid paths within the plan. We evaluate our design on OSWorld, and retain up to 57% of the performance of frontier models while improving performance for smaller open-source models by up to 19%, demonstrating that rigorous security and utility can coexist in CUAs.

  • 9 authors
·
Jan 14 2

Rescuing the Unpoisoned: Efficient Defense against Knowledge Corruption Attacks on RAG Systems

Large language models (LLMs) are reshaping numerous facets of our daily lives, leading widespread adoption as web-based services. Despite their versatility, LLMs face notable challenges, such as generating hallucinated content and lacking access to up-to-date information. Lately, to address such limitations, Retrieval-Augmented Generation (RAG) has emerged as a promising direction by generating responses grounded in external knowledge sources. A typical RAG system consists of i) a retriever that probes a group of relevant passages from a knowledge base and ii) a generator that formulates a response based on the retrieved content. However, as with other AI systems, recent studies demonstrate the vulnerability of RAG, such as knowledge corruption attacks by injecting misleading information. In response, several defense strategies have been proposed, including having LLMs inspect the retrieved passages individually or fine-tuning robust retrievers. While effective, such approaches often come with substantial computational costs. In this work, we introduce RAGDefender, a resource-efficient defense mechanism against knowledge corruption (i.e., by data poisoning) attacks in practical RAG deployments. RAGDefender operates during the post-retrieval phase, leveraging lightweight machine learning techniques to detect and filter out adversarial content without requiring additional model training or inference. Our empirical evaluations show that RAGDefender consistently outperforms existing state-of-the-art defenses across multiple models and adversarial scenarios: e.g., RAGDefender reduces the attack success rate (ASR) against the Gemini model from 0.89 to as low as 0.02, compared to 0.69 for RobustRAG and 0.24 for Discern-and-Answer when adversarial passages outnumber legitimate ones by a factor of four (4x).

  • 3 authors
·
Nov 3, 2025

SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI

Existing works have established multiple benchmarks to highlight the security risks associated with Code GenAI. These risks are primarily reflected in two areas: a model potential to generate insecure code (insecure coding) and its utility in cyberattacks (cyberattack helpfulness). While these benchmarks have made significant strides, there remain opportunities for further improvement. For instance, many current benchmarks tend to focus more on a model ability to provide attack suggestions rather than its capacity to generate executable attacks. Additionally, most benchmarks rely heavily on static evaluation metrics, which may not be as precise as dynamic metrics such as passing test cases. Conversely, expert-verified benchmarks, while offering high-quality data, often operate at a smaller scale. To address these gaps, we develop SecCodePLT, a unified and comprehensive evaluation platform for code GenAIs' risks. For insecure code, we introduce a new methodology for data creation that combines experts with automatic generation. Our methodology ensures the data quality while enabling large-scale generation. We also associate samples with test cases to conduct code-related dynamic evaluation. For cyberattack helpfulness, we set up a real environment and construct samples to prompt a model to generate actual attacks, along with dynamic metrics in our environment. We conduct extensive experiments and show that SecCodePLT outperforms the state-of-the-art (SOTA) benchmark CyberSecEval in security relevance. Furthermore, it better identifies the security risks of SOTA models in insecure coding and cyberattack helpfulness. Finally, we apply SecCodePLT to the SOTA code agent, Cursor, and, for the first time, identify non-trivial security risks in this advanced coding agent.

  • 7 authors
·
Oct 14, 2024 2

Model Tampering Attacks Enable More Rigorous Evaluations of LLM Capabilities

Evaluations of large language model (LLM) risks and capabilities are increasingly being incorporated into AI risk management and governance frameworks. Currently, most risk evaluations are conducted by designing inputs that elicit harmful behaviors from the system. However, a fundamental limitation of this approach is that the harmfulness of the behaviors identified during any particular evaluation can only lower bound the model's worst-possible-case behavior. As a complementary method for eliciting harmful behaviors, we propose evaluating LLMs with model tampering attacks which allow for modifications to latent activations or weights. We pit state-of-the-art techniques for removing harmful LLM capabilities against a suite of 5 input-space and 6 model tampering attacks. In addition to benchmarking these methods against each other, we show that (1) model resilience to capability elicitation attacks lies on a low-dimensional robustness subspace; (2) the attack success rate of model tampering attacks can empirically predict and offer conservative estimates for the success of held-out input-space attacks; and (3) state-of-the-art unlearning methods can easily be undone within 16 steps of fine-tuning. Together these results highlight the difficulty of removing harmful LLM capabilities and show that model tampering attacks enable substantially more rigorous evaluations than input-space attacks alone. We release models at https://huggingface.co/LLM-GAT

