Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLeveraging Large Language Models for Bengali Math Word Problem Solving with Chain of Thought Reasoning
Solving Bengali Math Word Problems (MWPs) remains a major challenge in natural language processing (NLP) due to the language's low-resource status and the multi-step reasoning required. Existing models struggle with complex Bengali MWPs, largely because no human-annotated Bengali dataset has previously addressed this task. This gap has limited progress in Bengali mathematical reasoning. To address this, we created SOMADHAN, a dataset of 8792 complex Bengali MWPs with manually written, step-by-step solutions. We designed this dataset to support reasoning-focused evaluation and model development in a linguistically underrepresented context. Using SOMADHAN, we evaluated a range of large language models (LLMs) - including GPT-4o, GPT-3.5 Turbo, LLaMA series models, Deepseek, and Qwen - through both zero-shot and few-shot prompting with and without Chain of Thought (CoT) reasoning. CoT prompting consistently improved performance over standard prompting, especially in tasks requiring multi-step logic. LLaMA-3.3 70B achieved the highest accuracy of 88% with few-shot CoT prompting. We also applied Low-Rank Adaptation (LoRA) to fine-tune models efficiently, enabling them to adapt to Bengali MWPs with minimal computational cost. Our work fills a critical gap in Bengali NLP by providing a high-quality reasoning dataset and a scalable framework for solving complex MWPs. We aim to advance equitable research in low-resource languages and enhance reasoning capabilities in educational and language technologies.
Automating Turkish Educational Quiz Generation Using Large Language Models
Crafting quizzes from educational content is a pivotal activity that benefits both teachers and students by reinforcing learning and evaluating understanding. In this study, we introduce a novel approach to generate quizzes from Turkish educational texts, marking a pioneering endeavor in educational technology specifically tailored to the Turkish educational context. We present a specialized dataset, named the Turkish-Quiz-Instruct, comprising an extensive collection of Turkish educational texts accompanied by multiple-choice and short-answer quizzes. This research leverages the capabilities of Large Language Models (LLMs), including GPT-4-Turbo, GPT-3.5-Turbo, Llama-2-7b-chat-hf, and Llama-2-13b-chat-hf, to automatically generate quiz questions and answers from the Turkish educational content. Our work delineates the methodology for employing these LLMs in the context of Turkish educational material, thereby opening new avenues for automated Turkish quiz generation. The study not only demonstrates the efficacy of using such models for generating coherent and relevant quiz content but also sets a precedent for future research in the domain of automated educational content creation for languages other than English. The Turkish-Quiz-Instruct dataset is introduced as a valuable resource for researchers and practitioners aiming to explore the boundaries of educational technology and language-specific applications of LLMs in Turkish. By addressing the challenges of quiz generation in a non-English context specifically Turkish, this study contributes significantly to the field of Turkish educational technology, providing insights into the potential of leveraging LLMs for educational purposes across diverse linguistic landscapes.
MEENA (PersianMMMU): Multimodal-Multilingual Educational Exams for N-level Assessment
Recent advancements in large vision-language models (VLMs) have primarily focused on English, with limited attention given to other languages. To address this gap, we introduce MEENA (also known as PersianMMMU), the first dataset designed to evaluate Persian VLMs across scientific, reasoning, and human-level understanding tasks. Our dataset comprises approximately 7,500 Persian and 3,000 English questions, covering a wide range of topics such as reasoning, mathematics, physics, diagrams, charts, and Persian art and literature. Key features of MEENA include: (1) diverse subject coverage spanning various educational levels, from primary to upper secondary school, (2) rich metadata, including difficulty levels and descriptive answers, (3) original Persian data that preserves cultural nuances, (4) a bilingual structure to assess cross-linguistic performance, and (5) a series of diverse experiments assessing various capabilities, including overall performance, the model's ability to attend to images, and its tendency to generate hallucinations. We hope this benchmark contributes to enhancing VLM capabilities beyond English.
