- Keypoint Communities We present a fast bottom-up method that jointly detects over 100 keypoints on humans or objects, also referred to as human/object pose estimation. We model all keypoints belonging to a human or an object -- the pose -- as a graph and leverage insights from community detection to quantify the independence of keypoints. We use a graph centrality measure to assign training weights to different parts of a pose. Our proposed measure quantifies how tightly a keypoint is connected to its neighborhood. Our experiments show that our method outperforms all previous methods for human pose estimation with fine-grained keypoint annotations on the face, the hands and the feet with a total of 133 keypoints. We also show that our method generalizes to car poses. 3 authors · Oct 3, 2021
1 Finding Patient Zero: Learning Contagion Source with Graph Neural Networks Locating the source of an epidemic, or patient zero (P0), can provide critical insights into the infection's transmission course and allow efficient resource allocation. Existing methods use graph-theoretic centrality measures and expensive message-passing algorithms, requiring knowledge of the underlying dynamics and its parameters. In this paper, we revisit this problem using graph neural networks (GNNs) to learn P0. We establish a theoretical limit for the identification of P0 in a class of epidemic models. We evaluate our method against different epidemic models on both synthetic and a real-world contact network considering a disease with history and characteristics of COVID-19. % We observe that GNNs can identify P0 close to the theoretical bound on accuracy, without explicit input of dynamics or its parameters. In addition, GNN is over 100 times faster than classic methods for inference on arbitrary graph topologies. Our theoretical bound also shows that the epidemic is like a ticking clock, emphasizing the importance of early contact-tracing. We find a maximum time after which accurate recovery of the source becomes impossible, regardless of the algorithm used. 7 authors · Jun 21, 2020
1 Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks We present an agentic, autonomous graph expansion framework that iteratively structures and refines knowledge in situ. Unlike conventional knowledge graph construction methods relying on static extraction or single-pass learning, our approach couples a reasoning-native large language model with a continually updated graph representation. At each step, the system actively generates new concepts and relationships, merges them into a global graph, and formulates subsequent prompts based on its evolving structure. Through this feedback-driven loop, the model organizes information into a scale-free network characterized by hub formation, stable modularity, and bridging nodes that link disparate knowledge clusters. Over hundreds of iterations, new nodes and edges continue to appear without saturating, while centrality measures and shortest path distributions evolve to yield increasingly distributed connectivity. Our analysis reveals emergent patterns, such as the rise of highly connected 'hub' concepts and the shifting influence of 'bridge' nodes, indicating that agentic, self-reinforcing graph construction can yield open-ended, coherent knowledge structures. Applied to materials design problems, we present compositional reasoning experiments by extracting node-specific and synergy-level principles to foster genuinely novel knowledge synthesis, yielding cross-domain ideas that transcend rote summarization and strengthen the framework's potential for open-ended scientific discovery. We discuss other applications in scientific discovery and outline future directions for enhancing scalability and interpretability. 1 authors · Feb 18, 2025
- Triangle Centrality Triangle centrality is introduced for finding important vertices in a graph based on the concentration of triangles surrounding each vertex. It has the distinct feature of allowing a vertex to be central if it is in many triangles or none at all. We show experimentally that triangle centrality is broadly applicable to many different types of networks. Our empirical results demonstrate that 30% of the time triangle centrality identified central vertices that differed with those found by five well-known centrality measures, which suggests novelty without being overly specialized. It is also asymptotically faster to compute on sparse graphs than all but the most trivial of these other measures. We introduce optimal algorithms that compute triangle centrality in O(mbarδ) time and O(m+n) space, where barδle O(m) is the average degeneracy introduced by Burkhardt, Faber, and Harris (2020). In practical applications, barδ is much smaller than m so triangle centrality can be computed in nearly linear time. On a Concurrent Read Exclusive Write (CREW) Parallel Random Access Machine (PRAM), we give a near work-optimal parallel algorithm that takes O(log n) time using O(mm) CREW PRAM processors. In MapReduce, we show it takes four rounds using O(mm) communication bits and is therefore optimal. We also derive a linear algebraic formulation of triangle centrality which can be computed in O(mbarδ) time on sparse graphs. 1 authors · Apr 30, 2021