  • 15 authors
·
Feb 3, 2025

Hallucinating AI Hijacking Attack: Large Language Models and Malicious Code Recommenders

The research builds and evaluates the adversarial potential to introduce copied code or hallucinated AI recommendations for malicious code in popular code repositories. While foundational large language models (LLMs) from OpenAI, Google, and Anthropic guard against both harmful behaviors and toxic strings, previous work on math solutions that embed harmful prompts demonstrate that the guardrails may differ between expert contexts. These loopholes would appear in mixture of expert's models when the context of the question changes and may offer fewer malicious training examples to filter toxic comments or recommended offensive actions. The present work demonstrates that foundational models may refuse to propose destructive actions correctly when prompted overtly but may unfortunately drop their guard when presented with a sudden change of context, like solving a computer programming challenge. We show empirical examples with trojan-hosting repositories like GitHub, NPM, NuGet, and popular content delivery networks (CDN) like jsDelivr which amplify the attack surface. In the LLM's directives to be helpful, example recommendations propose application programming interface (API) endpoints which a determined domain-squatter could acquire and setup attack mobile infrastructure that triggers from the naively copied code. We compare this attack to previous work on context-shifting and contrast the attack surface as a novel version of "living off the land" attacks in the malware literature. In the latter case, foundational language models can hijack otherwise innocent user prompts to recommend actions that violate their owners' safety policies when posed directly without the accompanying coding support request.

  • 2 authors
·
Oct 8, 2024 2

PrimeGuard: Safe and Helpful LLMs through Tuning-Free Routing

Deploying language models (LMs) necessitates outputs to be both high-quality and compliant with safety guidelines. Although Inference-Time Guardrails (ITG) offer solutions that shift model output distributions towards compliance, we find that current methods struggle in balancing safety with helpfulness. ITG Methods that safely address non-compliant queries exhibit lower helpfulness while those that prioritize helpfulness compromise on safety. We refer to this trade-off as the guardrail tax, analogous to the alignment tax. To address this, we propose PrimeGuard, a novel ITG method that utilizes structured control flow. PrimeGuard routes requests to different self-instantiations of the LM with varying instructions, leveraging its inherent instruction-following capabilities and in-context learning. Our tuning-free approach dynamically compiles system-designer guidelines for each query. We construct and release safe-eval, a diverse red-team safety benchmark. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, overcomes the guardrail tax by (1) significantly increasing resistance to iterative jailbreak attacks and (2) achieving state-of-the-art results in safety guardrailing while (3) matching helpfulness scores of alignment-tuned models. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, outperforms all competing baselines and overcomes the guardrail tax by improving the fraction of safe responses from 61% to 97% and increasing average helpfulness scores from 4.17 to 4.29 on the largest models, while reducing attack success rate from 100% to 8%. PrimeGuard implementation is available at https://github.com/dynamofl/PrimeGuard and safe-eval dataset is available at https://huggingface.co/datasets/dynamoai/safe_eval.

