Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRevisiting Image Fusion for Multi-Illuminant White-Balance Correction
White balance (WB) correction in scenes with multiple illuminants remains a persistent challenge in computer vision. Recent methods explored fusion-based approaches, where a neural network linearly blends multiple sRGB versions of an input image, each processed with predefined WB presets. However, we demonstrate that these methods are suboptimal for common multi-illuminant scenarios. Additionally, existing fusion-based methods rely on sRGB WB datasets lacking dedicated multi-illuminant images, limiting both training and evaluation. To address these challenges, we introduce two key contributions. First, we propose an efficient transformer-based model that effectively captures spatial dependencies across sRGB WB presets, substantially improving upon linear fusion techniques. Second, we introduce a large-scale multi-illuminant dataset comprising over 16,000 sRGB images rendered with five different WB settings, along with WB-corrected images. Our method achieves up to 100\% improvement over existing techniques on our new multi-illuminant image fusion dataset.
Task-Generalized Adaptive Cross-Domain Learning for Multimodal Image Fusion
Multimodal Image Fusion (MMIF) aims to integrate complementary information from different imaging modalities to overcome the limitations of individual sensors. It enhances image quality and facilitates downstream applications such as remote sensing, medical diagnostics, and robotics. Despite significant advancements, current MMIF methods still face challenges such as modality misalignment, high-frequency detail destruction, and task-specific limitations. To address these challenges, we propose AdaSFFuse, a novel framework for task-generalized MMIF through adaptive cross-domain co-fusion learning. AdaSFFuse introduces two key innovations: the Adaptive Approximate Wavelet Transform (AdaWAT) for frequency decoupling, and the Spatial-Frequency Mamba Blocks for efficient multimodal fusion. AdaWAT adaptively separates the high- and low-frequency components of multimodal images from different scenes, enabling fine-grained extraction and alignment of distinct frequency characteristics for each modality. The Spatial-Frequency Mamba Blocks facilitate cross-domain fusion in both spatial and frequency domains, enhancing this process. These blocks dynamically adjust through learnable mappings to ensure robust fusion across diverse modalities. By combining these components, AdaSFFuse improves the alignment and integration of multimodal features, reduces frequency loss, and preserves critical details. Extensive experiments on four MMIF tasks -- Infrared-Visible Image Fusion (IVF), Multi-Focus Image Fusion (MFF), Multi-Exposure Image Fusion (MEF), and Medical Image Fusion (MIF) -- demonstrate AdaSFFuse's superior fusion performance, ensuring both low computational cost and a compact network, offering a strong balance between performance and efficiency. The code will be publicly available at https://github.com/Zhen-yu-Liu/AdaSFFuse.
DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion
Multi-modality image fusion aims to combine different modalities to produce fused images that retain the complementary features of each modality, such as functional highlights and texture details. To leverage strong generative priors and address challenges such as unstable training and lack of interpretability for GAN-based generative methods, we propose a novel fusion algorithm based on the denoising diffusion probabilistic model (DDPM). The fusion task is formulated as a conditional generation problem under the DDPM sampling framework, which is further divided into an unconditional generation subproblem and a maximum likelihood subproblem. The latter is modeled in a hierarchical Bayesian manner with latent variables and inferred by the expectation-maximization (EM) algorithm. By integrating the inference solution into the diffusion sampling iteration, our method can generate high-quality fused images with natural image generative priors and cross-modality information from source images. Note that all we required is an unconditional pre-trained generative model, and no fine-tuning is needed. Our extensive experiments indicate that our approach yields promising fusion results in infrared-visible image fusion and medical image fusion. The code is available at https://github.com/Zhaozixiang1228/MMIF-DDFM.
Addressing the Depth-of-Field Constraint: A New Paradigm for High Resolution Multi-Focus Image Fusion
Multi-focus image fusion (MFIF) addresses the depth-of-field (DOF) limitations of optical lenses, where only objects within a specific range appear sharp. Although traditional and deep learning methods have advanced the field, challenges persist, including limited training data, domain gaps from synthetic datasets, and difficulties with regions lacking information. We propose VAEEDOF, a novel MFIF method that uses a distilled variational autoencoder for high-fidelity, efficient image reconstruction. Our fusion module processes up to seven images simultaneously, enabling robust fusion across diverse focus points. To address data scarcity, we introduce MattingMFIF, a new syntetic 4K dataset, simulating realistic DOF effects from real photographs. Our method achieves state-of-the-art results, generating seamless artifact-free fused images and bridging the gap between synthetic and real-world scenarios, offering a significant step forward in addressing complex MFIF challenges. The code, and weights are available here:
Every SAM Drop Counts: Embracing Semantic Priors for Multi-Modality Image Fusion and Beyond
Multi-modality image fusion, particularly infrared and visible, plays a crucial role in integrating diverse modalities to enhance scene understanding. Although early research prioritized visual quality, preserving fine details and adapting to downstream tasks remains challenging. Recent approaches attempt task-specific design but rarely achieve "The Best of Both Worlds" due to inconsistent optimization goals. To address these issues, we propose a novel method that leverages the semantic knowledge from the Segment Anything Model (SAM) to Grow the quality of fusion results and Enable downstream task adaptability, namely SAGE. Specifically, we design a Semantic Persistent Attention (SPA) Module that efficiently maintains source information via the persistent repository while extracting high-level semantic priors from SAM. More importantly, to eliminate the impractical dependence on SAM during inference, we introduce a bi-level optimization-driven distillation mechanism with triplet losses, which allow the student network to effectively extract knowledge. Extensive experiments show that our method achieves a balance between high-quality visual results and downstream task adaptability while maintaining practical deployment efficiency. The code is available at https://github.com/RollingPlain/SAGE_IVIF.
PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant Semantic Segmentation
Infrared and visible image fusion is a powerful technique that combines complementary information from different modalities for downstream semantic perception tasks. Existing learning-based methods show remarkable performance, but are suffering from the inherent vulnerability of adversarial attacks, causing a significant decrease in accuracy. In this work, a perception-aware fusion framework is proposed to promote segmentation robustness in adversarial scenes. We first conduct systematic analyses about the components of image fusion, investigating the correlation with segmentation robustness under adversarial perturbations. Based on these analyses, we propose a harmonized architecture search with a decomposition-based structure to balance standard accuracy and robustness. We also propose an adaptive learning strategy to improve the parameter robustness of image fusion, which can learn effective feature extraction under diverse adversarial perturbations. Thus, the goals of image fusion (i.e., extracting complementary features from source modalities and defending attack) can be realized from the perspectives of architectural and learning strategies. Extensive experimental results demonstrate that our scheme substantially enhances the robustness, with gains of 15.3% mIOU of segmentation in the adversarial scene, compared with advanced competitors. The source codes are available at https://github.com/LiuZhu-CV/PAIF.
Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation
Multi-modality image fusion and segmentation play a vital role in autonomous driving and robotic operation. Early efforts focus on boosting the performance for only one task, e.g., fusion or segmentation, making it hard to reach~`Best of Both Worlds'. To overcome this issue, in this paper, we propose a Multi-interactive Feature learning architecture for image fusion and Segmentation, namely SegMiF, and exploit dual-task correlation to promote the performance of both tasks. The SegMiF is of a cascade structure, containing a fusion sub-network and a commonly used segmentation sub-network. By slickly bridging intermediate features between two components, the knowledge learned from the segmentation task can effectively assist the fusion task. Also, the benefited fusion network supports the segmentation one to perform more pretentiously. Besides, a hierarchical interactive attention block is established to ensure fine-grained mapping of all the vital information between two tasks, so that the modality/semantic features can be fully mutual-interactive. In addition, a dynamic weight factor is introduced to automatically adjust the corresponding weights of each task, which can balance the interactive feature correspondence and break through the limitation of laborious tuning. Furthermore, we construct a smart multi-wave binocular imaging system and collect a full-time multi-modality benchmark with 15 annotated pixel-level categories for image fusion and segmentation. Extensive experiments on several public datasets and our benchmark demonstrate that the proposed method outputs visually appealing fused images and perform averagely 7.66% higher segmentation mIoU in the real-world scene than the state-of-the-art approaches. The source code and benchmark are available at https://github.com/JinyuanLiu-CV/SegMiF.
Equivariant Multi-Modality Image Fusion
Multi-modality image fusion is a technique that combines information from different sensors or modalities, enabling the fused image to retain complementary features from each modality, such as functional highlights and texture details. However, effective training of such fusion models is challenging due to the scarcity of ground truth fusion data. To tackle this issue, we propose the Equivariant Multi-Modality imAge fusion (EMMA) paradigm for end-to-end self-supervised learning. Our approach is rooted in the prior knowledge that natural imaging responses are equivariant to certain transformations. Consequently, we introduce a novel training paradigm that encompasses a fusion module, a pseudo-sensing module, and an equivariant fusion module. These components enable the net training to follow the principles of the natural sensing-imaging process while satisfying the equivariant imaging prior. Extensive experiments confirm that EMMA yields high-quality fusion results for infrared-visible and medical images, concurrently facilitating downstream multi-modal segmentation and detection tasks. The code is available at https://github.com/Zhaozixiang1228/MMIF-EMMA.
Multi-modal Gated Mixture of Local-to-Global Experts for Dynamic Image Fusion
Infrared and visible image fusion aims to integrate comprehensive information from multiple sources to achieve superior performances on various practical tasks, such as detection, over that of a single modality. However, most existing methods directly combined the texture details and object contrast of different modalities, ignoring the dynamic changes in reality, which diminishes the visible texture in good lighting conditions and the infrared contrast in low lighting conditions. To fill this gap, we propose a dynamic image fusion framework with a multi-modal gated mixture of local-to-global experts, termed MoE-Fusion, to dynamically extract effective and comprehensive information from the respective modalities. Our model consists of a Mixture of Local Experts (MoLE) and a Mixture of Global Experts (MoGE) guided by a multi-modal gate. The MoLE performs specialized learning of multi-modal local features, prompting the fused images to retain the local information in a sample-adaptive manner, while the MoGE focuses on the global information that complements the fused image with overall texture detail and contrast. Extensive experiments show that our MoE-Fusion outperforms state-of-the-art methods in preserving multi-modal image texture and contrast through the local-to-global dynamic learning paradigm, and also achieves superior performance on detection tasks. Our code will be available: https://github.com/SunYM2020/MoE-Fusion.
Anisotropic Diffusion for Details Enhancement in Multi-Exposure Image Fusion
We develop a multiexposure image fusion method based on texture features, which exploits the edge preserving and intraregion smoothing property of nonlinear diffusion filters based on partial differential equations (PDE). With the captured multiexposure image series, we first decompose images into base layers and detail layers to extract sharp details and fine details, respectively. The magnitude of the gradient of the image intensity is utilized to encourage smoothness at homogeneous regions in preference to inhomogeneous regions. Then, we have considered texture features of the base layer to generate a mask (i.e., decision mask) that guides the fusion of base layers in multiresolution fashion. Finally, well-exposed fused image is obtained that combines fused base layer and the detail layers at each scale across all the input exposures. Proposed algorithm skipping complex High Dynamic Range Image (HDRI) generation and tone mapping steps to produce detail preserving image for display on standard dynamic range display devices. Moreover, our technique is effective for blending flash/no-flash image pair and multifocus images, that is, images focused on different targets.
FSATFusion: Frequency-Spatial Attention Transformer for Infrared and Visible Image Fusion
The infrared and visible images fusion (IVIF) is receiving increasing attention from both the research community and industry due to its excellent results in downstream applications. Existing deep learning approaches often utilize convolutional neural networks to extract image features. However, the inherently capacity of convolution operations to capture global context can lead to information loss, thereby restricting fusion performance. To address this limitation, we propose an end-to-end fusion network named the Frequency-Spatial Attention Transformer Fusion Network (FSATFusion). The FSATFusion contains a frequency-spatial attention Transformer (FSAT) module designed to effectively capture discriminate features from source images. This FSAT module includes a frequency-spatial attention mechanism (FSAM) capable of extracting significant features from feature maps. Additionally, we propose an improved Transformer module (ITM) to enhance the ability to extract global context information of vanilla Transformer. We conducted both qualitative and quantitative comparative experiments, demonstrating the superior fusion quality and efficiency of FSATFusion compared to other state-of-the-art methods. Furthermore, our network was tested on two additional tasks without any modifications, to verify the excellent generalization capability of FSATFusion. Finally, the object detection experiment demonstrated the superiority of FSATFusion in downstream visual tasks. Our code is available at https://github.com/Lmmh058/FSATFusion.
