new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 15

FinSage: A Multi-aspect RAG System for Financial Filings Question Answering

Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.

  • 16 authors
·
Apr 20

Approaching Emergent Risks: An Exploratory Study into Artificial Intelligence Risk Management within Financial Organisations

Globally, artificial intelligence (AI) implementation is growing, holding the capability to fundamentally alter organisational processes and decision making. Simultaneously, this brings a multitude of emergent risks to organisations, exposing vulnerabilities in their extant risk management frameworks. This necessitates a greater understanding of how organisations can position themselves in response. This issue is particularly pertinent within the financial sector with relatively mature AI applications matched with severe societal repercussions of potential risk events. Despite this, academic risk management literature is trailing behind the speed of AI implementation. Adopting a management perspective, this study aims to contribute to the understanding of AI risk management in organisations through an exploratory empirical investigation into these practices. In-depth insights are gained through interviews with nine practitioners from different organisations within the UK financial sector. Through examining areas of organisational convergence and divergence, the findings of this study unearth levels of risk management framework readiness and prevailing approaches to risk management at both a processual and organisational level. Whilst enhancing the developing literature concerning AI risk management within organisations, the study simultaneously offers a practical contribution, providing key areas of guidance for practitioners in the operational development of AI risk management frameworks.

  • 1 authors
·
Apr 8, 2024

Bridging Language Models and Financial Analysis

The rapid advancements in Large Language Models (LLMs) have unlocked transformative possibilities in natural language processing, particularly within the financial sector. Financial data is often embedded in intricate relationships across textual content, numerical tables, and visual charts, posing challenges that traditional methods struggle to address effectively. However, the emergence of LLMs offers new pathways for processing and analyzing this multifaceted data with increased efficiency and insight. Despite the fast pace of innovation in LLM research, there remains a significant gap in their practical adoption within the finance industry, where cautious integration and long-term validation are prioritized. This disparity has led to a slower implementation of emerging LLM techniques, despite their immense potential in financial applications. As a result, many of the latest advancements in LLM technology remain underexplored or not fully utilized in this domain. This survey seeks to bridge this gap by providing a comprehensive overview of recent developments in LLM research and examining their applicability to the financial sector. Building on previous survey literature, we highlight several novel LLM methodologies, exploring their distinctive capabilities and their potential relevance to financial data analysis. By synthesizing insights from a broad range of studies, this paper aims to serve as a valuable resource for researchers and practitioners, offering direction on promising research avenues and outlining future opportunities for advancing LLM applications in finance.

  • 5 authors
·
Mar 13

Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models

As large language models become increasingly prevalent in the financial sector, there is a pressing need for a standardized method to comprehensively assess their performance. However, existing finance benchmarks often suffer from limited language and task coverage, as well as challenges such as low-quality datasets and inadequate adaptability for LLM evaluation. To address these limitations, we propose "Golden Touchstone", the first comprehensive bilingual benchmark for financial LLMs, which incorporates representative datasets from both Chinese and English across eight core financial NLP tasks. Developed from extensive open source data collection and industry-specific demands, this benchmark includes a variety of financial tasks aimed at thoroughly assessing models' language understanding and generation capabilities. Through comparative analysis of major models on the benchmark, such as GPT-4o Llama3, FinGPT and FinMA, we reveal their strengths and limitations in processing complex financial information. Additionally, we open-sourced Touchstone-GPT, a financial LLM trained through continual pre-training and financial instruction tuning, which demonstrates strong performance on the bilingual benchmark but still has limitations in specific tasks.This research not only provides the financial large language models with a practical evaluation tool but also guides the development and optimization of future research. The source code for Golden Touchstone and model weight of Touchstone-GPT have been made publicly available at https://github.com/IDEA-FinAI/Golden-Touchstone, contributing to the ongoing evolution of FinLLMs and fostering further research in this critical area.

  • 13 authors
·
Nov 9, 2024 2

A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges

Recent advances in large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain. These models have demonstrated remarkable capabilities in understanding context, processing vast amounts of data, and generating human-preferred contents. In this survey, we explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation. We provide a discussion of the progress and advantages of LLMs in financial contexts, analyzing their advanced technologies as well as prospective capabilities in contextual understanding, transfer learning flexibility, complex emotion detection, etc. We then highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications. For each application area, we delve into specific methodologies, such as textual analysis, knowledge-based analysis, forecasting, data augmentation, planning, decision support, and simulations. Furthermore, a comprehensive collection of datasets, model assets, and useful codes associated with mainstream applications are presented as resources for the researchers and practitioners. Finally, we outline the challenges and opportunities for future research, particularly emphasizing a number of distinctive aspects in this field. We hope our work can help facilitate the adoption and further development of LLMs in the financial sector.

  • 7 authors
·
Jun 15, 2024

VeritasFi: An Adaptable, Multi-tiered RAG Framework for Multi-modal Financial Question Answering

Retrieval-Augmented Generation (RAG) is becoming increasingly essential for Question Answering (QA) in the financial sector, where accurate and contextually grounded insights from complex public disclosures are crucial. However, existing financial RAG systems face two significant challenges: (1) they struggle to process heterogeneous data formats, such as text, tables, and figures; and (2) they encounter difficulties in balancing general-domain applicability with company-specific adaptation. To overcome these challenges, we present VeritasFi, an innovative hybrid RAG framework that incorporates a multi-modal preprocessing pipeline alongside a cutting-edge two-stage training strategy for its re-ranking component. VeritasFi enhances financial QA through three key innovations: (1) A multi-modal preprocessing pipeline that seamlessly transforms heterogeneous data into a coherent, machine-readable format. (2) A tripartite hybrid retrieval engine that operates in parallel, combining deep multi-path retrieval over a semantically indexed document corpus, real-time data acquisition through tool utilization, and an expert-curated memory bank for high-frequency questions, ensuring comprehensive scope, accuracy, and efficiency. (3) A two-stage training strategy for the document re-ranker, which initially constructs a general, domain-specific model using anonymized data, followed by rapid fine-tuning on company-specific data for targeted applications. By integrating our proposed designs, VeritasFi presents a groundbreaking framework that greatly enhances the adaptability and robustness of financial RAG systems, providing a scalable solution for both general-domain and company-specific QA tasks. Code accompanying this work is available at https://github.com/simplew4y/VeritasFi.git.