  • 4 authors
·
Jul 23, 2024 3

MELON: Provable Defense Against Indirect Prompt Injection Attacks in AI Agents

Recent research has explored that LLM agents are vulnerable to indirect prompt injection (IPI) attacks, where malicious tasks embedded in tool-retrieved information can redirect the agent to take unauthorized actions. Existing defenses against IPI have significant limitations: either require essential model training resources, lack effectiveness against sophisticated attacks, or harm the normal utilities. We present MELON (Masked re-Execution and TooL comparisON), a novel IPI defense. Our approach builds on the observation that under a successful attack, the agent's next action becomes less dependent on user tasks and more on malicious tasks. Following this, we design MELON to detect attacks by re-executing the agent's trajectory with a masked user prompt modified through a masking function. We identify an attack if the actions generated in the original and masked executions are similar. We also include three key designs to reduce the potential false positives and false negatives. Extensive evaluation on the IPI benchmark AgentDojo demonstrates that MELON outperforms SOTA defenses in both attack prevention and utility preservation. Moreover, we show that combining MELON with a SOTA prompt augmentation defense (denoted as MELON-Aug) further improves its performance. We also conduct a detailed ablation study to validate our key designs. Code is available at https://github.com/kaijiezhu11/MELON.

  • 5 authors
·
Feb 7, 2025

PRSA: Prompt Stealing Attacks against Real-World Prompt Services

Recently, large language models (LLMs) have garnered widespread attention for their exceptional capabilities. Prompts are central to the functionality and performance of LLMs, making them highly valuable assets. The increasing reliance on high-quality prompts has driven significant growth in prompt services. However, this growth also expands the potential for prompt leakage, increasing the risk that attackers could replicate original functionalities, create competing products, and severely infringe on developers' intellectual property. Despite these risks, prompt leakage in real-world prompt services remains underexplored. In this paper, we present PRSA, a practical attack framework designed for prompt stealing. PRSA infers the detailed intent of prompts through very limited input-output analysis and can successfully generate stolen prompts that replicate the original functionality. Extensive evaluations demonstrate PRSA's effectiveness across two main types of real-world prompt services. Specifically, compared to previous works, it improves the attack success rate from 17.8% to 46.1% in prompt marketplaces and from 39% to 52% in LLM application stores, respectively. Notably, in the attack on "Math", one of the most popular educational applications in OpenAI's GPT Store with over 1 million conversations, PRSA uncovered a hidden Easter egg that had not been revealed previously. Besides, our analysis reveals that higher mutual information between a prompt and its output correlates with an increased risk of leakage. This insight guides the design and evaluation of two potential defenses against the security threats posed by PRSA. We have reported these findings to the prompt service vendors, including PromptBase and OpenAI, and actively collaborate with them to implement defensive measures.

  • 9 authors
·
Feb 29, 2024

Deep Ignorance: Filtering Pretraining Data Builds Tamper-Resistant Safeguards into Open-Weight LLMs

Open-weight AI systems offer unique benefits, including enhanced transparency, open research, and decentralized access. However, they are vulnerable to tampering attacks which can efficiently elicit harmful behaviors by modifying weights or activations. Currently, there is not yet a robust science of open-weight model risk management. Existing safety fine-tuning methods and other post-training techniques have struggled to make LLMs resistant to more than a few dozen steps of adversarial fine-tuning. In this paper, we investigate whether filtering text about dual-use topics from training data can prevent unwanted capabilities and serve as a more tamper-resistant safeguard. We introduce a multi-stage pipeline for scalable data filtering and show that it offers a tractable and effective method for minimizing biothreat proxy knowledge in LLMs. We pretrain multiple 6.9B-parameter models from scratch and find that they exhibit substantial resistance to adversarial fine-tuning attacks on up to 10,000 steps and 300M tokens of biothreat-related text -- outperforming existing post-training baselines by over an order of magnitude -- with no observed degradation to unrelated capabilities. However, while filtered models lack internalized dangerous knowledge, we find that they can still leverage such information when it is provided in context (e.g., via search tool augmentation), demonstrating a need for a defense-in-depth approach. Overall, these findings help to establish pretraining data curation as a promising layer of defense for open-weight AI systems.