MEFLUT: Unsupervised 1D Lookup Tables for Multi-exposure Image Fusion
In this paper, we introduce a new approach for high-quality multi-exposure image fusion (MEF). We show that the fusion weights of an exposure can be encoded into a 1D lookup table (LUT), which takes pixel intensity value as input and produces fusion weight as output. We learn one 1D LUT for each exposure, then all the pixels from different exposures can query 1D LUT of that exposure independently for high-quality and efficient fusion. Specifically, to learn these 1D LUTs, we involve attention mechanism in various dimensions including frame, channel and spatial ones into the MEF task so as to bring us significant quality improvement over the state-of-the-art (SOTA). In addition, we collect a new MEF dataset consisting of 960 samples, 155 of which are manually tuned by professionals as ground-truth for evaluation. Our network is trained by this dataset in an unsupervised manner. Extensive experiments are conducted to demonstrate the effectiveness of all the newly proposed components, and results show that our approach outperforms the SOTA in our and another representative dataset SICE, both qualitatively and quantitatively. Moreover, our 1D LUT approach takes less than 4ms to run a 4K image on a PC GPU. Given its high quality, efficiency and robustness, our method has been shipped into millions of Android mobiles across multiple brands world-wide. Code is available at: https://github.com/Hedlen/MEFLUT.
Learned Image Reasoning Prior Penetrates Deep Unfolding Network for Panchromatic and Multi-Spectral Image Fusion
The success of deep neural networks for pan-sharpening is commonly in a form of black box, lacking transparency and interpretability. To alleviate this issue, we propose a novel model-driven deep unfolding framework with image reasoning prior tailored for the pan-sharpening task. Different from existing unfolding solutions that deliver the proximal operator networks as the uncertain and vague priors, our framework is motivated by the content reasoning ability of masked autoencoders (MAE) with insightful designs. Specifically, the pre-trained MAE with spatial masking strategy, acting as intrinsic reasoning prior, is embedded into unfolding architecture. Meanwhile, the pre-trained MAE with spatial-spectral masking strategy is treated as the regularization term within loss function to constrain the spatial-spectral consistency. Such designs penetrate the image reasoning prior into deep unfolding networks while improving its interpretability and representation capability. The uniqueness of our framework is that the holistic learning process is explicitly integrated with the inherent physical mechanism underlying the pan-sharpening task. Extensive experiments on multiple satellite datasets demonstrate the superiority of our method over the existing state-of-the-art approaches. Code will be released at https://manman1995.github.io/.
A full-resolution training framework for Sentinel-2 image fusion
This work presents a new unsupervised framework for training deep learning models for super-resolution of Sentinel-2 images by fusion of its 10-m and 20-m bands. The proposed scheme avoids the resolution downgrade process needed to generate training data in the supervised case. On the other hand, a proper loss that accounts for cycle-consistency between the network prediction and the input components to be fused is proposed. Despite its unsupervised nature, in our preliminary experiments the proposed scheme has shown promising results in comparison to the supervised approach. Besides, by construction of the proposed loss, the resulting trained network can be ascribed to the class of multi-resolution analysis methods.
Hierarchical Open-vocabulary Universal Image Segmentation
Open-vocabulary image segmentation aims to partition an image into semantic regions according to arbitrary text descriptions. However, complex visual scenes can be naturally decomposed into simpler parts and abstracted at multiple levels of granularity, introducing inherent segmentation ambiguity. Unlike existing methods that typically sidestep this ambiguity and treat it as an external factor, our approach actively incorporates a hierarchical representation encompassing different semantic-levels into the learning process. We propose a decoupled text-image fusion mechanism and representation learning modules for both "things" and "stuff". Additionally, we systematically examine the differences that exist in the textual and visual features between these types of categories. Our resulting model, named HIPIE, tackles HIerarchical, oPen-vocabulary, and unIvErsal segmentation tasks within a unified framework. Benchmarked on over 40 datasets, e.g., ADE20K, COCO, Pascal-VOC Part, RefCOCO/RefCOCOg, ODinW and SeginW, HIPIE achieves the state-of-the-art results at various levels of image comprehension, including semantic-level (e.g., semantic segmentation), instance-level (e.g., panoptic/referring segmentation and object detection), as well as part-level (e.g., part/subpart segmentation) tasks. Our code is released at https://github.com/berkeley-hipie/HIPIE.
TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.
Fusion of Infrared and Visible Images based on Spatial-Channel Attentional Mechanism
In the study, we present AMFusionNet, an innovative approach to infrared and visible image fusion (IVIF), harnessing the power of multiple kernel sizes and attention mechanisms. By assimilating thermal details from infrared images with texture features from visible sources, our method produces images enriched with comprehensive information. Distinct from prevailing deep learning methodologies, our model encompasses a fusion mechanism powered by multiple convolutional kernels, facilitating the robust capture of a wide feature spectrum. Notably, we incorporate parallel attention mechanisms to emphasize and retain pivotal target details in the resultant images. Moreover, the integration of the multi-scale structural similarity (MS-SSIM) loss function refines network training, optimizing the model for IVIF task. Experimental results demonstrate that our method outperforms state-of-the-art algorithms in terms of quality and quantity. The performance metrics on publicly available datasets also show significant improvement
DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis
Synthesizing high-quality realistic images from text descriptions is a challenging task. Existing text-to-image Generative Adversarial Networks generally employ a stacked architecture as the backbone yet still remain three flaws. First, the stacked architecture introduces the entanglements between generators of different image scales. Second, existing studies prefer to apply and fix extra networks in adversarial learning for text-image semantic consistency, which limits the supervision capability of these networks. Third, the cross-modal attention-based text-image fusion that widely adopted by previous works is limited on several special image scales because of the computational cost. To these ends, we propose a simpler but more effective Deep Fusion Generative Adversarial Networks (DF-GAN). To be specific, we propose: (i) a novel one-stage text-to-image backbone that directly synthesizes high-resolution images without entanglements between different generators, (ii) a novel Target-Aware Discriminator composed of Matching-Aware Gradient Penalty and One-Way Output, which enhances the text-image semantic consistency without introducing extra networks, (iii) a novel deep text-image fusion block, which deepens the fusion process to make a full fusion between text and visual features. Compared with current state-of-the-art methods, our proposed DF-GAN is simpler but more efficient to synthesize realistic and text-matching images and achieves better performance on widely used datasets.
A Unified Solution to Video Fusion: From Multi-Frame Learning to Benchmarking
The real world is dynamic, yet most image fusion methods process static frames independently, ignoring temporal correlations in videos and leading to flickering and temporal inconsistency. To address this, we propose Unified Video Fusion (UniVF), a novel framework for temporally coherent video fusion that leverages multi-frame learning and optical flow-based feature warping for informative, temporally coherent video fusion. To support its development, we also introduce Video Fusion Benchmark (VF-Bench), the first comprehensive benchmark covering four video fusion tasks: multi-exposure, multi-focus, infrared-visible, and medical fusion. VF-Bench provides high-quality, well-aligned video pairs obtained through synthetic data generation and rigorous curation from existing datasets, with a unified evaluation protocol that jointly assesses the spatial quality and temporal consistency of video fusion. Extensive experiments show that UniVF achieves state-of-the-art results across all tasks on VF-Bench. Project page: https://vfbench.github.io.
From Image to Video, what do we need in multimodal LLMs?
Multimodal Large Language Models (MLLMs) have demonstrated profound capabilities in understanding multimodal information, covering from Image LLMs to the more complex Video LLMs. Numerous studies have illustrated their exceptional cross-modal comprehension. Recently, integrating video foundation models with large language models to build a comprehensive video understanding system has been proposed to overcome the limitations of specific pre-defined vision tasks. However, the current advancements in Video LLMs tend to overlook the foundational contributions of Image LLMs, often opting for more complicated structures and a wide variety of multimodal data for pre-training. This approach significantly increases the costs associated with these methods.In response to these challenges, this work introduces an efficient method that strategically leverages the priors of Image LLMs, facilitating a resource-efficient transition from Image to Video LLMs. We propose RED-VILLM, a Resource-Efficient Development pipeline for Video LLMs from Image LLMs, which utilizes a temporal adaptation plug-and-play structure within the image fusion module of Image LLMs. This adaptation extends their understanding capabilities to include temporal information, enabling the development of Video LLMs that not only surpass baseline performances but also do so with minimal instructional data and training resources. Our approach highlights the potential for a more cost-effective and scalable advancement in multimodal models, effectively building upon the foundational work of Image LLMs.
Kandinsky 3: Text-to-Image Synthesis for Multifunctional Generative Framework
Text-to-image (T2I) diffusion models are popular for introducing image manipulation methods, such as editing, image fusion, inpainting, etc. At the same time, image-to-video (I2V) and text-to-video (T2V) models are also built on top of T2I models. We present Kandinsky 3, a novel T2I model based on latent diffusion, achieving a high level of quality and photorealism. The key feature of the new architecture is the simplicity and efficiency of its adaptation for many types of generation tasks. We extend the base T2I model for various applications and create a multifunctional generation system that includes text-guided inpainting/outpainting, image fusion, text-image fusion, image variations generation, I2V and T2V generation. We also present a distilled version of the T2I model, evaluating inference in 4 steps of the reverse process without reducing image quality and 3 times faster than the base model. We deployed a user-friendly demo system in which all the features can be tested in the public domain. Additionally, we released the source code and checkpoints for the Kandinsky 3 and extended models. Human evaluations show that Kandinsky 3 demonstrates one of the highest quality scores among open source generation systems.
RLIPv2: Fast Scaling of Relational Language-Image Pre-training
Relational Language-Image Pre-training (RLIP) aims to align vision representations with relational texts, thereby advancing the capability of relational reasoning in computer vision tasks. However, hindered by the slow convergence of RLIPv1 architecture and the limited availability of existing scene graph data, scaling RLIPv1 is challenging. In this paper, we propose RLIPv2, a fast converging model that enables the scaling of relational pre-training to large-scale pseudo-labelled scene graph data. To enable fast scaling, RLIPv2 introduces Asymmetric Language-Image Fusion (ALIF), a mechanism that facilitates earlier and deeper gated cross-modal fusion with sparsified language encoding layers. ALIF leads to comparable or better performance than RLIPv1 in a fraction of the time for pre-training and fine-tuning. To obtain scene graph data at scale, we extend object detection datasets with free-form relation labels by introducing a captioner (e.g., BLIP) and a designed Relation Tagger. The Relation Tagger assigns BLIP-generated relation texts to region pairs, thus enabling larger-scale relational pre-training. Through extensive experiments conducted on Human-Object Interaction Detection and Scene Graph Generation, RLIPv2 shows state-of-the-art performance on three benchmarks under fully-finetuning, few-shot and zero-shot settings. Notably, the largest RLIPv2 achieves 23.29mAP on HICO-DET without any fine-tuning, yields 32.22mAP with just 1% data and yields 45.09mAP with 100% data. Code and models are publicly available at https://github.com/JacobYuan7/RLIPv2.
Kandinsky: an Improved Text-to-Image Synthesis with Image Prior and Latent Diffusion
Text-to-image generation is a significant domain in modern computer vision and has achieved substantial improvements through the evolution of generative architectures. Among these, there are diffusion-based models that have demonstrated essential quality enhancements. These models are generally split into two categories: pixel-level and latent-level approaches. We present Kandinsky1, a novel exploration of latent diffusion architecture, combining the principles of the image prior models with latent diffusion techniques. The image prior model is trained separately to map text embeddings to image embeddings of CLIP. Another distinct feature of the proposed model is the modified MoVQ implementation, which serves as the image autoencoder component. Overall, the designed model contains 3.3B parameters. We also deployed a user-friendly demo system that supports diverse generative modes such as text-to-image generation, image fusion, text and image fusion, image variations generation, and text-guided inpainting/outpainting. Additionally, we released the source code and checkpoints for the Kandinsky models. Experimental evaluations demonstrate a FID score of 8.03 on the COCO-30K dataset, marking our model as the top open-source performer in terms of measurable image generation quality.