  • 27 authors
·
Oct 12

FinGAIA: A Chinese Benchmark for AI Agents in Real-World Financial Domain

The booming development of AI agents presents unprecedented opportunities for automating complex tasks across various domains. However, their multi-step, multi-tool collaboration capabilities in the financial sector remain underexplored. This paper introduces FinGAIA, an end-to-end benchmark designed to evaluate the practical abilities of AI agents in the financial domain. FinGAIA comprises 407 meticulously crafted tasks, spanning seven major financial sub-domains: securities, funds, banking, insurance, futures, trusts, and asset management. These tasks are organized into three hierarchical levels of scenario depth: basic business analysis, asset decision support, and strategic risk management. We evaluated 10 mainstream AI agents in a zero-shot setting. The best-performing agent, ChatGPT, achieved an overall accuracy of 48.9\%, which, while superior to non-professionals, still lags financial experts by over 35 percentage points. Error analysis has revealed five recurring failure patterns: Cross-modal Alignment Deficiency, Financial Terminological Bias, Operational Process Awareness Barrier, among others. These patterns point to crucial directions for future research. Our work provides the first agent benchmark closely related to the financial domain, aiming to objectively assess and promote the development of agents in this crucial field. Partial data is available at https://github.com/SUFE-AIFLM-Lab/FinGAIA.

  • 21 authors
·
Jul 23

FinGPT: Instruction Tuning Benchmark for Open-Source Large Language Models in Financial Datasets

In the swiftly expanding domain of Natural Language Processing (NLP), the potential of GPT-based models for the financial sector is increasingly evident. However, the integration of these models with financial datasets presents challenges, notably in determining their adeptness and relevance. This paper introduces a distinctive approach anchored in the Instruction Tuning paradigm for open-source large language models, specifically adapted for financial contexts. Through this methodology, we capitalize on the interoperability of open-source models, ensuring a seamless and transparent integration. We begin by explaining the Instruction Tuning paradigm, highlighting its effectiveness for immediate integration. The paper presents a benchmarking scheme designed for end-to-end training and testing, employing a cost-effective progression. Firstly, we assess basic competencies and fundamental tasks, such as Named Entity Recognition (NER) and sentiment analysis to enhance specialization. Next, we delve into a comprehensive model, executing multi-task operations by amalgamating all instructional tunings to examine versatility. Finally, we explore the zero-shot capabilities by earmarking unseen tasks and incorporating novel datasets to understand adaptability in uncharted terrains. Such a paradigm fortifies the principles of openness and reproducibility, laying a robust foundation for future investigations in open-source financial large language models (FinLLMs).

  • 3 authors
·
Oct 7, 2023

Empirical study of Machine Learning Classifier Evaluation Metrics behavior in Massively Imbalanced and Noisy data

With growing credit card transaction volumes, the fraud percentages are also rising, including overhead costs for institutions to combat and compensate victims. The use of machine learning into the financial sector permits more effective protection against fraud and other economic crime. Suitably trained machine learning classifiers help proactive fraud detection, improving stakeholder trust and robustness against illicit transactions. However, the design of machine learning based fraud detection algorithms has been challenging and slow due the massively unbalanced nature of fraud data and the challenges of identifying the frauds accurately and completely to create a gold standard ground truth. Furthermore, there are no benchmarks or standard classifier evaluation metrics to measure and identify better performing classifiers, thus keeping researchers in the dark. In this work, we develop a theoretical foundation to model human annotation errors and extreme imbalance typical in real world fraud detection data sets. By conducting empirical experiments on a hypothetical classifier, with a synthetic data distribution approximated to a popular real world credit card fraud data set, we simulate human annotation errors and extreme imbalance to observe the behavior of popular machine learning classifier evaluation matrices. We demonstrate that a combined F1 score and g-mean, in that specific order, is the best evaluation metric for typical imbalanced fraud detection model classification.

  • 2 authors
·
Aug 25, 2022

Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks

As the Chinese stock market continues to evolve and its market structure grows increasingly complex, traditional quantitative trading methods are facing escalating challenges. Particularly, due to policy uncertainty and the frequent market fluctuations triggered by sudden economic events, existing models often struggle to accurately predict market dynamics. To address these challenges, this paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network, aimed at enhancing responsiveness and predictive accuracy regarding market instabilities. Through discrete wavelet transform, Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and short-term fluctuations, including abrupt events. Moreover, the model incorporates a Dual-Frequency Spatiotemporal Encoder and graph embedding techniques to effectively capture complex temporal and spatial relationships among stocks. Employing a multitask learning strategy, it simultaneously predicts stock returns and directional trends. Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets. In strategy backtesting, Stockformer consistently demonstrates exceptional stability and reliability across market conditions-whether rising, falling, or fluctuating-particularly maintaining high performance during downturns or volatile periods, indicating a high adaptability to market fluctuations. To foster innovation and collaboration in the financial analysis sector, the Stockformer model's code has been open-sourced and is available on the GitHub repository: https://github.com/Eric991005/Multitask-Stockformer.

