new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

Bridging Language Models and Financial Analysis

The rapid advancements in Large Language Models (LLMs) have unlocked transformative possibilities in natural language processing, particularly within the financial sector. Financial data is often embedded in intricate relationships across textual content, numerical tables, and visual charts, posing challenges that traditional methods struggle to address effectively. However, the emergence of LLMs offers new pathways for processing and analyzing this multifaceted data with increased efficiency and insight. Despite the fast pace of innovation in LLM research, there remains a significant gap in their practical adoption within the finance industry, where cautious integration and long-term validation are prioritized. This disparity has led to a slower implementation of emerging LLM techniques, despite their immense potential in financial applications. As a result, many of the latest advancements in LLM technology remain underexplored or not fully utilized in this domain. This survey seeks to bridge this gap by providing a comprehensive overview of recent developments in LLM research and examining their applicability to the financial sector. Building on previous survey literature, we highlight several novel LLM methodologies, exploring their distinctive capabilities and their potential relevance to financial data analysis. By synthesizing insights from a broad range of studies, this paper aims to serve as a valuable resource for researchers and practitioners, offering direction on promising research avenues and outlining future opportunities for advancing LLM applications in finance.

  • 5 authors
·
Mar 13

Cautious Next Token Prediction

Next token prediction paradigm has been prevailing for autoregressive models in the era of LLMs. The current default sampling choice for popular LLMs is temperature scaling together with nucleus sampling to balance diversity and coherence. Nevertheless, such approach leads to inferior performance in various NLP tasks when the model is not certain about testing questions. To this end, we propose a brand new training-free decoding strategy, dubbed as Cautious Next Token Prediction (CNTP). In the decoding process, if the model has comparatively high prediction entropy at a certain step, we sample multiple trials starting from the step independently and stop when encountering any punctuation. Then we select the trial with the lowest perplexity score viewed as the most probable and reliable trial path given the model's capacity. The trial number is negatively correlated with the prediction confidence, i.e., the less confident the model is, the more trials it should sample. This is consistent with human beings' behaviour: when feeling uncertain or unconfident, one tends to think more creatively, exploring multiple thinking paths, to cautiously select the path one feels most confident about. Extensive experiments on both LLMs and MLLMs show that our proposed CNTP approach outperforms existing standard decoding strategies consistently by a clear margin. Moreover, the integration of CNTP with self consistency can further improve over vanilla self consistency. We believe our proposed CNTP has the potential to become one of the default choices for LLM decoding. Code is available at https://github.com/wyzjack/CNTP.

  • 10 authors
·
Jul 3

Hyper-RAG: Combating LLM Hallucinations using Hypergraph-Driven Retrieval-Augmented Generation

Large language models (LLMs) have transformed various sectors, including education, finance, and medicine, by enhancing content generation and decision-making processes. However, their integration into the medical field is cautious due to hallucinations, instances where generated content deviates from factual accuracy, potentially leading to adverse outcomes. To address this, we introduce Hyper-RAG, a hypergraph-driven Retrieval-Augmented Generation method that comprehensively captures both pairwise and beyond-pairwise correlations in domain-specific knowledge, thereby mitigating hallucinations. Experiments on the NeurologyCrop dataset with six prominent LLMs demonstrated that Hyper-RAG improves accuracy by an average of 12.3% over direct LLM use and outperforms Graph RAG and Light RAG by 6.3% and 6.0%, respectively. Additionally, Hyper-RAG maintained stable performance with increasing query complexity, unlike existing methods which declined. Further validation across nine diverse datasets showed a 35.5% performance improvement over Light RAG using a selection-based assessment. The lightweight variant, Hyper-RAG-Lite, achieved twice the retrieval speed and a 3.3% performance boost compared with Light RAG. These results confirm Hyper-RAG's effectiveness in enhancing LLM reliability and reducing hallucinations, making it a robust solution for high-stakes applications like medical diagnostics.

  • 8 authors
·
Mar 30 1