Land use/land cover classification of fused Sentinel-1 and Sentinel-2 imageries using ensembles of Random Forests
The study explores the synergistic combination of Synthetic Aperture Radar (SAR) and Visible-Near Infrared-Short Wave Infrared (VNIR-SWIR) imageries for land use/land cover (LULC) classification. Image fusion, employing Bayesian fusion, merges SAR texture bands with VNIR-SWIR imageries. The research aims to investigate the impact of this fusion on LULC classification. Despite the popularity of random forests for supervised classification, their limitations, such as suboptimal performance with fewer features and accuracy stagnation, are addressed. To overcome these issues, ensembles of random forests (RFE) are created, introducing random rotations using the Forest-RC algorithm. Three rotation approaches: principal component analysis (PCA), sparse random rotation (SRP) matrix, and complete random rotation (CRP) matrix are employed. Sentinel-1 SAR data and Sentinel-2 VNIR-SWIR data from the IIT-Kanpur region constitute the training datasets, including SAR, SAR with texture, VNIR-SWIR, VNIR-SWIR with texture, and fused VNIR-SWIR with texture. The study evaluates classifier efficacy, explores the impact of SAR and VNIR-SWIR fusion on classification, and significantly enhances the execution speed of Bayesian fusion code. The SRP-based RFE outperforms other ensembles for the first two datasets, yielding average overall kappa values of 61.80% and 68.18%, while the CRP-based RFE excels for the last three datasets with average overall kappa values of 95.99%, 96.93%, and 96.30%. The fourth dataset achieves the highest overall kappa of 96.93%. Furthermore, incorporating texture with SAR bands results in a maximum overall kappa increment of 10.00%, while adding texture to VNIR-SWIR bands yields a maximum increment of approximately 3.45%.
Multi-Modal Open-Domain Dialogue
Recent work in open-domain conversational agents has demonstrated that significant improvements in model engagingness and humanness metrics can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 2020). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of engaging humans in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to engagingness metrics.
Dual Illumination Estimation for Robust Exposure Correction
Exposure correction is one of the fundamental tasks in image processing and computational photography. While various methods have been proposed, they either fail to produce visually pleasing results, or only work well for limited types of image (e.g., underexposed images). In this paper, we present a novel automatic exposure correction method, which is able to robustly produce high-quality results for images of various exposure conditions (e.g., underexposed, overexposed, and partially under- and over-exposed). At the core of our approach is the proposed dual illumination estimation, where we separately cast the under- and over-exposure correction as trivial illumination estimation of the input image and the inverted input image. By performing dual illumination estimation, we obtain two intermediate exposure correction results for the input image, with one fixes the underexposed regions and the other one restores the overexposed regions. A multi-exposure image fusion technique is then employed to adaptively blend the visually best exposed parts in the two intermediate exposure correction images and the input image into a globally well-exposed image. Experiments on a number of challenging images demonstrate the effectiveness of the proposed approach and its superiority over the state-of-the-art methods and popular automatic exposure correction tools.
UNIDOC-BENCH: A Unified Benchmark for Document-Centric Multimodal RAG
Multimodal retrieval-augmented generation (MM-RAG) is a key approach for applying large language models (LLMs) and agents to real-world knowledge bases, yet current evaluations are fragmented, focusing on either text or images in isolation or on simplified multimodal setups that fail to capture document-centric multimodal use cases. In this paper, we introduce UniDoc-Bench, the first large-scale, realistic benchmark for MM-RAG built from 70k real-world PDF pages across eight domains. Our pipeline extracts and links evidence from text, tables, and figures, then generates 1,600 multimodal QA pairs spanning factual retrieval, comparison, summarization, and logical reasoning queries. To ensure reliability, 20% of QA pairs are validated by multiple annotators and expert adjudication. UniDoc-Bench supports apples-to-apples comparison across four paradigms: (1) text-only, (2) image-only, (3) multimodal text-image fusion, and (4) multimodal joint retrieval -- under a unified protocol with standardized candidate pools, prompts, and evaluation metrics. Our experiments show that multimodal text-image fusion RAG systems consistently outperform both unimodal and jointly multimodal embedding-based retrieval, indicating that neither text nor images alone are sufficient and that current multimodal embeddings remain inadequate. Beyond benchmarking, our analysis reveals when and how visual context complements textual evidence, uncovers systematic failure modes, and offers actionable guidance for developing more robust MM-RAG pipelines.
PolyVivid: Vivid Multi-Subject Video Generation with Cross-Modal Interaction and Enhancement
Despite recent advances in video generation, existing models still lack fine-grained controllability, especially for multi-subject customization with consistent identity and interaction. In this paper, we propose PolyVivid, a multi-subject video customization framework that enables flexible and identity-consistent generation. To establish accurate correspondences between subject images and textual entities, we design a VLLM-based text-image fusion module that embeds visual identities into the textual space for precise grounding. To further enhance identity preservation and subject interaction, we propose a 3D-RoPE-based enhancement module that enables structured bidirectional fusion between text and image embeddings. Moreover, we develop an attention-inherited identity injection module to effectively inject fused identity features into the video generation process, mitigating identity drift. Finally, we construct an MLLM-based data pipeline that combines MLLM-based grounding, segmentation, and a clique-based subject consolidation strategy to produce high-quality multi-subject data, effectively enhancing subject distinction and reducing ambiguity in downstream video generation. Extensive experiments demonstrate that PolyVivid achieves superior performance in identity fidelity, video realism, and subject alignment, outperforming existing open-source and commercial baselines.
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision
It is very challenging for various visual tasks such as image fusion, pedestrian detection and image-to-image translation in low light conditions due to the loss of effective target areas. In this case, infrared and visible images can be used together to provide both rich detail information and effective target areas. In this paper, we present LLVIP, a visible-infrared paired dataset for low-light vision. This dataset contains 30976 images, or 15488 pairs, most of which were taken at very dark scenes, and all of the images are strictly aligned in time and space. Pedestrians in the dataset are labeled. We compare the dataset with other visible-infrared datasets and evaluate the performance of some popular visual algorithms including image fusion, pedestrian detection and image-to-image translation on the dataset. The experimental results demonstrate the complementary effect of fusion on image information, and find the deficiency of existing algorithms of the three visual tasks in very low-light conditions. We believe the LLVIP dataset will contribute to the community of computer vision by promoting image fusion, pedestrian detection and image-to-image translation in very low-light applications. The dataset is being released in https://bupt-ai-cz.github.io/LLVIP. Raw data is also provided for further research such as image registration.
M3PT: A Multi-Modal Model for POI Tagging
POI tagging aims to annotate a point of interest (POI) with some informative tags, which facilitates many services related to POIs, including search, recommendation, and so on. Most of the existing solutions neglect the significance of POI images and seldom fuse the textual and visual features of POIs, resulting in suboptimal tagging performance. In this paper, we propose a novel Multi-Modal Model for POI Tagging, namely M3PT, which achieves enhanced POI tagging through fusing the target POI's textual and visual features, and the precise matching between the multi-modal representations. Specifically, we first devise a domain-adaptive image encoder (DIE) to obtain the image embeddings aligned to their gold tags' semantics. Then, in M3PT's text-image fusion module (TIF), the textual and visual representations are fully fused into the POIs' content embeddings for the subsequent matching. In addition, we adopt a contrastive learning strategy to further bridge the gap between the representations of different modalities. To evaluate the tagging models' performance, we have constructed two high-quality POI tagging datasets from the real-world business scenario of Ali Fliggy. Upon the datasets, we conducted the extensive experiments to demonstrate our model's advantage over the baselines of uni-modality and multi-modality, and verify the effectiveness of important components in M3PT, including DIE, TIF and the contrastive learning strategy.
FlexHDR: Modelling Alignment and Exposure Uncertainties for Flexible HDR Imaging
High dynamic range (HDR) imaging is of fundamental importance in modern digital photography pipelines and used to produce a high-quality photograph with well exposed regions despite varying illumination across the image. This is typically achieved by merging multiple low dynamic range (LDR) images taken at different exposures. However, over-exposed regions and misalignment errors due to poorly compensated motion result in artefacts such as ghosting. In this paper, we present a new HDR imaging technique that specifically models alignment and exposure uncertainties to produce high quality HDR results. We introduce a strategy that learns to jointly align and assess the alignment and exposure reliability using an HDR-aware, uncertainty-driven attention map that robustly merges the frames into a single high quality HDR image. Further, we introduce a progressive, multi-stage image fusion approach that can flexibly merge any number of LDR images in a permutation-invariant manner. Experimental results show our method can produce better quality HDR images with up to 1.1dB PSNR improvement to the state-of-the-art, and subjective improvements in terms of better detail, colours, and fewer artefacts.
HunyuanCustom: A Multimodal-Driven Architecture for Customized Video Generation
Customized video generation aims to produce videos featuring specific subjects under flexible user-defined conditions, yet existing methods often struggle with identity consistency and limited input modalities. In this paper, we propose HunyuanCustom, a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, our model first addresses the image-text conditioned generation task by introducing a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, we further propose modality-specific condition injection mechanisms: an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open- and closed-source methods in terms of ID consistency, realism, and text-video alignment. Moreover, we validate its robustness across downstream tasks, including audio and video-driven customized video generation. Our results highlight the effectiveness of multi-modal conditioning and identity-preserving strategies in advancing controllable video generation. All the code and models are available at https://hunyuancustom.github.io.
DEYOLO: Dual-Feature-Enhancement YOLO for Cross-Modality Object Detection
Object detection in poor-illumination environments is a challenging task as objects are usually not clearly visible in RGB images. As infrared images provide additional clear edge information that complements RGB images, fusing RGB and infrared images has potential to enhance the detection ability in poor-illumination environments. However, existing works involving both visible and infrared images only focus on image fusion, instead of object detection. Moreover, they directly fuse the two kinds of image modalities, which ignores the mutual interference between them. To fuse the two modalities to maximize the advantages of cross-modality, we design a dual-enhancement-based cross-modality object detection network DEYOLO, in which semantic-spatial cross modality and novel bi-directional decoupled focus modules are designed to achieve the detection-centered mutual enhancement of RGB-infrared (RGB-IR). Specifically, a dual semantic enhancing channel weight assignment module (DECA) and a dual spatial enhancing pixel weight assignment module (DEPA) are firstly proposed to aggregate cross-modality information in the feature space to improve the feature representation ability, such that feature fusion can aim at the object detection task. Meanwhile, a dual-enhancement mechanism, including enhancements for two-modality fusion and single modality, is designed in both DECAand DEPAto reduce interference between the two kinds of image modalities. Then, a novel bi-directional decoupled focus is developed to enlarge the receptive field of the backbone network in different directions, which improves the representation quality of DEYOLO. Extensive experiments on M3FD and LLVIP show that our approach outperforms SOTA object detection algorithms by a clear margin. Our code is available at https://github.com/chips96/DEYOLO.
Pixel-aligned RGB-NIR Stereo Imaging and Dataset for Robot Vision
Integrating RGB and NIR stereo imaging provides complementary spectral information, potentially enhancing robotic 3D vision in challenging lighting conditions. However, existing datasets and imaging systems lack pixel-level alignment between RGB and NIR images, posing challenges for downstream vision tasks. In this paper, we introduce a robotic vision system equipped with pixel-aligned RGB-NIR stereo cameras and a LiDAR sensor mounted on a mobile robot. The system simultaneously captures pixel-aligned pairs of RGB stereo images, NIR stereo images, and temporally synchronized LiDAR points. Utilizing the mobility of the robot, we present a dataset containing continuous video frames under diverse lighting conditions. We then introduce two methods that utilize the pixel-aligned RGB-NIR images: an RGB-NIR image fusion method and a feature fusion method. The first approach enables existing RGB-pretrained vision models to directly utilize RGB-NIR information without fine-tuning. The second approach fine-tunes existing vision models to more effectively utilize RGB-NIR information. Experimental results demonstrate the effectiveness of using pixel-aligned RGB-NIR images across diverse lighting conditions.