  • 4 authors
·
Nov 22, 2023

FinReflectKG -- MultiHop: Financial QA Benchmark for Reasoning with Knowledge Graph Evidence

Multi-hop reasoning over financial disclosures is often a retrieval problem before it becomes a reasoning or generation problem: relevant facts are dispersed across sections, filings, companies, and years, and LLMs often expend excessive tokens navigating noisy context. Without precise Knowledge Graph (KG)-guided selection of relevant context, even strong reasoning models either fail to answer or consume excessive tokens, whereas KG-linked evidence enables models to focus their reasoning on composing already retrieved facts. We present FinReflectKG - MultiHop, a benchmark built on FinReflectKG, a temporally indexed financial KG that links audited triples to source chunks from S&P 100 filings (2022-2024). Mining frequent 2-3 hop subgraph patterns across sectors (via GICS taxonomy), we generate financial analyst style questions with exact supporting evidence from the KG. A two-phase pipeline first creates QA pairs via pattern-specific prompts, followed by a multi-criteria quality control evaluation to ensure QA validity. We then evaluate three controlled retrieval scenarios: (S1) precise KG-linked paths; (S2) text-only page windows centered on relevant text spans; and (S3) relevant page windows with randomizations and distractors. Across both reasoning and non-reasoning models, KG-guided precise retrieval yields substantial gains on the FinReflectKG - MultiHop QA benchmark dataset, boosting correctness scores by approximately 24 percent while reducing token utilization by approximately 84.5 percent compared to the page window setting, which reflects the traditional vector retrieval paradigm. Spanning intra-document, inter-year, and cross-company scopes, our work underscores the pivotal role of knowledge graphs in efficiently connecting evidence for multi-hop financial QA. We also release a curated subset of the benchmark (555 QA Pairs) to catalyze further research.

  • 4 authors
·
Oct 3

Transformer Encoder and Multi-features Time2Vec for Financial Prediction

Financial prediction is a complex and challenging task of time series analysis and signal processing, expected to model both short-term fluctuations and long-term temporal dependencies. Transformers have remarkable success mostly in natural language processing using attention mechanism, which also influenced the time series community. The ability to capture both short and long-range dependencies helps to understand the financial market and to recognize price patterns, leading to successful applications of Transformers in stock prediction. Although, the previous research predominantly focuses on individual features and singular predictions, that limits the model's ability to understand broader market trends. In reality, within sectors such as finance and technology, companies belonging to the same industry often exhibit correlated stock price movements. In this paper, we develop a novel neural network architecture by integrating Time2Vec with the Encoder of the Transformer model. Based on the study of different markets, we propose a novel correlation feature selection method. Through a comprehensive fine-tuning of multiple hyperparameters, we conduct a comparative analysis of our results against benchmark models. We conclude that our method outperforms other state-of-the-art encoding methods such as positional encoding, and we also conclude that selecting correlation features enhance the accuracy of predicting multiple stock prices.

  • 4 authors
·
Apr 18

Financial Knowledge Large Language Model

Artificial intelligence is making significant strides in the finance industry, revolutionizing how data is processed and interpreted. Among these technologies, large language models (LLMs) have demonstrated substantial potential to transform financial services by automating complex tasks, enhancing customer service, and providing detailed financial analysis. Firstly, we introduce IDEA-FinBench, an evaluation benchmark specifically tailored for assessing financial knowledge in large language models (LLMs). This benchmark utilizes questions from two globally respected and authoritative financial professional exams, aimimg to comprehensively evaluate the capability of LLMs to directly address exam questions pertinent to the finance sector. Secondly, we propose IDEA-FinKER, a Financial Knowledge Enhancement framework designed to facilitate the rapid adaptation of general LLMs to the financial domain, introducing a retrieval-based few-shot learning method for real-time context-level knowledge injection, and a set of high-quality financial knowledge instructions for fine-tuning any general LLM. Finally, we present IDEA-FinQA, a financial question-answering system powered by LLMs. This system is structured around a scheme of real-time knowledge injection and factual enhancement using external knowledge. IDEA-FinQA is comprised of three main modules: the data collector, the data querying module, and LLM-based agents tasked with specific functions.

  • 3 authors
·
Jun 29, 2024

FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models

As financial institutions and professionals increasingly incorporate Large Language Models (LLMs) into their workflows, substantial barriers, including proprietary data and specialized knowledge, persist between the finance sector and the AI community. These challenges impede the AI community's ability to enhance financial tasks effectively. Acknowledging financial analysis's critical role, we aim to devise financial-specialized LLM-based toolchains and democratize access to them through open-source initiatives, promoting wider AI adoption in financial decision-making. In this paper, we introduce FinRobot, a novel open-source AI agent platform supporting multiple financially specialized AI agents, each powered by LLM. Specifically, the platform consists of four major layers: 1) the Financial AI Agents layer that formulates Financial Chain-of-Thought (CoT) by breaking sophisticated financial problems down into logical sequences; 2) the Financial LLM Algorithms layer dynamically configures appropriate model application strategies for specific tasks; 3) the LLMOps and DataOps layer produces accurate models by applying training/fine-tuning techniques and using task-relevant data; 4) the Multi-source LLM Foundation Models layer that integrates various LLMs and enables the above layers to access them directly. Finally, FinRobot provides hands-on for both professional-grade analysts and laypersons to utilize powerful AI techniques for advanced financial analysis. We open-source FinRobot at https://github.com/AI4Finance-Foundation/FinRobot.

  • 11 authors
·
May 23, 2024

BASIR: Budget-Assisted Sectoral Impact Ranking -- A Dataset for Sector Identification and Performance Prediction Using Language Models

Government fiscal policies, particularly annual union budgets, exert significant influence on financial markets. However, real-time analysis of budgetary impacts on sector-specific equity performance remains methodologically challenging and largely unexplored. This study proposes a framework to systematically identify and rank sectors poised to benefit from India's Union Budget announcements. The framework addresses two core tasks: (1) multi-label classification of excerpts from budget transcripts into 81 predefined economic sectors, and (2) performance ranking of these sectors. Leveraging a comprehensive corpus of Indian Union Budget transcripts from 1947 to 2025, we introduce BASIR (Budget-Assisted Sectoral Impact Ranking), an annotated dataset mapping excerpts from budgetary transcripts to sectoral impacts. Our architecture incorporates fine-tuned embeddings for sector identification, coupled with language models that rank sectors based on their predicted performances. Our results demonstrate 0.605 F1-score in sector classification, and 0.997 NDCG score in predicting ranks of sectors based on post-budget performances. The methodology enables investors and policymakers to quantify fiscal policy impacts through structured, data-driven insights, addressing critical gaps in manual analysis. The annotated dataset has been released under CC-BY-NC-SA-4.0 license to advance computational economics research.