The AI Assessment Scale Revisited: A Framework for Educational Assessment
Recent developments in Generative Artificial Intelligence (GenAI) have created significant uncertainty in education, particularly in terms of assessment practices. Against this backdrop, we present an updated version of the AI Assessment Scale (AIAS), a framework with two fundamental purposes: to facilitate open dialogue between educators and students about appropriate GenAI use and to support educators in redesigning assessments in an era of expanding AI capabilities. Grounded in social constructivist principles and designed with assessment validity in mind, the AIAS provides a structured yet flexible approach that can be adapted across different educational contexts. Building on implementation feedback from global adoption across both the K-12 and higher education contexts, this revision represents a significant change from the original AIAS. Among these changes is a new visual guide that moves beyond the original traffic light system and utilises a neutral colour palette that avoids implied hierarchies between the levels. The scale maintains five distinct levels of GenAI integration in assessment, from "No AI" to "AI Exploration", but has been refined to better reflect rapidly advancing technological capabilities and emerging pedagogical needs. This paper presents the theoretical foundations of the revised framework, provides detailed implementation guidance through practical vignettes, and discusses its limitations and future directions. As GenAI capabilities continue to expand, particularly in multimodal content generation, the AIAS offers a starting point for reimagining assessment design in an era of disruptive technologies.
Improving Bilingual Capabilities of Language Models to Support Diverse Linguistic Practices in Education
Large language models (LLMs) offer promise in generating educational content, providing instructor feedback, and reducing teacher workload on assessments. While prior studies have focused on studying LLM-powered learning analytics, limited research has examined how effective LLMs are in a bilingual context. In this paper, we study the effectiveness of multilingual large language models (MLLMs) across monolingual (English-only, Spanish-only) and bilingual (Spanglish) student writing. We present a learning analytics use case that details LLM performance in assessing acceptable and unacceptable explanations of Science and Social Science concepts. Our findings reveal a significant bias in the grading performance of pre-trained models for bilingual writing compared to English-only and Spanish-only writing. Following this, we fine-tune open-source MLLMs including Llama 3.1 and Mistral NeMo using synthetic datasets generated in English, Spanish, and Spanglish. Our experiments indicate that the models perform significantly better for all three languages after fine-tuning with bilingual data. This study highlights the potential of enhancing MLLM effectiveness to support authentic language practices amongst bilingual learners. It also aims to illustrate the value of incorporating non-English languages into the design and implementation of language models in education.
VisScience: An Extensive Benchmark for Evaluating K12 Educational Multi-modal Scientific Reasoning
Multi-modal large language models (MLLMs) have demonstrated promising capabilities across various tasks by integrating textual and visual information to achieve visual understanding in complex scenarios. Despite the availability of several benchmarks aims to evaluating MLLMs in tasks from visual question answering to complex problem-solving, most focus predominantly on mathematics or general visual understanding tasks. This reveals a critical gap in current benchmarks, which often overlook the inclusion of other key scientific disciplines such as physics and chemistry. To address this gap, we meticulously construct a comprehensive benchmark, named VisScience, which is utilized to assess the multi-modal scientific reasoning across the three disciplines of mathematics, physics, and chemistry. This benchmark comprises 3,000 questions drawn from K12 education - spanning elementary school through high school - equally distributed across three disciplines, with 1,000 questions per discipline. The questions within VisScience span 21 distinct subjects and are categorized into five difficulty levels, offering a broad spectrum of topics within each discipline. With VisScience, we present a detailed evaluation of the performance of 25 representative MLLMs in scientific reasoning. Experimental results demonstrate that closed-source MLLMs generally outperform open-source models. The best performance observed include a 53.4\% accuracy in mathematics by Claude3.5-Sonnet, 38.2\% in physics by GPT-4o, and 47.0\% in chemistry by Gemini-1.5-Pro. These results underscore the strengths and limitations of MLLMs, suggesting areas for future improvement and highlighting the importance of developing models that can effectively handle the diverse demands of multi-modal scientific reasoning.