Multi-modal Crowd Counting via a Broker Modality
Multi-modal crowd counting involves estimating crowd density from both visual and thermal/depth images. This task is challenging due to the significant gap between these distinct modalities. In this paper, we propose a novel approach by introducing an auxiliary broker modality and on this basis frame the task as a triple-modal learning problem. We devise a fusion-based method to generate this broker modality, leveraging a non-diffusion, lightweight counterpart of modern denoising diffusion-based fusion models. Additionally, we identify and address the ghosting effect caused by direct cross-modal image fusion in multi-modal crowd counting. Through extensive experimental evaluations on popular multi-modal crowd-counting datasets, we demonstrate the effectiveness of our method, which introduces only 4 million additional parameters, yet achieves promising results. The code is available at https://github.com/HenryCilence/Broker-Modality-Crowd-Counting.
Target-aware Dual Adversarial Learning and a Multi-scenario Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection
This study addresses the issue of fusing infrared and visible images that appear differently for object detection. Aiming at generating an image of high visual quality, previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks. These approaches neglect that modality differences implying the complementary information are extremely important for both fusion and subsequent detection task. This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network. The fusion network with one generator and dual discriminators seeks commons while learning from differences, which preserves structural information of targets from the infrared and textural details from the visible. Furthermore, we build a synchronized imaging system with calibrated infrared and optical sensors, and collect currently the most comprehensive benchmark covering a wide range of scenarios. Extensive experiments on several public datasets and our benchmark demonstrate that our method outputs not only visually appealing fusion but also higher detection mAP than the state-of-the-art approaches.
RGB-D-Fusion: Image Conditioned Depth Diffusion of Humanoid Subjects
We present RGB-D-Fusion, a multi-modal conditional denoising diffusion probabilistic model to generate high resolution depth maps from low-resolution monocular RGB images of humanoid subjects. RGB-D-Fusion first generates a low-resolution depth map using an image conditioned denoising diffusion probabilistic model and then upsamples the depth map using a second denoising diffusion probabilistic model conditioned on a low-resolution RGB-D image. We further introduce a novel augmentation technique, depth noise augmentation, to increase the robustness of our super-resolution model.
Uncertainty-Weighted Image-Event Multimodal Fusion for Video Anomaly Detection
Most existing video anomaly detectors rely solely on RGB frames, which lack the temporal resolution needed to capture abrupt or transient motion cues, key indicators of anomalous events. To address this limitation, we propose Image-Event Fusion for Video Anomaly Detection (IEF-VAD), a framework that synthesizes event representations directly from RGB videos and fuses them with image features through a principled, uncertainty-aware process. The system (i) models heavy-tailed sensor noise with a Student`s-t likelihood, deriving value-level inverse-variance weights via a Laplace approximation; (ii) applies Kalman-style frame-wise updates to balance modalities over time; and (iii) iteratively refines the fused latent state to erase residual cross-modal noise. Without any dedicated event sensor or frame-level labels, IEF-VAD sets a new state of the art across multiple real-world anomaly detection benchmarks. These findings highlight the utility of synthetic event representations in emphasizing motion cues that are often underrepresented in RGB frames, enabling accurate and robust video understanding across diverse applications without requiring dedicated event sensors. Code and models are available at https://github.com/EavnJeong/IEF-VAD.
Instruction Guided Multi Object Image Editing with Quantity and Layout Consistency
Instruction driven image editing with standard CLIP text encoders often fails in complex scenes with many objects. We present QL-Adapter, a framework for multiple object editing that tackles two challenges: enforcing object counts and spatial layouts, and accommodating diverse categories. QL-Adapter consists of two core modules: the Image-Layout Fusion Module (ILFM) and the Cross-Modal Augmentation Module (CMAM). ILFM fuses layout priors with ViT patch tokens from the CLIP image encoder to strengthen spatial structure understanding. CMAM injects image features into the text branch to enrich textual embeddings and improve instruction following. We further build QL-Dataset, a benchmark that spans broad category, layout, and count variations, and define the task of quantity and layout consistent image editing (QL-Edit). Extensive experiments show that QL-Adapter achieves state of the art performance on QL-Edit and significantly outperforms existing models.
EchoVideo: Identity-Preserving Human Video Generation by Multimodal Feature Fusion
Recent advancements in video generation have significantly impacted various downstream applications, particularly in identity-preserving video generation (IPT2V). However, existing methods struggle with "copy-paste" artifacts and low similarity issues, primarily due to their reliance on low-level facial image information. This dependence can result in rigid facial appearances and artifacts reflecting irrelevant details. To address these challenges, we propose EchoVideo, which employs two key strategies: (1) an Identity Image-Text Fusion Module (IITF) that integrates high-level semantic features from text, capturing clean facial identity representations while discarding occlusions, poses, and lighting variations to avoid the introduction of artifacts; (2) a two-stage training strategy, incorporating a stochastic method in the second phase to randomly utilize shallow facial information. The objective is to balance the enhancements in fidelity provided by shallow features while mitigating excessive reliance on them. This strategy encourages the model to utilize high-level features during training, ultimately fostering a more robust representation of facial identities. EchoVideo effectively preserves facial identities and maintains full-body integrity. Extensive experiments demonstrate that it achieves excellent results in generating high-quality, controllability and fidelity videos.
BioD2C: A Dual-level Semantic Consistency Constraint Framework for Biomedical VQA
Biomedical visual question answering (VQA) has been widely studied and has demonstrated significant application value and potential in fields such as assistive medical diagnosis. Despite their success, current biomedical VQA models perform multimodal information interaction only at the model level within large language models (LLMs), leading to suboptimal multimodal semantic alignment when dealing with complex tasks. To address this issue, we propose BioD2C: a novel Dual-level Semantic Consistency Constraint Framework for Biomedical VQA, which achieves dual-level semantic interaction alignment at both the model and feature levels, enabling the model to adaptively learn visual features based on the question. Specifically, we firstly integrate textual features into visual features via an image-text fusion mechanism as feature-level semantic interaction, obtaining visual features conditioned on the given text; and then introduce a text-queue-based cross-modal soft semantic loss function to further align the image semantics with the question semantics. Specifically, in this work, we establish a new dataset, BioVGQ, to address inherent biases in prior datasets by filtering manually-altered images and aligning question-answer pairs with multimodal context, and train our model on this dataset. Extensive experimental results demonstrate that BioD2C achieves state-of-the-art (SOTA) performance across multiple downstream datasets, showcasing its robustness, generalizability, and potential to advance biomedical VQA research.
Spectral Graphormer: Spectral Graph-based Transformer for Egocentric Two-Hand Reconstruction using Multi-View Color Images
We propose a novel transformer-based framework that reconstructs two high fidelity hands from multi-view RGB images. Unlike existing hand pose estimation methods, where one typically trains a deep network to regress hand model parameters from single RGB image, we consider a more challenging problem setting where we directly regress the absolute root poses of two-hands with extended forearm at high resolution from egocentric view. As existing datasets are either infeasible for egocentric viewpoints or lack background variations, we create a large-scale synthetic dataset with diverse scenarios and collect a real dataset from multi-calibrated camera setup to verify our proposed multi-view image feature fusion strategy. To make the reconstruction physically plausible, we propose two strategies: (i) a coarse-to-fine spectral graph convolution decoder to smoothen the meshes during upsampling and (ii) an optimisation-based refinement stage at inference to prevent self-penetrations. Through extensive quantitative and qualitative evaluations, we show that our framework is able to produce realistic two-hand reconstructions and demonstrate the generalisation of synthetic-trained models to real data, as well as real-time AR/VR applications.
Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior
Dichotomous Image Segmentation (DIS) is a high-precision object segmentation task for high-resolution natural images. The current mainstream methods focus on the optimization of local details but overlook the fundamental challenge of modeling the integrity of objects. We have found that the depth integrity-prior implicit in the the pseudo-depth maps generated by Depth Anything Model v2 and the local detail features of image patches can jointly address the above dilemmas. Based on the above findings, we have designed a novel Patch-Depth Fusion Network (PDFNet) for high-precision dichotomous image segmentation. The core of PDFNet consists of three aspects. Firstly, the object perception is enhanced through multi-modal input fusion. By utilizing the patch fine-grained strategy, coupled with patch selection and enhancement, the sensitivity to details is improved. Secondly, by leveraging the depth integrity-prior distributed in the depth maps, we propose an integrity-prior loss to enhance the uniformity of the segmentation results in the depth maps. Finally, we utilize the features of the shared encoder and, through a simple depth refinement decoder, improve the ability of the shared encoder to capture subtle depth-related information in the images. Experiments on the DIS-5K dataset show that PDFNet significantly outperforms state-of-the-art non-diffusion methods. Due to the incorporation of the depth integrity-prior, PDFNet achieves or even surpassing the performance of the latest diffusion-based methods while using less than 11% of the parameters of diffusion-based methods. The source code at https://github.com/Tennine2077/PDFNet.
JEPA-T: Joint-Embedding Predictive Architecture with Text Fusion for Image Generation
Modern Text-to-Image (T2I) generation increasingly relies on token-centric architectures that are trained with self-supervision, yet effectively fusing text with visual tokens remains a challenge. We propose JEPA-T, a unified multimodal framework that encodes images and captions into discrete visual and textual tokens, processed by a joint-embedding predictive Transformer. To enhance fusion, we incorporate cross-attention after the feature predictor for conditional denoising while maintaining a task-agnostic backbone. Additionally, raw texts embeddings are injected prior to the flow matching loss to improve alignment during training. During inference, the same network performs both class-conditional and free-text image generation by iteratively denoising visual tokens conditioned on text. Evaluations on ImageNet-1K demonstrate that JEPA-T achieves strong data efficiency, open-vocabulary generalization, and consistently outperforms non-fusion and late-fusion baselines. Our approach shows that late architectural fusion combined with objective-level alignment offers an effective balance between conditioning strength and backbone generality in token-based T2I.The code is now available: https://github.com/justin-herry/JEPA-T.git
LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion
LiDAR-camera fusion methods have shown impressive performance in 3D object detection. Recent advanced multi-modal methods mainly perform global fusion, where image features and point cloud features are fused across the whole scene. Such practice lacks fine-grained region-level information, yielding suboptimal fusion performance. In this paper, we present the novel Local-to-Global fusion network (LoGoNet), which performs LiDAR-camera fusion at both local and global levels. Concretely, the Global Fusion (GoF) of LoGoNet is built upon previous literature, while we exclusively use point centroids to more precisely represent the position of voxel features, thus achieving better cross-modal alignment. As to the Local Fusion (LoF), we first divide each proposal into uniform grids and then project these grid centers to the images. The image features around the projected grid points are sampled to be fused with position-decorated point cloud features, maximally utilizing the rich contextual information around the proposals. The Feature Dynamic Aggregation (FDA) module is further proposed to achieve information interaction between these locally and globally fused features, thus producing more informative multi-modal features. Extensive experiments on both Waymo Open Dataset (WOD) and KITTI datasets show that LoGoNet outperforms all state-of-the-art 3D detection methods. Notably, LoGoNet ranks 1st on Waymo 3D object detection leaderboard and obtains 81.02 mAPH (L2) detection performance. It is noteworthy that, for the first time, the detection performance on three classes surpasses 80 APH (L2) simultaneously. Code will be available at https://github.com/sankin97/LoGoNet.