  • 2 authors
·
Apr 2

Universal features of price formation in financial markets: perspectives from Deep Learning

Using a large-scale Deep Learning approach applied to a high-frequency database containing billions of electronic market quotes and transactions for US equities, we uncover nonparametric evidence for the existence of a universal and stationary price formation mechanism relating the dynamics of supply and demand for a stock, as revealed through the order book, to subsequent variations in its market price. We assess the model by testing its out-of-sample predictions for the direction of price moves given the history of price and order flow, across a wide range of stocks and time periods. The universal price formation model is shown to exhibit a remarkably stable out-of-sample prediction accuracy across time, for a wide range of stocks from different sectors. Interestingly, these results also hold for stocks which are not part of the training sample, showing that the relations captured by the model are universal and not asset-specific. The universal model --- trained on data from all stocks --- outperforms, in terms of out-of-sample prediction accuracy, asset-specific linear and nonlinear models trained on time series of any given stock, showing that the universal nature of price formation weighs in favour of pooling together financial data from various stocks, rather than designing asset- or sector-specific models as commonly done. Standard data normalizations based on volatility, price level or average spread, or partitioning the training data into sectors or categories such as large/small tick stocks, do not improve training results. On the other hand, inclusion of price and order flow history over many past observations is shown to improve forecasting performance, showing evidence of path-dependence in price dynamics.

  • 2 authors
·
Mar 19, 2018

MME-Finance: A Multimodal Finance Benchmark for Expert-level Understanding and Reasoning

In recent years, multimodal benchmarks for general domains have guided the rapid development of multimodal models on general tasks. However, the financial field has its peculiarities. It features unique graphical images (e.g., candlestick charts, technical indicator charts) and possesses a wealth of specialized financial knowledge (e.g., futures, turnover rate). Therefore, benchmarks from general fields often fail to measure the performance of multimodal models in the financial domain, and thus cannot effectively guide the rapid development of large financial models. To promote the development of large financial multimodal models, we propose MME-Finance, an bilingual open-ended and practical usage-oriented Visual Question Answering (VQA) benchmark. The characteristics of our benchmark are finance and expertise, which include constructing charts that reflect the actual usage needs of users (e.g., computer screenshots and mobile photography), creating questions according to the preferences in financial domain inquiries, and annotating questions by experts with 10+ years of experience in the financial industry. Additionally, we have developed a custom-designed financial evaluation system in which visual information is first introduced in the multi-modal evaluation process. Extensive experimental evaluations of 19 mainstream MLLMs are conducted to test their perception, reasoning, and cognition capabilities. The results indicate that models performing well on general benchmarks cannot do well on MME-Finance; for instance, the top-performing open-source and closed-source models obtain 65.69 (Qwen2VL-72B) and 63.18 (GPT-4o), respectively. Their performance is particularly poor in categories most relevant to finance, such as candlestick charts and technical indicator charts. In addition, we propose a Chinese version, which helps compare performance of MLLMs under a Chinese context.

  • 12 authors
·
Nov 5, 2024

A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist

Financial trading is a crucial component of the markets, informed by a multimodal information landscape encompassing news, prices, and Kline charts, and encompasses diverse tasks such as quantitative trading and high-frequency trading with various assets. While advanced AI techniques like deep learning and reinforcement learning are extensively utilized in finance, their application in financial trading tasks often faces challenges due to inadequate handling of multimodal data and limited generalizability across various tasks. To address these challenges, we present FinAgent, a multimodal foundational agent with tool augmentation for financial trading. FinAgent's market intelligence module processes a diverse range of data-numerical, textual, and visual-to accurately analyze the financial market. Its unique dual-level reflection module not only enables rapid adaptation to market dynamics but also incorporates a diversified memory retrieval system, enhancing the agent's ability to learn from historical data and improve decision-making processes. The agent's emphasis on reasoning for actions fosters trust in its financial decisions. Moreover, FinAgent integrates established trading strategies and expert insights, ensuring that its trading approaches are both data-driven and rooted in sound financial principles. With comprehensive experiments on 6 financial datasets, including stocks and Crypto, FinAgent significantly outperforms 9 state-of-the-art baselines in terms of 6 financial metrics with over 36% average improvement on profit. Specifically, a 92.27% return (a 84.39% relative improvement) is achieved on one dataset. Notably, FinAgent is the first advanced multimodal foundation agent designed for financial trading tasks.

  • 13 authors
·
Feb 28, 2024

FinAI-BERT: A Transformer-Based Model for Sentence-Level Detection of AI Disclosures in Financial Reports

The proliferation of artificial intelligence (AI) in financial services has prompted growing demand for tools that can systematically detect AI-related disclosures in corporate filings. While prior approaches often rely on keyword expansion or document-level classification, they fall short in granularity, interpretability, and robustness. This study introduces FinAI-BERT, a domain-adapted transformer-based language model designed to classify AI-related content at the sentence level within financial texts. The model was fine-tuned on a manually curated and balanced dataset of 1,586 sentences drawn from 669 annual reports of U.S. banks (2015 to 2023). FinAI-BERT achieved near-perfect classification performance (accuracy of 99.37 percent, F1 score of 0.993), outperforming traditional baselines such as Logistic Regression, Naive Bayes, Random Forest, and XGBoost. Interpretability was ensured through SHAP-based token attribution, while bias analysis and robustness checks confirmed the model's stability across sentence lengths, adversarial inputs, and temporal samples. Theoretically, the study advances financial NLP by operationalizing fine-grained, theme-specific classification using transformer architectures. Practically, it offers a scalable, transparent solution for analysts, regulators, and scholars seeking to monitor the diffusion and framing of AI across financial institutions.