  • 10 authors
·
Aug 8, 2025 2

A Trembling House of Cards? Mapping Adversarial Attacks against Language Agents

Language agents powered by large language models (LLMs) have seen exploding development. Their capability of using language as a vehicle for thought and communication lends an incredible level of flexibility and versatility. People have quickly capitalized on this capability to connect LLMs to a wide range of external components and environments: databases, tools, the Internet, robotic embodiment, etc. Many believe an unprecedentedly powerful automation technology is emerging. However, new automation technologies come with new safety risks, especially for intricate systems like language agents. There is a surprisingly large gap between the speed and scale of their development and deployment and our understanding of their safety risks. Are we building a house of cards? In this position paper, we present the first systematic effort in mapping adversarial attacks against language agents. We first present a unified conceptual framework for agents with three major components: Perception, Brain, and Action. Under this framework, we present a comprehensive discussion and propose 12 potential attack scenarios against different components of an agent, covering different attack strategies (e.g., input manipulation, adversarial demonstrations, jailbreaking, backdoors). We also draw connections to successful attack strategies previously applied to LLMs. We emphasize the urgency to gain a thorough understanding of language agent risks before their widespread deployment.

  • 6 authors
·
Feb 15, 2024

LLMHoney: A Real-Time SSH Honeypot with Large Language Model-Driven Dynamic Response Generation

Cybersecurity honeypots are deception tools for engaging attackers and gather intelligence, but traditional low or medium-interaction honeypots often rely on static, pre-scripted interactions that can be easily identified by skilled adversaries. This Report presents LLMHoney, an SSH honeypot that leverages Large Language Models (LLMs) to generate realistic, dynamic command outputs in real time. LLMHoney integrates a dictionary-based virtual file system to handle common commands with low latency while using LLMs for novel inputs, achieving a balance between authenticity and performance. We implemented LLMHoney using open-source LLMs and evaluated it on a testbed with 138 representative Linux commands. We report comprehensive metrics including accuracy (exact-match, Cosine Similarity, Jaro-Winkler Similarity, Levenshtein Similarity and BLEU score), response latency and memory overhead. We evaluate LLMHoney using multiple LLM backends ranging from 0.36B to 3.8B parameters, including both open-source models and a proprietary model(Gemini). Our experiments compare 13 different LLM variants; results show that Gemini-2.0 and moderately-sized models Qwen2.5:1.5B and Phi3:3.8B provide the most reliable and accurate responses, with mean latencies around 3 seconds, whereas smaller models often produce incorrect or out-of-character outputs. We also discuss how LLM integration improves honeypot realism and adaptability compared to traditional honeypots, as well as challenges such as occasional hallucinated outputs and increased resource usage. Our findings demonstrate that LLM-driven honeypots are a promising approach to enhance attacker engagement and collect richer threat intelligence.

  • 1 authors
·
Sep 1, 2025

Evaluating the Instruction-Following Robustness of Large Language Models to Prompt Injection

Large Language Models (LLMs) have demonstrated exceptional proficiency in instruction-following, becoming increasingly crucial across various applications. However, this capability brings with it the risk of prompt injection attacks, where attackers inject instructions into LLMs' input to elicit undesirable actions or content. Understanding the robustness of LLMs against such attacks is vital for their safe implementation. In this work, we establish a benchmark to evaluate the robustness of instruction-following LLMs against prompt injection attacks. Our objective is to determine the extent to which LLMs can be influenced by injected instructions and their ability to differentiate between these injected and original target instructions. Through extensive experiments with leading instruction-following LLMs, we uncover significant vulnerabilities in their robustness to such attacks. Our results indicate that some models are overly tuned to follow any embedded instructions in the prompt, overly focusing on the latter parts of the prompt without fully grasping the entire context. By contrast, models with a better grasp of the context and instruction-following capabilities will potentially be more susceptible to compromise by injected instructions. This underscores the need to shift the focus from merely enhancing LLMs' instruction-following capabilities to improving their overall comprehension of prompts and discernment of instructions that are appropriate to follow. We hope our in-depth analysis offers insights into the underlying causes of these vulnerabilities, aiding in the development of future solutions. Code and data are available at https://github.com/Leezekun/instruction-following-robustness-eval

  • 4 authors
·
Aug 17, 2023

Survey of Vulnerabilities in Large Language Models Revealed by Adversarial Attacks