DiscoVLA: Discrepancy Reduction in Vision, Language, and Alignment for Parameter-Efficient Video-Text Retrieval
The parameter-efficient adaptation of the image-text pretraining model CLIP for video-text retrieval is a prominent area of research. While CLIP is focused on image-level vision-language matching, video-text retrieval demands comprehensive understanding at the video level. Three key discrepancies emerge in the transfer from image-level to video-level: vision, language, and alignment. However, existing methods mainly focus on vision while neglecting language and alignment. In this paper, we propose Discrepancy Reduction in Vision, Language, and Alignment (DiscoVLA), which simultaneously mitigates all three discrepancies. Specifically, we introduce Image-Video Features Fusion to integrate image-level and video-level features, effectively tackling both vision and language discrepancies. Additionally, we generate pseudo image captions to learn fine-grained image-level alignment. To mitigate alignment discrepancies, we propose Image-to-Video Alignment Distillation, which leverages image-level alignment knowledge to enhance video-level alignment. Extensive experiments demonstrate the superiority of our DiscoVLA. In particular, on MSRVTT with CLIP (ViT-B/16), DiscoVLA outperforms previous methods by 1.5% in R@1, reaching a final score of 50.5% R@1. The code is available at https://github.com/LunarShen/DsicoVLA.
Hadamard product in deep learning: Introduction, Advances and Challenges
While convolution and self-attention mechanisms have dominated architectural design in deep learning, this survey examines a fundamental yet understudied primitive: the Hadamard product. Despite its widespread implementation across various applications, the Hadamard product has not been systematically analyzed as a core architectural primitive. We present the first comprehensive taxonomy of its applications in deep learning, identifying four principal domains: higher-order correlation, multimodal data fusion, dynamic representation modulation, and efficient pairwise operations. The Hadamard product's ability to model nonlinear interactions with linear computational complexity makes it particularly valuable for resource-constrained deployments and edge computing scenarios. We demonstrate its natural applicability in multimodal fusion tasks, such as visual question answering, and its effectiveness in representation masking for applications including image inpainting and pruning. This systematic review not only consolidates existing knowledge about the Hadamard product's role in deep learning architectures but also establishes a foundation for future architectural innovations. Our analysis reveals the Hadamard product as a versatile primitive that offers compelling trade-offs between computational efficiency and representational power, positioning it as a crucial component in the deep learning toolkit.
LadleNet: Translating Thermal Infrared Images to Visible Light Images Using A Scalable Two-stage U-Net
The translation of thermal infrared (TIR) images to visible light (VI) images presents a challenging task with potential applications spanning various domains such as TIR-VI image registration and fusion. Leveraging supplementary information derived from TIR image conversions can significantly enhance model performance and generalization across these applications. However, prevailing issues within this field include suboptimal image fidelity and limited model scalability. In this paper, we introduce an algorithm, LadleNet, based on the U-Net architecture. LadleNet employs a two-stage U-Net concatenation structure, augmented with skip connections and refined feature aggregation techniques, resulting in a substantial enhancement in model performance. Comprising 'Handle' and 'Bowl' modules, LadleNet's Handle module facilitates the construction of an abstract semantic space, while the Bowl module decodes this semantic space to yield mapped VI images. The Handle module exhibits extensibility by allowing the substitution of its network architecture with semantic segmentation networks, thereby establishing more abstract semantic spaces to bolster model performance. Consequently, we propose LadleNet+, which replaces LadleNet's Handle module with the pre-trained DeepLabv3+ network, thereby endowing the model with enhanced semantic space construction capabilities. The proposed method is evaluated and tested on the KAIST dataset, accompanied by quantitative and qualitative analyses. Compared to existing methodologies, our approach achieves state-of-the-art performance in terms of image clarity and perceptual quality. The source code will be made available at https://github.com/Ach-1914/LadleNet/tree/main/.
Deep Fusion Network for Image Completion
Deep image completion usually fails to harmonically blend the restored image into existing content, especially in the boundary area. This paper handles with this problem from a new perspective of creating a smooth transition and proposes a concise Deep Fusion Network (DFNet). Firstly, a fusion block is introduced to generate a flexible alpha composition map for combining known and unknown regions. The fusion block not only provides a smooth fusion between restored and existing content, but also provides an attention map to make network focus more on the unknown pixels. In this way, it builds a bridge for structural and texture information, so that information can be naturally propagated from known region into completion. Furthermore, fusion blocks are embedded into several decoder layers of the network. Accompanied by the adjustable loss constraints on each layer, more accurate structure information are achieved. We qualitatively and quantitatively compare our method with other state-of-the-art methods on Places2 and CelebA datasets. The results show the superior performance of DFNet, especially in the aspects of harmonious texture transition, texture detail and semantic structural consistency. Our source code will be avaiable at: https://github.com/hughplay/DFNet
Compound Multi-branch Feature Fusion for Real Image Restoration
Image restoration is a challenging and ill-posed problem which also has been a long-standing issue. However, most of learning based restoration methods are proposed to target one degradation type which means they are lack of generalization. In this paper, we proposed a multi-branch restoration model inspired from the Human Visual System (i.e., Retinal Ganglion Cells) which can achieve multiple restoration tasks in a general framework. The experiments show that the proposed multi-branch architecture, called CMFNet, has competitive performance results on four datasets, including image dehazing, deraindrop, and deblurring, which are very common applications for autonomous cars. The source code and pretrained models of three restoration tasks are available at https://github.com/FanChiMao/CMFNet.
Tokenize Image Patches: Global Context Fusion for Effective Haze Removal in Large Images
Global contextual information and local detail features are essential for haze removal tasks. Deep learning models perform well on small, low-resolution images, but they encounter difficulties with large, high-resolution ones due to GPU memory limitations. As a compromise, they often resort to image slicing or downsampling. The former diminishes global information, while the latter discards high-frequency details. To address these challenges, we propose DehazeXL, a haze removal method that effectively balances global context and local feature extraction, enabling end-to-end modeling of large images on mainstream GPU hardware. Additionally, to evaluate the efficiency of global context utilization in haze removal performance, we design a visual attribution method tailored to the characteristics of haze removal tasks. Finally, recognizing the lack of benchmark datasets for haze removal in large images, we have developed an ultra-high-resolution haze removal dataset (8KDehaze) to support model training and testing. It includes 10000 pairs of clear and hazy remote sensing images, each sized at 8192 times 8192 pixels. Extensive experiments demonstrate that DehazeXL can infer images up to 10240 times 10240 pixels with only 21 GB of memory, achieving state-of-the-art results among all evaluated methods. The source code and experimental dataset are available at https://github.com/CastleChen339/DehazeXL.
SQUARE: Semantic Query-Augmented Fusion and Efficient Batch Reranking for Training-free Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) aims to retrieve target images that preserve the visual content of a reference image while incorporating user-specified textual modifications. Training-free zero-shot CIR (ZS-CIR) approaches, which require no task-specific training or labeled data, are highly desirable, yet accurately capturing user intent remains challenging. In this paper, we present SQUARE, a novel two-stage training-free framework that leverages Multimodal Large Language Models (MLLMs) to enhance ZS-CIR. In the Semantic Query-Augmented Fusion (SQAF) stage, we enrich the query embedding derived from a vision-language model (VLM) such as CLIP with MLLM-generated captions of the target image. These captions provide high-level semantic guidance, enabling the query to better capture the user's intent and improve global retrieval quality. In the Efficient Batch Reranking (EBR) stage, top-ranked candidates are presented as an image grid with visual marks to the MLLM, which performs joint visual-semantic reasoning across all candidates. Our reranking strategy operates in a single pass and yields more accurate rankings. Experiments show that SQUARE, with its simplicity and effectiveness, delivers strong performance on four standard CIR benchmarks. Notably, it maintains high performance even with lightweight pre-trained, demonstrating its potential applicability.
FaR: Enhancing Multi-Concept Text-to-Image Diffusion via Concept Fusion and Localized Refinement
Generating multiple new concepts remains a challenging problem in the text-to-image task. Current methods often overfit when trained on a small number of samples and struggle with attribute leakage, particularly for class-similar subjects (e.g., two specific dogs). In this paper, we introduce Fuse-and-Refine (FaR), a novel approach that tackles these challenges through two key contributions: Concept Fusion technique and Localized Refinement loss function. Concept Fusion systematically augments the training data by separating reference subjects from backgrounds and recombining them into composite images to increase diversity. This augmentation technique tackles the overfitting problem by mitigating the narrow distribution of the limited training samples. In addition, Localized Refinement loss function is introduced to preserve subject representative attributes by aligning each concept's attention map to its correct region. This approach effectively prevents attribute leakage by ensuring that the diffusion model distinguishes similar subjects without mixing their attention maps during the denoising process. By fine-tuning specific modules at the same time, FaR balances the learning of new concepts with the retention of previously learned knowledge. Empirical results show that FaR not only prevents overfitting and attribute leakage while maintaining photorealism, but also outperforms other state-of-the-art methods.
Frequency-aware Feature Fusion for Dense Image Prediction
Dense image prediction tasks demand features with strong category information and precise spatial boundary details at high resolution. To achieve this, modern hierarchical models often utilize feature fusion, directly adding upsampled coarse features from deep layers and high-resolution features from lower levels. In this paper, we observe rapid variations in fused feature values within objects, resulting in intra-category inconsistency due to disturbed high-frequency features. Additionally, blurred boundaries in fused features lack accurate high frequency, leading to boundary displacement. Building upon these observations, we propose Frequency-Aware Feature Fusion (FreqFusion), integrating an Adaptive Low-Pass Filter (ALPF) generator, an offset generator, and an Adaptive High-Pass Filter (AHPF) generator. The ALPF generator predicts spatially-variant low-pass filters to attenuate high-frequency components within objects, reducing intra-class inconsistency during upsampling. The offset generator refines large inconsistent features and thin boundaries by replacing inconsistent features with more consistent ones through resampling, while the AHPF generator enhances high-frequency detailed boundary information lost during downsampling. Comprehensive visualization and quantitative analysis demonstrate that FreqFusion effectively improves feature consistency and sharpens object boundaries. Extensive experiments across various dense prediction tasks confirm its effectiveness. The code is made publicly available at https://github.com/Linwei-Chen/FreqFusion.
Fusion Embedding for Pose-Guided Person Image Synthesis with Diffusion Model
Pose-Guided Person Image Synthesis (PGPIS) aims to synthesize high-quality person images corresponding to target poses while preserving the appearance of the source image. Recently, PGPIS methods that use diffusion models have achieved competitive performance. Most approaches involve extracting representations of the target pose and source image and learning their relationships in the generative model's training process. This approach makes it difficult to learn the semantic relationships between the input and target images and complicates the model structure needed to enhance generation results. To address these issues, we propose Fusion embedding for PGPIS using a Diffusion Model (FPDM). Inspired by the successful application of pre-trained CLIP models in text-to-image diffusion models, our method consists of two stages. The first stage involves training the fusion embedding of the source image and target pose to align with the target image's embedding. In the second stage, the generative model uses this fusion embedding as a condition to generate the target image. We applied the proposed method to the benchmark datasets DeepFashion and RWTH-PHOENIX-Weather 2014T, and conducted both quantitative and qualitative evaluations, demonstrating state-of-the-art (SOTA) performance. An ablation study of the model structure showed that even a model using only the second stage achieved performance close to the other PGPIS SOTA models. The code is available at https://github.com/dhlee-work/FPDM.
Fusion is all you need: Face Fusion for Customized Identity-Preserving Image Synthesis
Text-to-image (T2I) models have significantly advanced the development of artificial intelligence, enabling the generation of high-quality images in diverse contexts based on specific text prompts. However, existing T2I-based methods often struggle to accurately reproduce the appearance of individuals from a reference image and to create novel representations of those individuals in various settings. To address this, we leverage the pre-trained UNet from Stable Diffusion to incorporate the target face image directly into the generation process. Our approach diverges from prior methods that depend on fixed encoders or static face embeddings, which often fail to bridge encoding gaps. Instead, we capitalize on UNet's sophisticated encoding capabilities to process reference images across multiple scales. By innovatively altering the cross-attention layers of the UNet, we effectively fuse individual identities into the generative process. This strategic integration of facial features across various scales not only enhances the robustness and consistency of the generated images but also facilitates efficient multi-reference and multi-identity generation. Our method sets a new benchmark in identity-preserving image generation, delivering state-of-the-art results in similarity metrics while maintaining prompt alignment.