  • 1 authors
·
Jun 29

Quantitative Risk Management in Volatile Markets with an Expectile-Based Framework for the FTSE Index

This research presents a framework for quantitative risk management in volatile markets, specifically focusing on expectile-based methodologies applied to the FTSE 100 index. Traditional risk measures such as Value-at-Risk (VaR) have demonstrated significant limitations during periods of market stress, as evidenced during the 2008 financial crisis and subsequent volatile periods. This study develops an advanced expectile-based framework that addresses the shortcomings of conventional quantile-based approaches by providing greater sensitivity to tail losses and improved stability in extreme market conditions. The research employs a dataset spanning two decades of FTSE 100 returns, incorporating periods of high volatility, market crashes, and recovery phases. Our methodology introduces novel mathematical formulations for expectile regression models, enhanced threshold determination techniques using time series analysis, and robust backtesting procedures. The empirical results demonstrate that expectile-based Value-at-Risk (EVaR) consistently outperforms traditional VaR measures across various confidence levels and market conditions. The framework exhibits superior performance during volatile periods, with reduced model risk and enhanced predictive accuracy. Furthermore, the study establishes practical implementation guidelines for financial institutions and provides evidence-based recommendations for regulatory compliance and portfolio management. The findings contribute significantly to the literature on financial risk management and offer practical tools for practitioners dealing with volatile market environments.

  • 1 authors
·
Jul 16 1

FinGPT: Democratizing Internet-scale Data for Financial Large Language Models

Large language models (LLMs) have demonstrated remarkable proficiency in understanding and generating human-like texts, which may potentially revolutionize the finance industry. However, existing LLMs often fall short in the financial field, which is mainly attributed to the disparities between general text data and financial text data. Unfortunately, there is only a limited number of financial text datasets available, and BloombergGPT, the first financial LLM (FinLLM), is close-sourced (only the training logs were released). In light of this, we aim to democratize Internet-scale financial data for LLMs, which is an open challenge due to diverse data sources, low signal-to-noise ratio, and high time-validity. To address the challenges, we introduce an open-sourced and data-centric framework, Financial Generative Pre-trained Transformer (FinGPT), that automates the collection and curation of real-time financial data from 34 diverse sources on the Internet, providing researchers and practitioners with accessible and transparent resources to develop their FinLLMs. Additionally, we propose a simple yet effective strategy for fine-tuning FinLLM using the inherent feedback from the market, dubbed Reinforcement Learning with Stock Prices (RLSP). We also adopt the Low-rank Adaptation (LoRA, QLoRA) method that enables users to customize their own FinLLMs from general-purpose LLMs at a low cost. Finally, we showcase several FinGPT applications, including robo-advisor, sentiment analysis for algorithmic trading, and low-code development. FinGPT aims to democratize FinLLMs, stimulate innovation, and unlock new opportunities in open finance. The codes have been open-sourced.

  • 4 authors
·
Jul 19, 2023

An Investigation of the Structural Characteristics of the Indian IT Sector and the Capital Goods Sector: An Application of the R Programming in Time Series Decomposition and Forecasting

Time series analysis and forecasting of stock market prices has been a very active area of research over the last two decades. Availability of extremely fast and parallel architecture of computing and sophisticated algorithms has made it possible to extract, store, process and analyze high volume stock market time series data very efficiently. In this paper, we have used time series data of the two sectors of the Indian economy: Information Technology and Capital Goods for the period January 2009 till April 2016 and have studied the relationships of these two time series with the time series of DJIA index, NIFTY index and the US Dollar to Indian Rupee exchange rate. We establish by graphical and statistical tests that while the IT sector of India has a strong association with DJIA index and the Dollar to Rupee exchange rate, the Indian CG sector exhibits a strong association with the NIFTY index. We contend that these observations corroborate our hypotheses that the Indian IT sector is strongly coupled with the world economy whereas the CG sector of India reflects internal economic growth of India. We also present several models of regression between the time series which exhibit strong association among them. The effectiveness of these models have been demonstrated by very low values of their forecasting errors.

  • 2 authors
·
May 14, 2017

Revolutionizing Finance with LLMs: An Overview of Applications and Insights

In recent years, Large Language Models (LLMs) like ChatGPT have seen considerable advancements and have been applied in diverse fields. Built on the Transformer architecture, these models are trained on extensive datasets, enabling them to understand and generate human language effectively. In the financial domain, the deployment of LLMs is gaining momentum. These models are being utilized for automating financial report generation, forecasting market trends, analyzing investor sentiment, and offering personalized financial advice. Leveraging their natural language processing capabilities, LLMs can distill key insights from vast financial data, aiding institutions in making informed investment choices and enhancing both operational efficiency and customer satisfaction. In this study, we provide a comprehensive overview of the emerging integration of LLMs into various financial tasks. Additionally, we conducted holistic tests on multiple financial tasks through the combination of natural language instructions. Our findings show that GPT-4 effectively follow prompt instructions across various financial tasks. This survey and evaluation of LLMs in the financial domain aim to deepen the understanding of LLMs' current role in finance for both financial practitioners and LLM researchers, identify new research and application prospects, and highlight how these technologies can be leveraged to solve practical challenges in the finance industry.

  • 12 authors
·
Jan 21, 2024

InvestLM: A Large Language Model for Investment using Financial Domain Instruction Tuning

We present a new financial domain large language model, InvestLM, tuned on LLaMA-65B (Touvron et al., 2023), using a carefully curated instruction dataset related to financial investment. Inspired by less-is-more-for-alignment (Zhou et al., 2023), we manually curate a small yet diverse instruction dataset, covering a wide range of financial related topics, from Chartered Financial Analyst (CFA) exam questions to SEC filings to Stackexchange quantitative finance discussions. InvestLM shows strong capabilities in understanding financial text and provides helpful responses to investment related questions. Financial experts, including hedge fund managers and research analysts, rate InvestLM's response as comparable to those of state-of-the-art commercial models (GPT-3.5, GPT-4 and Claude-2). Zero-shot evaluation on a set of financial NLP benchmarks demonstrates strong generalizability. From a research perspective, this work suggests that a high-quality domain specific LLM can be tuned using a small set of carefully curated instructions on a well-trained foundation model, which is consistent with the Superficial Alignment Hypothesis (Zhou et al., 2023). From a practical perspective, this work develops a state-of-the-art financial domain LLM with superior capability in understanding financial texts and providing helpful investment advice, potentially enhancing the work efficiency of financial professionals. We release the model parameters to the research community.