A Turkish Educational Crossword Puzzle Generator
This paper introduces the first Turkish crossword puzzle generator designed to leverage the capabilities of large language models (LLMs) for educational purposes. In this work, we introduced two specially created datasets: one with over 180,000 unique answer-clue pairs for generating relevant clues from the given answer, and another with over 35,000 samples containing text, answer, category, and clue data, aimed at producing clues for specific texts and keywords within certain categories. Beyond entertainment, this generator emerges as an interactive educational tool that enhances memory, vocabulary, and problem-solving skills. It's a notable step in AI-enhanced education, merging game-like engagement with learning for Turkish and setting new standards for interactive, intelligent learning tools in Turkish.
Exploring the Cognitive Knowledge Structure of Large Language Models: An Educational Diagnostic Assessment Approach
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence. Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains. However, cognitive research on the overall knowledge structure of LLMs is still lacking. In this paper, based on educational diagnostic assessment method, we conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom Taxonomy. We aim to reveal the knowledge structures of LLMs and gain insights of their cognitive capabilities. This research emphasizes the significance of investigating LLMs' knowledge and understanding the disparate cognitive patterns of LLMs. By shedding light on models' knowledge, researchers can advance development and utilization of LLMs in a more informed and effective manner.
EssayJudge: A Multi-Granular Benchmark for Assessing Automated Essay Scoring Capabilities of Multimodal Large Language Models
Automated Essay Scoring (AES) plays a crucial role in educational assessment by providing scalable and consistent evaluations of writing tasks. However, traditional AES systems face three major challenges: (1) reliance on handcrafted features that limit generalizability, (2) difficulty in capturing fine-grained traits like coherence and argumentation, and (3) inability to handle multimodal contexts. In the era of Multimodal Large Language Models (MLLMs), we propose EssayJudge, the first multimodal benchmark to evaluate AES capabilities across lexical-, sentence-, and discourse-level traits. By leveraging MLLMs' strengths in trait-specific scoring and multimodal context understanding, EssayJudge aims to offer precise, context-rich evaluations without manual feature engineering, addressing longstanding AES limitations. Our experiments with 18 representative MLLMs reveal gaps in AES performance compared to human evaluation, particularly in discourse-level traits, highlighting the need for further advancements in MLLM-based AES research.
ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios
The emergence of Large Language Models (LLMs) presents transformative opportunities for education, generating numerous novel application scenarios. However, significant challenges remain: evaluation metrics vary substantially across different educational scenarios, while many emerging scenarios lack appropriate assessment metrics. Current benchmarks predominantly measure general intelligence rather than pedagogical capabilities. To address this gap, we introduce ELMES, an open-source automated evaluation framework specifically designed for assessing LLMs in educational settings. ELMES features a modular architecture that enables researchers to create dynamic, multi-agent dialogues through simple configuration files, facilitating flexible scenario design without requiring extensive programming expertise. The framework incorporates a hybrid evaluation engine that objectively quantifies traditionally subjective pedagogical metrics using an LLM-as-a-Judge methodology. We conduct systematic benchmarking of state-of-the-art LLMs across four critical educational scenarios: Knowledge Point Explanation, Guided Problem-Solving Teaching, Interdisciplinary Lesson Plan Generation, and Contextualized Question Generation, employing fine-grained metrics developed in collaboration with education specialists. Our results demonstrate distinct capability distributions among models, revealing context-specific strengths and limitations. ELMES provides educators and researchers with an accessible evaluation framework that significantly reduces adaptation barriers for diverse educational applications while advancing the practical implementation of LLMs in pedagogy. The framework is publicly available at https://github.com/sii-research/elmes.git.