Large Language Models (LLMs) are swiftly advancing in architecture and capability, and as they integrate more deeply into complex systems, the urgency to scrutinize their security properties grows. This paper surveys research in the emerging interdisciplinary field of adversarial attacks on LLMs, a subfield of trustworthy ML, combining the perspectives of Natural Language Processing and Security. Prior work has shown that even safety-aligned LLMs (via instruction tuning and reinforcement learning through human feedback) can be susceptible to adversarial attacks, which exploit weaknesses and mislead AI systems, as evidenced by the prevalence of `jailbreak' attacks on models like ChatGPT and Bard. In this survey, we first provide an overview of large language models, describe their safety alignment, and categorize existing research based on various learning structures: textual-only attacks, multi-modal attacks, and additional attack methods specifically targeting complex systems, such as federated learning or multi-agent systems. We also offer comprehensive remarks on works that focus on the fundamental sources of vulnerabilities and potential defenses. To make this field more accessible to newcomers, we present a systematic review of existing works, a structured typology of adversarial attack concepts, and additional resources, including slides for presentations on related topics at the 62nd Annual Meeting of the Association for Computational Linguistics (ACL'24).

  • 6 authors
·
Oct 16, 2023

PromptSleuth: Detecting Prompt Injection via Semantic Intent Invariance

Large Language Models (LLMs) are increasingly integrated into real-world applications, from virtual assistants to autonomous agents. However, their flexibility also introduces new attack vectors-particularly Prompt Injection (PI), where adversaries manipulate model behavior through crafted inputs. As attackers continuously evolve with paraphrased, obfuscated, and even multi-task injection strategies, existing benchmarks are no longer sufficient to capture the full spectrum of emerging threats. To address this gap, we construct a new benchmark that systematically extends prior efforts. Our benchmark subsumes the two widely-used existing ones while introducing new manipulation techniques and multi-task scenarios, thereby providing a more comprehensive evaluation setting. We find that existing defenses, though effective on their original benchmarks, show clear weaknesses under our benchmark, underscoring the need for more robust solutions. Our key insight is that while attack forms may vary, the adversary's intent-injecting an unauthorized task-remains invariant. Building on this observation, we propose PromptSleuth, a semantic-oriented defense framework that detects prompt injection by reasoning over task-level intent rather than surface features. Evaluated across state-of-the-art benchmarks, PromptSleuth consistently outperforms existing defense while maintaining comparable runtime and cost efficiency. These results demonstrate that intent-based semantic reasoning offers a robust, efficient, and generalizable strategy for defending LLMs against evolving prompt injection threats.

  • 3 authors
·
Aug 28, 2025

Spinning Language Models: Risks of Propaganda-As-A-Service and Countermeasures

We investigate a new threat to neural sequence-to-sequence (seq2seq) models: training-time attacks that cause models to "spin" their outputs so as to support an adversary-chosen sentiment or point of view -- but only when the input contains adversary-chosen trigger words. For example, a spinned summarization model outputs positive summaries of any text that mentions the name of some individual or organization. Model spinning introduces a "meta-backdoor" into a model. Whereas conventional backdoors cause models to produce incorrect outputs on inputs with the trigger, outputs of spinned models preserve context and maintain standard accuracy metrics, yet also satisfy a meta-task chosen by the adversary. Model spinning enables propaganda-as-a-service, where propaganda is defined as biased speech. An adversary can create customized language models that produce desired spins for chosen triggers, then deploy these models to generate disinformation (a platform attack), or else inject them into ML training pipelines (a supply-chain attack), transferring malicious functionality to downstream models trained by victims. To demonstrate the feasibility of model spinning, we develop a new backdooring technique. It stacks an adversarial meta-task onto a seq2seq model, backpropagates the desired meta-task output to points in the word-embedding space we call "pseudo-words," and uses pseudo-words to shift the entire output distribution of the seq2seq model. We evaluate this attack on language generation, summarization, and translation models with different triggers and meta-tasks such as sentiment, toxicity, and entailment. Spinned models largely maintain their accuracy metrics (ROUGE and BLEU) while shifting their outputs to satisfy the adversary's meta-task. We also show that, in the case of a supply-chain attack, the spin functionality transfers to downstream models.