  • 3 authors
·
Sep 14, 2023

FinWorld: An All-in-One Open-Source Platform for End-to-End Financial AI Research and Deployment

Financial AI holds great promise for transforming modern finance, with the potential to support a wide range of tasks such as market forecasting, portfolio management, quantitative trading, and automated analysis. However, existing platforms remain limited in task coverage, lack robust multimodal data integration, and offer insufficient support for the training and deployment of large language models (LLMs). In response to these limitations, we present FinWorld, an all-in-one open-source platform that provides end-to-end support for the entire financial AI workflow, from data acquisition to experimentation and deployment. FinWorld distinguishes itself through native integration of heterogeneous financial data, unified support for diverse AI paradigms, and advanced agent automation, enabling seamless development and deployment. Leveraging data from 2 representative markets, 4 stock pools, and over 800 million financial data points, we conduct comprehensive experiments on 4 key financial AI tasks. These experiments systematically evaluate deep learning and reinforcement learning algorithms, with particular emphasis on RL-based finetuning for LLMs and LLM Agents. The empirical results demonstrate that FinWorld significantly enhances reproducibility, supports transparent benchmarking, and streamlines deployment, thereby providing a strong foundation for future research and real-world applications. Code is available at Github~https://github.com/DVampire/FinWorld.

  • 5 authors
·
Aug 4

From Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models

Large Language Models (LLMs) have shown promise for financial applications, yet their suitability for this high-stakes domain remains largely unproven due to inadequacies in existing benchmarks. Existing benchmarks solely rely on score-level evaluation, summarizing performance with a single score that obscures the nuanced understanding of what models truly know and their precise limitations. They also rely on datasets that cover only a narrow subset of financial concepts, while overlooking other essentials for real-world applications. To address these gaps, we introduce FinCDM, the first cognitive diagnosis evaluation framework tailored for financial LLMs, enabling the evaluation of LLMs at the knowledge-skill level, identifying what financial skills and knowledge they have or lack based on their response patterns across skill-tagged tasks, rather than a single aggregated number. We construct CPA-QKA, the first cognitively informed financial evaluation dataset derived from the Certified Public Accountant (CPA) examination, with comprehensive coverage of real-world accounting and financial skills. It is rigorously annotated by domain experts, who author, validate, and annotate questions with high inter-annotator agreement and fine-grained knowledge labels. Our extensive experiments on 30 proprietary, open-source, and domain-specific LLMs show that FinCDM reveals hidden knowledge gaps, identifies under-tested areas such as tax and regulatory reasoning overlooked by traditional benchmarks, and uncovers behavioral clusters among models. FinCDM introduces a new paradigm for financial LLM evaluation by enabling interpretable, skill-aware diagnosis that supports more trustworthy and targeted model development, and all datasets and evaluation scripts will be publicly released to support further research.

FinSearchComp: Towards a Realistic, Expert-Level Evaluation of Financial Search and Reasoning

Search has emerged as core infrastructure for LLM-based agents and is widely viewed as critical on the path toward more general intelligence. Finance is a particularly demanding proving ground: analysts routinely conduct complex, multi-step searches over time-sensitive, domain-specific data, making it ideal for assessing both search proficiency and knowledge-grounded reasoning. Yet no existing open financial datasets evaluate data searching capability of end-to-end agents, largely because constructing realistic, complicated tasks requires deep financial expertise and time-sensitive data is hard to evaluate. We present FinSearchComp, the first fully open-source agent benchmark for realistic, open-domain financial search and reasoning. FinSearchComp comprises three tasks -- Time-Sensitive Data Fetching, Simple Historical Lookup, and Complex Historical Investigation -- closely reproduce real-world financial analyst workflows. To ensure difficulty and reliability, we engage 70 professional financial experts for annotation and implement a rigorous multi-stage quality-assurance pipeline. The benchmark includes 635 questions spanning global and Greater China markets, and we evaluate 21 models (products) on it. Grok 4 (web) tops the global subset, approaching expert-level accuracy. DouBao (web) leads on the Greater China subset. Experimental analyses show that equipping agents with web search and financial plugins substantially improves results on FinSearchComp, and the country origin of models and tools impact performance significantly.By aligning with realistic analyst tasks and providing end-to-end evaluation, FinSearchComp offers a professional, high-difficulty testbed for complex financial search and reasoning.

  • 23 authors
·
Sep 16 2

FinMTEB: Finance Massive Text Embedding Benchmark

Embedding models play a crucial role in representing and retrieving information across various NLP applications. Recent advances in large language models (LLMs) have further enhanced the performance of embedding models. While these models are often benchmarked on general-purpose datasets, real-world applications demand domain-specific evaluation. In this work, we introduce the Finance Massive Text Embedding Benchmark (FinMTEB), a specialized counterpart to MTEB designed for the financial domain. FinMTEB comprises 64 financial domain-specific embedding datasets across 7 tasks that cover diverse textual types in both Chinese and English, such as financial news articles, corporate annual reports, ESG reports, regulatory filings, and earnings call transcripts. We also develop a finance-adapted model, FinPersona-E5, using a persona-based data synthetic method to cover diverse financial embedding tasks for training. Through extensive evaluation of 15 embedding models, including FinPersona-E5, we show three key findings: (1) performance on general-purpose benchmarks shows limited correlation with financial domain tasks; (2) domain-adapted models consistently outperform their general-purpose counterparts; and (3) surprisingly, a simple Bag-of-Words (BoW) approach outperforms sophisticated dense embeddings in financial Semantic Textual Similarity (STS) tasks, underscoring current limitations in dense embedding techniques. Our work establishes a robust evaluation framework for financial NLP applications and provides crucial insights for developing domain-specific embedding models.