Multimodal Lecture Presentations Dataset: Understanding Multimodality in Educational Slides
Lecture slide presentations, a sequence of pages that contain text and figures accompanied by speech, are constructed and presented carefully in order to optimally transfer knowledge to students. Previous studies in multimedia and psychology attribute the effectiveness of lecture presentations to their multimodal nature. As a step toward developing AI to aid in student learning as intelligent teacher assistants, we introduce the Multimodal Lecture Presentations dataset as a large-scale benchmark testing the capabilities of machine learning models in multimodal understanding of educational content. Our dataset contains aligned slides and spoken language, for 180+ hours of video and 9000+ slides, with 10 lecturers from various subjects (e.g., computer science, dentistry, biology). We introduce two research tasks which are designed as stepping stones towards AI agents that can explain (automatically captioning a lecture presentation) and illustrate (synthesizing visual figures to accompany spoken explanations) educational content. We provide manual annotations to help implement these two research tasks and evaluate state-of-the-art models on them. Comparing baselines and human student performances, we find that current models struggle in (1) weak crossmodal alignment between slides and spoken text, (2) learning novel visual mediums, (3) technical language, and (4) long-range sequences. Towards addressing this issue, we also introduce PolyViLT, a multimodal transformer trained with a multi-instance learning loss that is more effective than current approaches. We conclude by shedding light on the challenges and opportunities in multimodal understanding of educational presentations.
OCCULT: Evaluating Large Language Models for Offensive Cyber Operation Capabilities
The prospect of artificial intelligence (AI) competing in the adversarial landscape of cyber security has long been considered one of the most impactful, challenging, and potentially dangerous applications of AI. Here, we demonstrate a new approach to assessing AI's progress towards enabling and scaling real-world offensive cyber operations (OCO) tactics in use by modern threat actors. We detail OCCULT, a lightweight operational evaluation framework that allows cyber security experts to contribute to rigorous and repeatable measurement of the plausible cyber security risks associated with any given large language model (LLM) or AI employed for OCO. We also prototype and evaluate three very different OCO benchmarks for LLMs that demonstrate our approach and serve as examples for building benchmarks under the OCCULT framework. Finally, we provide preliminary evaluation results to demonstrate how this framework allows us to move beyond traditional all-or-nothing tests, such as those crafted from educational exercises like capture-the-flag environments, to contextualize our indicators and warnings in true cyber threat scenarios that present risks to modern infrastructure. We find that there has been significant recent advancement in the risks of AI being used to scale realistic cyber threats. For the first time, we find a model (DeepSeek-R1) is capable of correctly answering over 90% of challenging offensive cyber knowledge tests in our Threat Actor Competency Test for LLMs (TACTL) multiple-choice benchmarks. We also show how Meta's Llama and Mistral's Mixtral model families show marked performance improvements over earlier models against our benchmarks where LLMs act as offensive agents in MITRE's high-fidelity offensive and defensive cyber operations simulation environment, CyberLayer.
MDK12-Bench: A Multi-Discipline Benchmark for Evaluating Reasoning in Multimodal Large Language Models
Multimodal reasoning, which integrates language and visual cues into problem solving and decision making, is a fundamental aspect of human intelligence and a crucial step toward artificial general intelligence. However, the evaluation of multimodal reasoning capabilities in Multimodal Large Language Models (MLLMs) remains inadequate. Most existing reasoning benchmarks are constrained by limited data size, narrow domain coverage, and unstructured knowledge distribution. To close these gaps, we introduce MDK12-Bench, a multi-disciplinary benchmark assessing the reasoning capabilities of MLLMs via real-world K-12 examinations. Spanning six disciplines (math, physics, chemistry, biology, geography, and information science), our benchmark comprises 140K reasoning instances across diverse difficulty levels from primary school to 12th grade. It features 6,827 instance-level knowledge point annotations based on a well-organized knowledge structure, detailed answer explanations, difficulty labels and cross-year partitions, providing a robust platform for comprehensive evaluation. Additionally, we present a novel dynamic evaluation framework to mitigate data contamination issues by bootstrapping question forms, question types, and image styles during evaluation. Extensive experiment on MDK12-Bench reveals the significant limitation of current MLLMs in multimodal reasoning. The findings on our benchmark provide insights into the development of the next-generation models. Our data and codes are available at https://github.com/LanceZPF/MDK12.
