new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 31

ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation

Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.

  • 10 authors
·
Jun 27

LibriVAD: A Scalable Open Dataset with Deep Learning Benchmarks for Voice Activity Detection

Robust Voice Activity Detection (VAD) remains a challenging task, especially under noisy, diverse, and unseen acoustic conditions. Beyond algorithmic development, a key limitation in advancing VAD research is the lack of large-scale, systematically controlled, and publicly available datasets. To address this, we introduce LibriVAD - a scalable open-source dataset derived from LibriSpeech and augmented with diverse real-world and synthetic noise sources. LibriVAD enables systematic control over speech-to-noise ratio, silence-to-speech ratio (SSR), and noise diversity, and is released in three sizes (15 GB, 150 GB, and 1.5 TB) with two variants (LibriVAD-NonConcat and LibriVAD-Concat) to support different experimental setups. We benchmark multiple feature-model combinations, including waveform, Mel-Frequency Cepstral Coefficients (MFCC), and Gammatone filter bank cepstral coefficients, and introduce the Vision Transformer (ViT) architecture for VAD. Our experiments show that ViT with MFCC features consistently outperforms established VAD models such as boosted deep neural network and convolutional long short-term memory deep neural network across seen, unseen, and out-of-distribution (OOD) conditions, including evaluation on the real-world VOiCES dataset. We further analyze the impact of dataset size and SSR on model generalization, experimentally showing that scaling up dataset size and balancing SSR noticeably and consistently enhance VAD performance under OOD conditions. All datasets, trained models, and code are publicly released to foster reproducibility and accelerate progress in VAD research.

  • 5 authors
·
Dec 19