An Intermediate Fusion ViT Enables Efficient Text-Image Alignment in Diffusion Models
Diffusion models have been widely used for conditional data cross-modal generation tasks such as text-to-image and text-to-video. However, state-of-the-art models still fail to align the generated visual concepts with high-level semantics in a language such as object count, spatial relationship, etc. We approach this problem from a multimodal data fusion perspective and investigate how different fusion strategies can affect vision-language alignment. We discover that compared to the widely used early fusion of conditioning text in a pretrained image feature space, a specially designed intermediate fusion can: (i) boost text-to-image alignment with improved generation quality and (ii) improve training and inference efficiency by reducing low-rank text-to-image attention calculations. We perform experiments using a text-to-image generation task on the MS-COCO dataset. We compare our intermediate fusion mechanism with the classic early fusion mechanism on two common conditioning methods on a U-shaped ViT backbone. Our intermediate fusion model achieves a higher CLIP Score and lower FID, with 20% reduced FLOPs, and 50% increased training speed compared to a strong U-ViT baseline with an early fusion.
DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features
Image Retrieval is a fundamental task of obtaining images similar to the query one from a database. A common image retrieval practice is to firstly retrieve candidate images via similarity search using global image features and then re-rank the candidates by leveraging their local features. Previous learning-based studies mainly focus on either global or local image representation learning to tackle the retrieval task. In this paper, we abandon the two-stage paradigm and seek to design an effective single-stage solution by integrating local and global information inside images into compact image representations. Specifically, we propose a Deep Orthogonal Local and Global (DOLG) information fusion framework for end-to-end image retrieval. It attentively extracts representative local information with multi-atrous convolutions and self-attention at first. Components orthogonal to the global image representation are then extracted from the local information. At last, the orthogonal components are concatenated with the global representation as a complementary, and then aggregation is performed to generate the final representation. The whole framework is end-to-end differentiable and can be trained with image-level labels. Extensive experimental results validate the effectiveness of our solution and show that our model achieves state-of-the-art image retrieval performances on Revisited Oxford and Paris datasets.
XFMamba: Cross-Fusion Mamba for Multi-View Medical Image Classification
Compared to single view medical image classification, using multiple views can significantly enhance predictive accuracy as it can account for the complementarity of each view while leveraging correlations between views. Existing multi-view approaches typically employ separate convolutional or transformer branches combined with simplistic feature fusion strategies. However, these approaches inadvertently disregard essential cross-view correlations, leading to suboptimal classification performance, and suffer from challenges with limited receptive field (CNNs) or quadratic computational complexity (transformers). Inspired by state space sequence models, we propose XFMamba, a pure Mamba-based cross-fusion architecture to address the challenge of multi-view medical image classification. XFMamba introduces a novel two-stage fusion strategy, facilitating the learning of single-view features and their cross-view disparity. This mechanism captures spatially long-range dependencies in each view while enhancing seamless information transfer between views. Results on three public datasets, MURA, CheXpert and DDSM, illustrate the effectiveness of our approach across diverse multi-view medical image classification tasks, showing that it outperforms existing convolution-based and transformer-based multi-view methods. Code is available at https://github.com/XZheng0427/XFMamba.
CSFMamba: Cross State Fusion Mamba Operator for Multimodal Remote Sensing Image Classification
Multimodal fusion has made great progress in the field of remote sensing image classification due to its ability to exploit the complementary spatial-spectral information. Deep learning methods such as CNN and Transformer have been widely used in these domains. State Space Models recently highlighted that prior methods suffer from quadratic computational complexity. As a result, modeling longer-range dependencies of spatial-spectral features imposes an overwhelming burden on the network. Mamba solves this problem by incorporating time-varying parameters into ordinary SSM and performing hardware optimization, but it cannot perform feature fusion directly. In order to make full use of Mamba's low computational burden and explore the potential of internal structure in multimodal feature fusion, we propose Cross State Fusion Mamba (CSFMamba) Network. Specifically, we first design the preprocessing module of remote sensing image information for the needs of Mamba structure, and combine it with CNN to extract multi-layer features. Secondly, a cross-state module based on Mamba operator is creatively designed to fully fuse the feature of the two modalities. The advantages of Mamba and CNN are combined by designing a more powerful backbone. We capture the fusion relationship between HSI and LiDAR modalities with stronger full-image understanding. The experimental results on two datasets of MUUFL and Houston2018 show that the proposed method outperforms the experimental results of Transformer under the premise of reducing the network training burden.
F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search
The proliferation of digital food content has intensified the need for robust and accurate systems capable of fine-grained visual understanding and retrieval. In this work, we address the challenging task of food image-to-text matching, a critical component in applications such as dietary monitoring, smart kitchens, and restaurant automation. We propose F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search, a training-free, vision-language model (VLM)-guided framework that significantly improves retrieval performance through enhanced multi-modal feature representations. Our approach introduces two key contributions: (1) a uni-directional(and bi-directional) multi-modal fusion strategy that combines image embeddings with VLM-generated textual descriptions to improve query expressiveness, and (2) a novel feature-based re-ranking mechanism for top-k retrieval, leveraging predicted food ingredients to refine results and boost precision. Leveraging open-source image-text encoders, we demonstrate substantial gains over standard baselines - achieving ~10% and ~7.7% improvements in top-1 retrieval under dense and sparse caption scenarios, and a ~28.6% gain in top-k ingredient-level retrieval. Additionally, we show that smaller models (e.g., ViT-B/32) can match or outperform larger counterparts (e.g., ViT-H, ViT-G, ViT-bigG) when augmented with textual fusion, highlighting the effectiveness of our method in resource-constrained settings. Code and test datasets will be made publicly available at: https://github.com/mailcorahul/f4-its
Concept Weaver: Enabling Multi-Concept Fusion in Text-to-Image Models
While there has been significant progress in customizing text-to-image generation models, generating images that combine multiple personalized concepts remains challenging. In this work, we introduce Concept Weaver, a method for composing customized text-to-image diffusion models at inference time. Specifically, the method breaks the process into two steps: creating a template image aligned with the semantics of input prompts, and then personalizing the template using a concept fusion strategy. The fusion strategy incorporates the appearance of the target concepts into the template image while retaining its structural details. The results indicate that our method can generate multiple custom concepts with higher identity fidelity compared to alternative approaches. Furthermore, the method is shown to seamlessly handle more than two concepts and closely follow the semantic meaning of the input prompt without blending appearances across different subjects.
TweedieMix: Improving Multi-Concept Fusion for Diffusion-based Image/Video Generation
Despite significant advancements in customizing text-to-image and video generation models, generating images and videos that effectively integrate multiple personalized concepts remains a challenging task. To address this, we present TweedieMix, a novel method for composing customized diffusion models during the inference phase. By analyzing the properties of reverse diffusion sampling, our approach divides the sampling process into two stages. During the initial steps, we apply a multiple object-aware sampling technique to ensure the inclusion of the desired target objects. In the later steps, we blend the appearances of the custom concepts in the de-noised image space using Tweedie's formula. Our results demonstrate that TweedieMix can generate multiple personalized concepts with higher fidelity than existing methods. Moreover, our framework can be effortlessly extended to image-to-video diffusion models, enabling the generation of videos that feature multiple personalized concepts. Results and source code are in our anonymous project page.
Exploring the Deep Fusion of Large Language Models and Diffusion Transformers for Text-to-Image Synthesis
This paper does not describe a new method; instead, it provides a thorough exploration of an important yet understudied design space related to recent advances in text-to-image synthesis -- specifically, the deep fusion of large language models (LLMs) and diffusion transformers (DiTs) for multi-modal generation. Previous studies mainly focused on overall system performance rather than detailed comparisons with alternative methods, and key design details and training recipes were often left undisclosed. These gaps create uncertainty about the real potential of this approach. To fill these gaps, we conduct an empirical study on text-to-image generation, performing controlled comparisons with established baselines, analyzing important design choices, and providing a clear, reproducible recipe for training at scale. We hope this work offers meaningful data points and practical guidelines for future research in multi-modal generation.
Training-free Zero-shot Composed Image Retrieval via Weighted Modality Fusion and Similarity
Composed image retrieval (CIR), which formulates the query as a combination of a reference image and modified text, has emerged as a new form of image search due to its enhanced ability to capture user intent. However, training a CIR model in a supervised manner typically requires labor-intensive collection of (reference image, text modifier, target image) triplets. While existing zero-shot CIR (ZS-CIR) methods eliminate the need for training on specific downstream datasets, they still require additional pretraining on large-scale image datasets. In this paper, we introduce a training-free approach for ZS-CIR. Our approach, Weighted Modality fusion and similarity for CIR (WeiMoCIR), operates under the assumption that image and text modalities can be effectively combined using a simple weighted average. This allows the query representation to be constructed directly from the reference image and text modifier. To further enhance retrieval performance, we employ multimodal large language models (MLLMs) to generate image captions for the database images and incorporate these textual captions into the similarity computation by combining them with image information using a weighted average. Our approach is simple, easy to implement, and its effectiveness is validated through experiments on the FashionIQ and CIRR datasets. Code is available at https://github.com/whats2000/WeiMoCIR.
AutoLoRA: Automatic LoRA Retrieval and Fine-Grained Gated Fusion for Text-to-Image Generation
Despite recent advances in photorealistic image generation through large-scale models like FLUX and Stable Diffusion v3, the practical deployment of these architectures remains constrained by their inherent intractability to parameter fine-tuning. While low-rank adaptation (LoRA) have demonstrated efficacy in enabling model customization with minimal parameter overhead, the effective utilization of distributed open-source LoRA modules faces three critical challenges: sparse metadata annotation, the requirement for zero-shot adaptation capabilities, and suboptimal fusion strategies for multi-LoRA fusion strategies. To address these limitations, we introduce a novel framework that enables semantic-driven LoRA retrieval and dynamic aggregation through two key components: (1) weight encoding-base LoRA retriever that establishes a shared semantic space between LoRA parameter matrices and text prompts, eliminating dependence on original training data, and (2) fine-grained gated fusion mechanism that computes context-specific fusion weights across network layers and diffusion timesteps to optimally integrate multiple LoRA modules during generation. Our approach achieves significant improvement in image generation perfermance, thereby facilitating scalable and data-efficient enhancement of foundational models. This work establishes a critical bridge between the fragmented landscape of community-developed LoRAs and practical deployment requirements, enabling collaborative model evolution through standardized adapter integration.
Controllable Reference Guided Diffusion with Local Global Fusion for Real World Remote Sensing Image Super Resolution
Super resolution techniques can enhance the spatial resolution of remote sensing images, enabling more efficient large scale earth observation applications. While single image SR methods enhance low resolution images, they neglect valuable complementary information from auxiliary data. Reference based SR can be interpreted as an information fusion task, where historical high resolution reference images are combined with current LR observations. However, existing RefSR methods struggle with real world complexities, such as cross sensor resolution gap and significant land cover changes, often leading to under generation or over reliance on reference image. To address these challenges, we propose CRefDiff, a novel controllable reference guided diffusion model for real world remote sensing image SR. To address the under generation problem, CRefDiff leverages a powerful generative prior to produce accurate structures and textures. To mitigate over reliance on the reference, we introduce a dual branch fusion mechanism that adaptively fuse both local and global information from the reference image. Moreover, the dual branch design enables reference strength control during inference, enhancing the models interactivity and flexibility. Finally, the Better Start strategy is proposed to significantly reduce the number of denoising steps, thereby accelerating the inference process. To support further research, we introduce RealRefRSSRD, a new real world RefSR dataset for remote sensing images, consisting of HR NAIP and LR Sentinel2 image pairs with diverse land cover changes and significant temporal gaps. Extensive experiments on RealRefRSSRD show that CRefDiff achieves SOTA performance and improves downstream tasks.