StuGPTViz: A Visual Analytics Approach to Understand Student-ChatGPT Interactions
The integration of Large Language Models (LLMs), especially ChatGPT, into education is poised to revolutionize students' learning experiences by introducing innovative conversational learning methodologies. To empower students to fully leverage the capabilities of ChatGPT in educational scenarios, understanding students' interaction patterns with ChatGPT is crucial for instructors. However, this endeavor is challenging due to the absence of datasets focused on student-ChatGPT conversations and the complexities in identifying and analyzing the evolutional interaction patterns within conversations. To address these challenges, we collected conversational data from 48 students interacting with ChatGPT in a master's level data visualization course over one semester. We then developed a coding scheme, grounded in the literature on cognitive levels and thematic analysis, to categorize students' interaction patterns with ChatGPT. Furthermore, we present a visual analytics system, StuGPTViz, that tracks and compares temporal patterns in student prompts and the quality of ChatGPT's responses at multiple scales, revealing significant pedagogical insights for instructors. We validated the system's effectiveness through expert interviews with six data visualization instructors and three case studies. The results confirmed StuGPTViz's capacity to enhance educators' insights into the pedagogical value of ChatGPT. We also discussed the potential research opportunities of applying visual analytics in education and developing AI-driven personalized learning solutions.
Empowering Smaller Models: Tuning LLaMA and Gemma with Chain-of-Thought for Ukrainian Exam Tasks
Leading large language models have demonstrated impressive capabilities in reasoning-intensive tasks, such as standardized educational testing. However, they often require extensive training in low-resource settings with inaccessible infrastructure. Small or compact models, though more efficient, frequently lack sufficient support for underrepresented languages, leaving a performance gap in critical domains. This work explores the potential of parameter-efficient fine-tuning of compact open-weight language models to handle reasoning-intensive tasks in the underrepresented Ukrainian language, building on the findings of the ZNO-Eval benchmark. Parameter-efficient fine-tuning of LLaMA 3.1 (8 billion parameters), LLaMA 3.2 (3 billion parameters), and Gemma 2 (9 billion parameters) models on chain-of-thought solutions resulted in a modest test score improvement of up to 17.4% on complex matching tasks and 1.6% overall compared to tuning on answer letters alone, offering enhanced interpretability and robustness. In addition, the proposed tuning method with joint task topic and step-by-step solution generation outperforms standard chain-of-thought tuning in matching tasks and provides a 5.4% gain over the best LLaMA 3.2 model due to guiding the model to recall and apply domain-relevant information. Contrasting obtained results with zero-shot evaluations of leading open-weight and proprietary models such as Qwen, DeepSeek R1, OpenAI o1 and o3, Gemini, and Claude, highlight that fine-tuning LLaMA and Gemma models with 2,032 step-by-step solutions and 20 to 50 million trainable parameters on a single A100 GPU lets them outperform GPT-4o mini, Mistral Large, and larger open-weight models. This research also evaluates how merging the quantized adapter with the base model influences the generation quality. Source code and tuned models are available at https://github.com/NLPForUA/ZNO.
ViExam: Are Vision Language Models Better than Humans on Vietnamese Multimodal Exam Questions?
Vision language models (VLMs) demonstrate remarkable capabilities on English multimodal tasks, but their performance on low-resource languages with genuinely multimodal educational content remains largely unexplored. In this work, we test how VLMs perform on Vietnamese educational assessments, investigating whether VLMs trained predominantly on English data can handle real-world cross-lingual multimodal reasoning. Our work presents the first comprehensive evaluation of VLM capabilities on multimodal Vietnamese exams through proposing ViExam, a benchmark containing 2,548 multimodal questions. We find that state-of-the-art VLMs achieve only 57.74% while open-source models achieve 27.70% mean accuracy across 7 academic domains, including Mathematics, Physics, Chemistry, Biology, Geography, Driving Test, and IQ Test. Most VLMs underperform average human test-takers (66.54%), with only the thinking VLM o3 (74.07%) exceeding human average performance, yet still falling substantially short of human best performance (99.60%). Cross-lingual prompting with English instructions while maintaining Vietnamese content fails to improve performance, decreasing accuracy by 1 percentage point for SOTA VLMs. Human-in-the-loop collaboration can partially improve VLM performance by 5 percentage points. Code and data are available at: https://vi-exam.github.io.