  • 2 authors
·
Feb 15 2

Advancing Investment Frontiers: Industry-grade Deep Reinforcement Learning for Portfolio Optimization

This research paper delves into the application of Deep Reinforcement Learning (DRL) in asset-class agnostic portfolio optimization, integrating industry-grade methodologies with quantitative finance. At the heart of this integration is our robust framework that not only merges advanced DRL algorithms with modern computational techniques but also emphasizes stringent statistical analysis, software engineering and regulatory compliance. To the best of our knowledge, this is the first study integrating financial Reinforcement Learning with sim-to-real methodologies from robotics and mathematical physics, thus enriching our frameworks and arguments with this unique perspective. Our research culminates with the introduction of AlphaOptimizerNet, a proprietary Reinforcement Learning agent (and corresponding library). Developed from a synthesis of state-of-the-art (SOTA) literature and our unique interdisciplinary methodology, AlphaOptimizerNet demonstrates encouraging risk-return optimization across various asset classes with realistic constraints. These preliminary results underscore the practical efficacy of our frameworks. As the finance sector increasingly gravitates towards advanced algorithmic solutions, our study bridges theoretical advancements with real-world applicability, offering a template for ensuring safety and robust standards in this technologically driven future.

  • 2 authors
·
Feb 27, 2024

FinReflectKG: Agentic Construction and Evaluation of Financial Knowledge Graphs

The financial domain poses unique challenges for knowledge graph (KG) construction at scale due to the complexity and regulatory nature of financial documents. Despite the critical importance of structured financial knowledge, the field lacks large-scale, open-source datasets capturing rich semantic relationships from corporate disclosures. We introduce an open-source, large-scale financial knowledge graph dataset built from the latest annual SEC 10-K filings of all S and P 100 companies - a comprehensive resource designed to catalyze research in financial AI. We propose a robust and generalizable knowledge graph (KG) construction framework that integrates intelligent document parsing, table-aware chunking, and schema-guided iterative extraction with a reflection-driven feedback loop. Our system incorporates a comprehensive evaluation pipeline, combining rule-based checks, statistical validation, and LLM-as-a-Judge assessments to holistically measure extraction quality. We support three extraction modes - single-pass, multi-pass, and reflection-agent-based - allowing flexible trade-offs between efficiency, accuracy, and reliability based on user requirements. Empirical evaluations demonstrate that the reflection-agent-based mode consistently achieves the best balance, attaining a 64.8 percent compliance score against all rule-based policies (CheckRules) and outperforming baseline methods (single-pass and multi-pass) across key metrics such as precision, comprehensiveness, and relevance in LLM-guided evaluations.

  • 5 authors
·
Aug 25 1

Topological Components in a Community Currency Network

Transaction data from digital payment systems can be used to study economic processes at such a detail that was not possible previously. Here, we analyse the data from Sarafu token network, a community inclusion currency in Kenya. During the COVID-19 emergency, the Sarafu was disbursed as part of a humanitarian aid project. In this work, the transactions are analysed using network science. A topological categorisation is defined to identify cyclic and acyclic components. Furthermore, temporal aspects of circulation taking place within these components are considered. The significant presence of different types of strongly connected components as compared to randomized null models shows the importance of cycles in this economic network. Especially, indicating their key role in currency recirculation. In some acyclic components, the most significant triad suggests the presence of a group of users collecting currency from accounts active only once, hinting at a misuse of the system. In some other acyclic components, small isolated groups of users were active only once, suggesting the presence of users only interested in trying out the system. The methods used in this paper can answer specific questions related to user activities, currency design, and assessment of monetary interventions. Our methodology provides a general quantitative tool for analysing the behaviour of users in a currency network.

  • 1 authors
·
Sep 20, 2024

SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models

Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry. However, existing financial LLMs often face challenges such as hallucinations or superficial parameter training, resulting in suboptimal performance, particularly in financial computing and machine reading comprehension (MRC). To address these issues, we propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM. SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations. We then perform the supervised fine-tuning (SFT) to enhance the model's proficiency across various financial domains. Specifically, we gather extensive financial data and create a high-quality instruction dataset composed of news articles, professional papers, and research reports of finance domain. Utilizing both domain-specific and general datasets, we proceed with continuous pre-training on an established open-source base model, resulting in SNFinLLM-base. Following this, we engage in supervised fine-tuning (SFT) to bolster the model's capability across multiple financial tasks. Crucially, we employ a straightforward Direct Preference Optimization (DPO) method to better align the model with human preferences. Extensive experiments conducted on finance benchmarks and our evaluation dataset demonstrate that SNFinLLM markedly outperforms other state-of-the-art financial language models. For more details, check out our demo video here: https://www.youtube.com/watch?v=GYT-65HZwus.

  • 6 authors
·
Aug 5, 2024

Empirical Study of Market Impact Conditional on Order-Flow Imbalance

In this research, we have empirically investigated the key drivers affecting liquidity in equity markets. We illustrated how theoretical models, such as Kyle's model, of agents' interplay in the financial markets, are aligned with the phenomena observed in publicly available trades and quotes data. Specifically, we confirmed that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance. We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow. Our findings suggest that machine learning models can be used in estimation of financial variables; and predictive accuracy of such learning algorithms can surpass the performance of traditional statistical approaches. Understanding the determinants of price impact is crucial for several reasons. From a theoretical stance, modelling the impact provides a statistical measure of liquidity. Practitioners adopt impact models as a pre-trade tool to estimate expected transaction costs and optimize the execution of their strategies. This further serves as a post-trade valuation benchmark as suboptimal execution can significantly deteriorate a portfolio performance. More broadly, the price impact reflects the balance of liquidity across markets. This is of central importance to regulators as it provides an all-encompassing explanation of the correlation between market design and systemic risk, enabling regulators to design more stable and efficient markets.