Improving Image Captioning Descriptiveness by Ranking and LLM-based Fusion
State-of-The-Art (SoTA) image captioning models often rely on the Microsoft COCO (MS-COCO) dataset for training. This dataset contains annotations provided by human annotators, who typically produce captions averaging around ten tokens. However, this constraint presents a challenge in effectively capturing complex scenes and conveying detailed information. Furthermore, captioning models tend to exhibit bias towards the ``average'' caption, which captures only the more general aspects. What would happen if we were able to automatically generate longer captions, thereby making them more detailed? Would these captions, evaluated by humans, be more or less representative of the image content compared to the original MS-COCO captions? In this paper, we present a novel approach to address previous challenges by showcasing how captions generated from different SoTA models can be effectively fused, resulting in richer captions. Our proposed method leverages existing models from the literature, eliminating the need for additional training. Instead, it utilizes an image-text based metric to rank the captions generated by SoTA models for a given image. Subsequently, the top two captions are fused using a Large Language Model (LLM). Experimental results demonstrate the effectiveness of our approach, as the captions generated by our model exhibit higher consistency with human judgment when evaluated on the MS-COCO test set. By combining the strengths of various SoTA models, our method enhances the quality and appeal of image captions, bridging the gap between automated systems and the rich, informative nature of human-generated descriptions. This advance opens up new possibilities for generating captions that are more suitable for the training of both vision-language and captioning models.
Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models
We introduce Playground v3 (PGv3), our latest text-to-image model that achieves state-of-the-art (SoTA) performance across multiple testing benchmarks, excels in graphic design abilities and introduces new capabilities. Unlike traditional text-to-image generative models that rely on pre-trained language models like T5 or CLIP text encoders, our approach fully integrates Large Language Models (LLMs) with a novel structure that leverages text conditions exclusively from a decoder-only LLM. Additionally, to enhance image captioning quality-we developed an in-house captioner, capable of generating captions with varying levels of detail, enriching the diversity of text structures. We also introduce a new benchmark CapsBench to evaluate detailed image captioning performance. Experimental results demonstrate that PGv3 excels in text prompt adherence, complex reasoning, and accurate text rendering. User preference studies indicate the super-human graphic design ability of our model for common design applications, such as stickers, posters, and logo designs. Furthermore, PGv3 introduces new capabilities, including precise RGB color control and robust multilingual understanding.
DesignEdit: Multi-Layered Latent Decomposition and Fusion for Unified & Accurate Image Editing
Recently, how to achieve precise image editing has attracted increasing attention, especially given the remarkable success of text-to-image generation models. To unify various spatial-aware image editing abilities into one framework, we adopt the concept of layers from the design domain to manipulate objects flexibly with various operations. The key insight is to transform the spatial-aware image editing task into a combination of two sub-tasks: multi-layered latent decomposition and multi-layered latent fusion. First, we segment the latent representations of the source images into multiple layers, which include several object layers and one incomplete background layer that necessitates reliable inpainting. To avoid extra tuning, we further explore the inner inpainting ability within the self-attention mechanism. We introduce a key-masking self-attention scheme that can propagate the surrounding context information into the masked region while mitigating its impact on the regions outside the mask. Second, we propose an instruction-guided latent fusion that pastes the multi-layered latent representations onto a canvas latent. We also introduce an artifact suppression scheme in the latent space to enhance the inpainting quality. Due to the inherent modular advantages of such multi-layered representations, we can achieve accurate image editing, and we demonstrate that our approach consistently surpasses the latest spatial editing methods, including Self-Guidance and DiffEditor. Last, we show that our approach is a unified framework that supports various accurate image editing tasks on more than six different editing tasks.
FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability stemming from two factors: 1) limited annotated image-event-depth datasets causing insufficient cross-modal supervision, and 2) inherent frequency mismatches between static images and dynamic event streams with distinct spatiotemporal patterns, leading to ineffective feature fusion. To address this dual challenge, we propose Frequency-decoupled Unified Self-supervised Encoder (FUSE) with two synergistic components: The Parameter-efficient Self-supervised Transfer (PST) establishes cross-modal knowledge transfer through latent space alignment with image foundation models, effectively mitigating data scarcity by enabling joint encoding without depth ground truth. Complementing this, we propose the Frequency-Decoupled Fusion module (FreDFuse) to explicitly decouple high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches through physics-aware fusion. This combined approach enables FUSE to construct a universal image-event encoder that only requires lightweight decoder adaptation for target datasets. Extensive experiments demonstrate state-of-the-art performance with 14% and 24.9% improvements in Abs.Rel on MVSEC and DENSE datasets. The framework exhibits remarkable zero-shot adaptability to challenging scenarios including extreme lighting and motion blur, significantly advancing real-world deployment capabilities. The source code for our method is publicly available at: https://github.com/sunpihai-up/FUSE
Remote Sensing Image Segmentation Using Vision Mamba and Multi-Scale Multi-Frequency Feature Fusion
As remote sensing imaging technology continues to advance and evolve, processing high-resolution and diversified satellite imagery to improve segmentation accuracy and enhance interpretation efficiency emerg as a pivotal area of investigation within the realm of remote sensing. Although segmentation algorithms based on CNNs and Transformers achieve significant progress in performance, balancing segmentation accuracy and computational complexity remains challenging, limiting their wide application in practical tasks. To address this, this paper introduces state space model (SSM) and proposes a novel hybrid semantic segmentation network based on vision Mamba (CVMH-UNet). This method designs a cross-scanning visual state space block (CVSSBlock) that uses cross 2D scanning (CS2D) to fully capture global information from multiple directions, while by incorporating convolutional neural network branches to overcome the constraints of Vision Mamba (VMamba) in acquiring local information, this approach facilitates a comprehensive analysis of both global and local features. Furthermore, to address the issue of limited discriminative power and the difficulty in achieving detailed fusion with direct skip connections, a multi-frequency multi-scale feature fusion block (MFMSBlock) is designed. This module introduces multi-frequency information through 2D discrete cosine transform (2D DCT) to enhance information utilization and provides additional scale local detail information through point-wise convolution branches. Finally, it aggregates multi-scale information along the channel dimension, achieving refined feature fusion. Findings from experiments conducted on renowned datasets of remote sensing imagery demonstrate that proposed CVMH-UNet achieves superior segmentation performance while maintaining low computational complexity, outperforming surpassing current leading-edge segmentation algorithms.
HybridDepth: Robust Depth Fusion for Mobile AR by Leveraging Depth from Focus and Single-Image Priors
We propose HYBRIDDEPTH, a robust depth estimation pipeline that addresses the unique challenges of depth estimation for mobile AR, such as scale ambiguity, hardware heterogeneity, and generalizability. HYBRIDDEPTH leverages the camera features available on mobile devices. It effectively combines the scale accuracy inherent in Depth from Focus (DFF) methods with the generalization capabilities enabled by strong single-image depth priors. By utilizing the focal planes of a mobile camera, our approach accurately captures depth values from focused pixels and applies these values to compute scale and shift parameters for transforming relative depths into metric depths. We test our pipeline as an end-to-end system, with a newly developed mobile client to capture focal stacks, which are then sent to a GPU-powered server for depth estimation. Through comprehensive quantitative and qualitative analyses, we demonstrate that HYBRIDDEPTH not only outperforms state-of-the-art (SOTA) models in common datasets (DDFF12, NYU Depth v2) and a real-world AR dataset ARKitScenes but also demonstrates strong zero-shot generalization. For example, HYBRIDDEPTH trained on NYU Depth v2 achieves comparable performance on the DDFF12 to existing models trained on DDFF12. it also outperforms all the SOTA models in zero-shot performance on the ARKitScenes dataset. Additionally, we conduct a qualitative comparison between our model and the ARCore framework, demonstrating that our models output depth maps are significantly more accurate in terms of structural details and metric accuracy. The source code of this project is available at github.
OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on
Image-based virtual try-on (VTON), which aims to generate an outfitted image of a target human wearing an in-shop garment, is a challenging image-synthesis task calling for not only high fidelity of the outfitted human but also full preservation of garment details. To tackle this issue, we propose Outfitting over Try-on Diffusion (OOTDiffusion), leveraging the power of pretrained latent diffusion models and designing a novel network architecture for realistic and controllable virtual try-on. Without an explicit warping process, we propose an outfitting UNet to learn the garment detail features, and merge them with the target human body via our proposed outfitting fusion in the denoising process of diffusion models. In order to further enhance the controllability of our outfitting UNet, we introduce outfitting dropout to the training process, which enables us to adjust the strength of garment features through classifier-free guidance. Our comprehensive experiments on the VITON-HD and Dress Code datasets demonstrate that OOTDiffusion efficiently generates high-quality outfitted images for arbitrary human and garment images, which outperforms other VTON methods in both fidelity and controllability, indicating an impressive breakthrough in virtual try-on. Our source code is available at https://github.com/levihsu/OOTDiffusion.
Speech Fusion to Face: Bridging the Gap Between Human's Vocal Characteristics and Facial Imaging
While deep learning technologies are now capable of generating realistic images confusing humans, the research efforts are turning to the synthesis of images for more concrete and application-specific purposes. Facial image generation based on vocal characteristics from speech is one of such important yet challenging tasks. It is the key enabler to influential use cases of image generation, especially for business in public security and entertainment. Existing solutions to the problem of speech2face renders limited image quality and fails to preserve facial similarity due to the lack of quality dataset for training and appropriate integration of vocal features. In this paper, we investigate these key technical challenges and propose Speech Fusion to Face, or SF2F in short, attempting to address the issue of facial image quality and the poor connection between vocal feature domain and modern image generation models. By adopting new strategies on data model and training, we demonstrate dramatic performance boost over state-of-the-art solution, by doubling the recall of individual identity, and lifting the quality score from 15 to 19 based on the mutual information score with VGGFace classifier.
Transformer Fusion with Optimal Transport
Fusion is a technique for merging multiple independently-trained neural networks in order to combine their capabilities. Past attempts have been restricted to the case of fully-connected, convolutional, and residual networks. In this paper, we present a systematic approach for fusing two or more transformer-based networks exploiting Optimal Transport to (soft-)align the various architectural components. We flesh out an abstraction for layer alignment, that can generalize to arbitrary architectures -- in principle -- and we apply this to the key ingredients of Transformers such as multi-head self-attention, layer-normalization, and residual connections, and we discuss how to handle them via various ablation studies. Furthermore, our method allows the fusion of models of different sizes (heterogeneous fusion), providing a new and efficient way for compression of Transformers. The proposed approach is evaluated on both image classification tasks via Vision Transformer and natural language modeling tasks using BERT. Our approach consistently outperforms vanilla fusion, and, after a surprisingly short finetuning, also outperforms the individual converged parent models. In our analysis, we uncover intriguing insights about the significant role of soft alignment in the case of Transformers. Our results showcase the potential of fusing multiple Transformers, thus compounding their expertise, in the budding paradigm of model fusion and recombination.
Leveraging Inpainting for Single-Image Shadow Removal
Fully-supervised shadow removal methods achieve the best restoration qualities on public datasets but still generate some shadow remnants. One of the reasons is the lack of large-scale shadow & shadow-free image pairs. Unsupervised methods can alleviate the issue but their restoration qualities are much lower than those of fully-supervised methods. In this work, we find that pretraining shadow removal networks on the image inpainting dataset can reduce the shadow remnants significantly: a naive encoder-decoder network gets competitive restoration quality w.r.t. the state-of-the-art methods via only 10% shadow & shadow-free image pairs. After analyzing networks with/without inpainting pre-training via the information stored in the weight (IIW), we find that inpainting pretraining improves restoration quality in non-shadow regions and enhances the generalization ability of networks significantly. Additionally, shadow removal fine-tuning enables networks to fill in the details of shadow regions. Inspired by these observations we formulate shadow removal as an adaptive fusion task that takes advantage of both shadow removal and image inpainting. Specifically, we develop an adaptive fusion network consisting of two encoders, an adaptive fusion block, and a decoder. The two encoders are responsible for extracting the feature from the shadow image and the shadow-masked image respectively. The adaptive fusion block is responsible for combining these features in an adaptive manner. Finally, the decoder converts the adaptive fused features to the desired shadow-free result. The extensive experiments show that our method empowered with inpainting outperforms all state-of-the-art methods.