Explain with Visual Keypoints Like a Real Mentor! A Benchmark for Multimodal Solution Explanation
With the rapid advancement of mathematical reasoning capabilities in Large Language Models (LLMs), AI systems are increasingly being adopted in educational settings to support students' comprehension of problem-solving processes. However, a critical component remains underexplored in current LLM-generated explanations: visual explanation. In real-world instructional contexts, human tutors routinely employ visual aids - such as diagrams, markings, and highlights - to enhance conceptual clarity. To bridge this gap, we introduce a novel task of visual solution explanation, which requires generating explanations that incorporate newly introduced visual elements essential for understanding (e.g., auxiliary lines, annotations, or geometric constructions). To evaluate model performance on this task, we propose MathExplain, a multimodal benchmark consisting of 997 math problems annotated with visual keypoints and corresponding explanatory text that references those elements. Our empirical results show that while some closed-source models demonstrate promising capabilities on visual solution-explaining, current open-source general-purpose models perform inconsistently, particularly in identifying relevant visual components and producing coherent keypoint-based explanations. We expect that visual solution-explaining and the MathExplain dataset will catalyze further research on multimodal LLMs in education and advance their deployment as effective, explanation-oriented AI tutors. Code and data will be released publicly.
Large Language Models (GPT) Struggle to Answer Multiple-Choice Questions about Code
We analyzed effectiveness of three generative pre-trained transformer (GPT) models in answering multiple-choice question (MCQ) assessments, often involving short snippets of code, from introductory and intermediate programming courses at the postsecondary level. This emerging technology stirs countless discussions of its potential uses (e.g., exercise generation, code explanation) as well as misuses in programming education (e.g., cheating). However, the capabilities of GPT models and their limitations to reason about and/or analyze code in educational settings have been under-explored. We evaluated several OpenAI's GPT models on formative and summative MCQ assessments from three Python courses (530 questions). We found that MCQs containing code snippets are not answered as successfully as those that only contain natural language. While questions requiring to fill-in a blank in the code or completing a natural language statement about the snippet are handled rather successfully, MCQs that require analysis and/or reasoning about the code (e.g., what is true/false about the snippet, or what is its output) appear to be the most challenging. These findings can be leveraged by educators to adapt their instructional practices and assessments in programming courses, so that GPT becomes a valuable assistant for a learner as opposed to a source of confusion and/or potential hindrance in the learning process.
BgGPT 1.0: Extending English-centric LLMs to other languages
We present BgGPT-Gemma-2-27B-Instruct and BgGPT-Gemma-2-9B-Instruct: continually pretrained and fine-tuned versions of Google's Gemma-2 models, specifically optimized for Bulgarian language understanding and generation. Leveraging Gemma-2's multilingual capabilities and over 100 billion tokens of Bulgarian and English text data, our models demonstrate strong performance in Bulgarian language tasks, setting a new standard for language-specific AI models. Our approach maintains the robust capabilities of the original Gemma-2 models, ensuring that the English language performance remains intact. To preserve the base model capabilities, we incorporate continual learning strategies based on recent Branch-and-Merge techniques as well as thorough curation and selection of training data. We provide detailed insights into our methodology, including the release of model weights with a commercial-friendly license, enabling broader adoption by researchers, companies, and hobbyists. Further, we establish a comprehensive set of benchmarks based on non-public educational data sources to evaluate models on Bulgarian language tasks as well as safety and chat capabilities. Our findings demonstrate the effectiveness of fine-tuning state-of-the-art models like Gemma 2 to enhance language-specific AI applications while maintaining cross-lingual capabilities.