  • 1 authors
·
Apr 17, 2020

Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating

To reject the Efficient Market Hypothesis a set of 5 technical indicators and 23 fundamental indicators was identified to establish the possibility of generating excess returns on the stock market. Leveraging these data points and various classification machine learning models, trading data of the 505 equities on the US S&P500 over the past 20 years was analysed to develop a classifier effective for our cause. From any given day, we were able to predict the direction of change in price by 1% up to 10 days in the future. The predictions had an overall accuracy of 83.62% with a precision of 85% for buy signals and a recall of 100% for sell signals. Moreover, we grouped equities by their sector and repeated the experiment to see if grouping similar assets together positively effected the results but concluded that it showed no significant improvements in the performance rejecting the idea of sector-based analysis. Also, using feature ranking we could identify an even smaller set of 6 indicators while maintaining similar accuracies as that from the original 28 features and also uncovered the importance of buy, hold and sell analyst ratings as they came out to be the top contributors in the model. Finally, to evaluate the effectiveness of the classifier in real-life situations, it was backtested on FAANG equities using a modest trading strategy where it generated high returns of above 60% over the term of the testing dataset. In conclusion, our proposed methodology with the combination of purposefully picked features shows an improvement over the previous studies, and our model predicts the direction of 1% price changes on the 10th day with high confidence and with enough buffer to even build a robotic trading system.

  • 2 authors
·
Mar 12, 2021

Stock Performance Evaluation for Portfolio Design from Different Sectors of the Indian Stock Market

The stock market offers a platform where people buy and sell shares of publicly listed companies. Generally, stock prices are quite volatile; hence predicting them is a daunting task. There is still much research going to develop more accuracy in stock price prediction. Portfolio construction refers to the allocation of different sector stocks optimally to achieve a maximum return by taking a minimum risk. A good portfolio can help investors earn maximum profit by taking a minimum risk. Beginning with Dow Jones Theory a lot of advancement has happened in the area of building efficient portfolios. In this project, we have tried to predict the future value of a few stocks from six important sectors of the Indian economy and also built a portfolio. As part of the project, our team has conducted a study of the performance of various Time series, machine learning, and deep learning models in stock price prediction on selected stocks from the chosen six important sectors of the economy. As part of building an efficient portfolio, we have studied multiple portfolio optimization theories beginning with the Modern Portfolio theory. We have built a minimum variance portfolio and optimal risk portfolio for all the six chosen sectors by using the daily stock prices over the past five years as training data and have also conducted back testing to check the performance of the portfolio. We look forward to continuing our study in the area of stock price prediction and asset allocation and consider this project as the first stepping stone.

  • 7 authors
·
Jul 1, 2022

Multimodal Document Analytics for Banking Process Automation

Traditional banks face increasing competition from FinTechs in the rapidly evolving financial ecosystem. Raising operational efficiency is vital to address this challenge. Our study aims to improve the efficiency of document-intensive business processes in banking. To that end, we first review the landscape of business documents in the retail segment. Banking documents often contain text, layout, and visuals, suggesting that document analytics and process automation require more than plain natural language processing (NLP). To verify this and assess the incremental value of visual cues when processing business documents, we compare a recently proposed multimodal model called LayoutXLM to powerful text classifiers (e.g., BERT) and large language models (e.g., GPT) in a case study related to processing company register extracts. The results confirm that incorporating layout information in a model substantially increases its performance. Interestingly, we also observed that more than 75% of the best model performance (in terms of the F1 score) can be achieved with as little as 30% of the training data. This shows that the demand for data labeled data to set up a multi-modal model can be moderate, which simplifies real-world applications of multimodal document analytics. Our study also sheds light on more specific practices in the scope of calibrating a multimodal banking document classifier, including the need for fine-tuning. In sum, the paper contributes original empirical evidence on the effectiveness and efficiency of multi-model models for document processing in the banking business and offers practical guidance on how to unlock this potential in day-to-day operations.

  • 2 authors
·
Jul 21, 2023

FinRobot: AI Agent for Equity Research and Valuation with Large Language Models

As financial markets grow increasingly complex, there is a rising need for automated tools that can effectively assist human analysts in equity research, particularly within sell-side research. While Generative AI (GenAI) has attracted significant attention in this field, existing AI solutions often fall short due to their narrow focus on technical factors and limited capacity for discretionary judgment. These limitations hinder their ability to adapt to new data in real-time and accurately assess risks, which diminishes their practical value for investors. This paper presents FinRobot, the first AI agent framework specifically designed for equity research. FinRobot employs a multi-agent Chain of Thought (CoT) system, integrating both quantitative and qualitative analyses to emulate the comprehensive reasoning of a human analyst. The system is structured around three specialized agents: the Data-CoT Agent, which aggregates diverse data sources for robust financial integration; the Concept-CoT Agent, which mimics an analysts reasoning to generate actionable insights; and the Thesis-CoT Agent, which synthesizes these insights into a coherent investment thesis and report. FinRobot provides thorough company analysis supported by precise numerical data, industry-appropriate valuation metrics, and realistic risk assessments. Its dynamically updatable data pipeline ensures that research remains timely and relevant, adapting seamlessly to new financial information. Unlike existing automated research tools, such as CapitalCube and Wright Reports, FinRobot delivers insights comparable to those produced by major brokerage firms and fundamental research vendors. We open-source FinRobot at https://github. com/AI4Finance-Foundation/FinRobot.

  • 4 authors
·
Nov 13, 2024

FinBloom: Knowledge Grounding Large Language Model with Real-time Financial Data

Large language models (LLMs) excel at generating human-like responses but often struggle with interactive tasks that require access to real-time information. This limitation poses challenges in finance, where models must access up-to-date information, such as recent news or price movements, to support decision-making. To address this, we introduce Financial Agent, a knowledge-grounding approach for LLMs to handle financial queries using real-time text and tabular data. Our contributions are threefold: First, we develop a Financial Context Dataset of over 50,000 financial queries paired with the required context. Second, we train FinBloom 7B, a custom 7 billion parameter LLM, on 14 million financial news articles from Reuters and Deutsche Presse-Agentur, alongside 12 million Securities and Exchange Commission (SEC) filings. Third, we fine-tune FinBloom 7B using the Financial Context Dataset to serve as a Financial Agent. This agent generates relevant financial context, enabling efficient real-time data retrieval to answer user queries. By reducing latency and eliminating the need for users to manually provide accurate data, our approach significantly enhances the capability of LLMs to handle dynamic financial tasks. Our proposed approach makes real-time financial decisions, algorithmic trading and other related tasks streamlined, and is valuable in contexts with high-velocity data flows.

  • 3 authors
·
Feb 4