  • 2 authors
·
Dec 9, 2021

Versatile Backdoor Attack with Visible, Semantic, Sample-Specific, and Compatible Triggers

Deep neural networks (DNNs) can be manipulated to exhibit specific behaviors when exposed to specific trigger patterns, without affecting their performance on benign samples, dubbed backdoor attack. Currently, implementing backdoor attacks in physical scenarios still faces significant challenges. Physical attacks are labor-intensive and time-consuming, and the triggers are selected in a manual and heuristic way. Moreover, expanding digital attacks to physical scenarios faces many challenges due to their sensitivity to visual distortions and the absence of counterparts in the real world. To address these challenges, we define a novel trigger called the Visible, Semantic, Sample-Specific, and Compatible (VSSC) trigger, to achieve effective, stealthy and robust simultaneously, which can also be effectively deployed in the physical scenario using corresponding objects. To implement the VSSC trigger, we propose an automated pipeline comprising three modules: a trigger selection module that systematically identifies suitable triggers leveraging large language models, a trigger insertion module that employs generative models to seamlessly integrate triggers into images, and a quality assessment module that ensures the natural and successful insertion of triggers through vision-language models. Extensive experimental results and analysis validate the effectiveness, stealthiness, and robustness of the VSSC trigger. It can not only maintain robustness under visual distortions but also demonstrates strong practicality in the physical scenario. We hope that the proposed VSSC trigger and implementation approach could inspire future studies on designing more practical triggers in backdoor attacks.

  • 5 authors
·
Jun 1, 2023

OpenRT: An Open-Source Red Teaming Framework for Multimodal LLMs

The rapid integration of Multimodal Large Language Models (MLLMs) into critical applications is increasingly hindered by persistent safety vulnerabilities. However, existing red-teaming benchmarks are often fragmented, limited to single-turn text interactions, and lack the scalability required for systematic evaluation. To address this, we introduce OpenRT, a unified, modular, and high-throughput red-teaming framework designed for comprehensive MLLM safety evaluation. At its core, OpenRT architects a paradigm shift in automated red-teaming by introducing an adversarial kernel that enables modular separation across five critical dimensions: model integration, dataset management, attack strategies, judging methods, and evaluation metrics. By standardizing attack interfaces, it decouples adversarial logic from a high-throughput asynchronous runtime, enabling systematic scaling across diverse models. Our framework integrates 37 diverse attack methodologies, spanning white-box gradients, multi-modal perturbations, and sophisticated multi-agent evolutionary strategies. Through an extensive empirical study on 20 advanced models (including GPT-5.2, Claude 4.5, and Gemini 3 Pro), we expose critical safety gaps: even frontier models fail to generalize across attack paradigms, with leading models exhibiting average Attack Success Rates as high as 49.14%. Notably, our findings reveal that reasoning models do not inherently possess superior robustness against complex, multi-turn jailbreaks. By open-sourcing OpenRT, we provide a sustainable, extensible, and continuously maintained infrastructure that accelerates the development and standardization of AI safety.

Strategize Globally, Adapt Locally: A Multi-Turn Red Teaming Agent with Dual-Level Learning

The exploitation of large language models (LLMs) for malicious purposes poses significant security risks as these models become more powerful and widespread. While most existing red-teaming frameworks focus on single-turn attacks, real-world adversaries typically operate in multi-turn scenarios, iteratively probing for vulnerabilities and adapting their prompts based on threat model responses. In this paper, we propose \AlgName, a novel multi-turn red-teaming agent that emulates sophisticated human attackers through complementary learning dimensions: global tactic-wise learning that accumulates knowledge over time and generalizes to new attack goals, and local prompt-wise learning that refines implementations for specific goals when initial attempts fail. Unlike previous multi-turn approaches that rely on fixed strategy sets, \AlgName enables the agent to identify new jailbreak tactics, develop a goal-based tactic selection framework, and refine prompt formulations for selected tactics. Empirical evaluations on JailbreakBench demonstrate our framework's superior performance, achieving over 90\% attack success rates against GPT-3.5-Turbo and Llama-3.1-70B within 5 conversation turns, outperforming state-of-the-art baselines. These results highlight the effectiveness of dynamic learning in identifying and exploiting model vulnerabilities in realistic multi-turn scenarios.

  • 6 authors
·
Apr 1, 2025 1