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation
Referring image segmentation is a fundamental vision-language task that aims to segment out an object referred to by a natural language expression from an image. One of the key challenges behind this task is leveraging the referring expression for highlighting relevant positions in the image. A paradigm for tackling this problem is to leverage a powerful vision-language ("cross-modal") decoder to fuse features independently extracted from a vision encoder and a language encoder. Recent methods have made remarkable advancements in this paradigm by exploiting Transformers as cross-modal decoders, concurrent to the Transformer's overwhelming success in many other vision-language tasks. Adopting a different approach in this work, we show that significantly better cross-modal alignments can be achieved through the early fusion of linguistic and visual features in intermediate layers of a vision Transformer encoder network. By conducting cross-modal feature fusion in the visual feature encoding stage, we can leverage the well-proven correlation modeling power of a Transformer encoder for excavating helpful multi-modal context. This way, accurate segmentation results are readily harvested with a light-weight mask predictor. Without bells and whistles, our method surpasses the previous state-of-the-art methods on RefCOCO, RefCOCO+, and G-Ref by large margins.
Lightweight Image Super-Resolution with Adaptive Weighted Learning Network
Deep learning has been successfully applied to the single-image super-resolution (SISR) task with great performance in recent years. However, most convolutional neural network based SR models require heavy computation, which limit their real-world applications. In this work, a lightweight SR network, named Adaptive Weighted Super-Resolution Network (AWSRN), is proposed for SISR to address this issue. A novel local fusion block (LFB) is designed in AWSRN for efficient residual learning, which consists of stacked adaptive weighted residual units (AWRU) and a local residual fusion unit (LRFU). Moreover, an adaptive weighted multi-scale (AWMS) module is proposed to make full use of features in reconstruction layer. AWMS consists of several different scale convolutions, and the redundancy scale branch can be removed according to the contribution of adaptive weights in AWMS for lightweight network. The experimental results on the commonly used datasets show that the proposed lightweight AWSRN achieves superior performance on x2, x3, x4, and x8 scale factors to state-of-the-art methods with similar parameters and computational overhead. Code is avaliable at: https://github.com/ChaofWang/AWSRN
FusionFrames: Efficient Architectural Aspects for Text-to-Video Generation Pipeline
Multimedia generation approaches occupy a prominent place in artificial intelligence research. Text-to-image models achieved high-quality results over the last few years. However, video synthesis methods recently started to develop. This paper presents a new two-stage latent diffusion text-to-video generation architecture based on the text-to-image diffusion model. The first stage concerns keyframes synthesis to figure the storyline of a video, while the second one is devoted to interpolation frames generation to make movements of the scene and objects smooth. We compare several temporal conditioning approaches for keyframes generation. The results show the advantage of using separate temporal blocks over temporal layers in terms of metrics reflecting video generation quality aspects and human preference. The design of our interpolation model significantly reduces computational costs compared to other masked frame interpolation approaches. Furthermore, we evaluate different configurations of MoVQ-based video decoding scheme to improve consistency and achieve higher PSNR, SSIM, MSE, and LPIPS scores. Finally, we compare our pipeline with existing solutions and achieve top-2 scores overall and top-1 among open-source solutions: CLIPSIM = 0.2976 and FVD = 433.054. Project page: https://ai-forever.github.io/kandinsky-video/
YOLO-FEDER FusionNet: A Novel Deep Learning Architecture for Drone Detection
Predominant methods for image-based drone detection frequently rely on employing generic object detection algorithms like YOLOv5. While proficient in identifying drones against homogeneous backgrounds, these algorithms often struggle in complex, highly textured environments. In such scenarios, drones seamlessly integrate into the background, creating camouflage effects that adversely affect the detection quality. To address this issue, we introduce a novel deep learning architecture called YOLO-FEDER FusionNet. Unlike conventional approaches, YOLO-FEDER FusionNet combines generic object detection methods with the specialized strength of camouflage object detection techniques to enhance drone detection capabilities. Comprehensive evaluations of YOLO-FEDER FusionNet show the efficiency of the proposed model and demonstrate substantial improvements in both reducing missed detections and false alarms.
Neural-Driven Image Editing
Traditional image editing typically relies on manual prompting, making it labor-intensive and inaccessible to individuals with limited motor control or language abilities. Leveraging recent advances in brain-computer interfaces (BCIs) and generative models, we propose LoongX, a hands-free image editing approach driven by multimodal neurophysiological signals. LoongX utilizes state-of-the-art diffusion models trained on a comprehensive dataset of 23,928 image editing pairs, each paired with synchronized electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), photoplethysmography (PPG), and head motion signals that capture user intent. To effectively address the heterogeneity of these signals, LoongX integrates two key modules. The cross-scale state space (CS3) module encodes informative modality-specific features. The dynamic gated fusion (DGF) module further aggregates these features into a unified latent space, which is then aligned with edit semantics via fine-tuning on a diffusion transformer (DiT). Additionally, we pre-train the encoders using contrastive learning to align cognitive states with semantic intentions from embedded natural language. Extensive experiments demonstrate that LoongX achieves performance comparable to text-driven methods (CLIP-I: 0.6605 vs. 0.6558; DINO: 0.4812 vs. 0.4636) and outperforms them when neural signals are combined with speech (CLIP-T: 0.2588 vs. 0.2549). These results highlight the promise of neural-driven generative models in enabling accessible, intuitive image editing and open new directions for cognitive-driven creative technologies. Datasets and code will be released to support future work and foster progress in this emerging area.
EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model
Segment Anything Model (SAM) has attracted widespread attention for its superior interactive segmentation capabilities with visual prompts while lacking further exploration of text prompts. In this paper, we empirically investigate what text prompt encoders (e.g., CLIP or LLM) are good for adapting SAM for referring expression segmentation and introduce the Early Vision-language Fusion-based SAM (EVF-SAM). EVF-SAM is a simple yet effective referring segmentation method which exploits multimodal prompts (i.e., image and text) and comprises a pre-trained vision-language model to generate referring prompts and a SAM model for segmentation. Surprisingly, we observe that: (1) multimodal prompts and (2) vision-language models with early fusion (e.g., BEIT-3) are beneficial for prompting SAM for accurate referring segmentation. Our experiments show that the proposed EVF-SAM based on BEIT-3 can obtain state-of-the-art performance on RefCOCO/+/g for referring expression segmentation and demonstrate the superiority of prompting SAM with early vision-language fusion. In addition, the proposed EVF-SAM with 1.32B parameters achieves remarkably higher performance while reducing nearly 82% of parameters compared to previous SAM methods based on large multimodal models.
Data-Efficient Multimodal Fusion on a Single GPU
The goal of multimodal alignment is to learn a single latent space that is shared between multimodal inputs. The most powerful models in this space have been trained using massive datasets of paired inputs and large-scale computational resources, making them prohibitively expensive to train in many practical scenarios. We surmise that existing unimodal encoders pre-trained on large amounts of unimodal data should provide an effective bootstrap to create multimodal models from unimodal ones at much lower costs. We therefore propose FuseMix, a multimodal augmentation scheme that operates on the latent spaces of arbitrary pre-trained unimodal encoders. Using FuseMix for multimodal alignment, we achieve competitive performance -- and in certain cases outperform state-of-the art methods -- in both image-text and audio-text retrieval, with orders of magnitude less compute and data: for example, we outperform CLIP on the Flickr30K text-to-image retrieval task with sim ! 600times fewer GPU days and sim ! 80times fewer image-text pairs. Additionally, we show how our method can be applied to convert pre-trained text-to-image generative models into audio-to-image ones. Code is available at: https://github.com/layer6ai-labs/fusemix.
FuseLIP: Multimodal Embeddings via Early Fusion of Discrete Tokens
Contrastive language-image pre-training aligns the features of text-image pairs in a common latent space via distinct encoders for each modality. While this approach achieves impressive performance in several zero-shot tasks, it cannot natively handle multimodal inputs, i.e., encoding image and text into a single feature vector. As a remedy, it is common practice to use additional modules to merge the features extracted by the unimodal encoders. In this work, we present FuseLIP, an alternative architecture for multimodal embedding. Leveraging recent progress in discrete image tokenizers, we propose to use a single transformer model which operates on an extended vocabulary of text and image tokens. This early fusion approach allows the different modalities to interact at each depth of encoding and obtain richer representations compared to common late fusion. We collect new datasets for multimodal pre-training and evaluation, designing challenging tasks for multimodal encoder models. We show that FuseLIP outperforms other approaches in multimodal embedding tasks such as VQA and text-guided image transformation retrieval, while being comparable to baselines on unimodal tasks.
FreeLoRA: Enabling Training-Free LoRA Fusion for Autoregressive Multi-Subject Personalization
Subject-driven image generation plays a crucial role in applications such as virtual try-on and poster design. Existing approaches typically fine-tune pretrained generative models or apply LoRA-based adaptations for individual subjects. However, these methods struggle with multi-subject personalization, as combining independently adapted modules often requires complex re-tuning or joint optimization. We present FreeLoRA, a simple and generalizable framework that enables training-free fusion of subject-specific LoRA modules for multi-subject personalization. Each LoRA module is adapted on a few images of a specific subject using a Full Token Tuning strategy, where it is applied across all tokens in the prompt to encourage weakly supervised token-content alignment. At inference, we adopt Subject-Aware Inference, activating each module only on its corresponding subject tokens. This enables training-free fusion of multiple personalized subjects within a single image, while mitigating overfitting and mutual interference between subjects. Extensive experiments show that FreeLoRA achieves strong performance in both subject fidelity and prompt consistency.
DS_FusionNet: Dynamic Dual-Stream Fusion with Bidirectional Knowledge Distillation for Plant Disease Recognition
Given the severe challenges confronting the global growth security of economic crops, precise identification and prevention of plant diseases has emerged as a critical issue in artificial intelligence-enabled agricultural technology. To address the technical challenges in plant disease recognition, including small-sample learning, leaf occlusion, illumination variations, and high inter-class similarity, this study innovatively proposes a Dynamic Dual-Stream Fusion Network (DS_FusionNet). The network integrates a dual-backbone architecture, deformable dynamic fusion modules, and bidirectional knowledge distillation strategy, significantly enhancing recognition accuracy. Experimental results demonstrate that DS_FusionNet achieves classification accuracies exceeding 90% using only 10% of the PlantDisease and CIFAR-10 datasets, while maintaining 85% accuracy on the complex PlantWild dataset, exhibiting exceptional generalization capabilities. This research not only provides novel technical insights for fine-grained image classification but also establishes a robust foundation for precise identification and management of agricultural diseases.
MaxFusion: Plug&Play Multi-Modal Generation in Text-to-Image Diffusion Models
Large diffusion-based Text-to-Image (T2I) models have shown impressive generative powers for text-to-image generation as well as spatially conditioned image generation. For most applications, we can train the model end-toend with paired data to obtain photorealistic generation quality. However, to add an additional task, one often needs to retrain the model from scratch using paired data across all modalities to retain good generation performance. In this paper, we tackle this issue and propose a novel strategy to scale a generative model across new tasks with minimal compute. During our experiments, we discovered that the variance maps of intermediate feature maps of diffusion models capture the intensity of conditioning. Utilizing this prior information, we propose MaxFusion, an efficient strategy to scale up text-to-image generation models to accommodate new modality conditions. Specifically, we combine aligned features of multiple models, hence bringing a compositional effect. Our fusion strategy can be integrated into off-the-shelf models to enhance their generative prowess.
FM-Fusion: Instance-aware Semantic Mapping Boosted by Vision-Language Foundation Models
Semantic mapping based on the supervised object detectors is sensitive to image distribution. In real-world environments, the object detection and segmentation performance can lead to a major drop, preventing the use of semantic mapping in a wider domain. On the other hand, the development of vision-language foundation models demonstrates a strong zero-shot transferability across data distribution. It provides an opportunity to construct generalizable instance-aware semantic maps. Hence, this work explores how to boost instance-aware semantic mapping from object detection generated from foundation models. We propose a probabilistic label fusion method to predict close-set semantic classes from open-set label measurements. An instance refinement module merges the over-segmented instances caused by inconsistent segmentation. We integrate all the modules into a unified semantic mapping system. Reading a sequence of RGB-D input, our work incrementally reconstructs an instance-aware semantic map. We evaluate the zero-shot performance of our method in ScanNet and SceneNN datasets. Our method achieves 40.3 mean average precision (mAP) on the ScanNet semantic instance segmentation task. It outperforms the traditional semantic mapping method significantly.
Image Anything: Towards Reasoning-coherent and Training-free Multi-modal Image Generation
The multifaceted nature of human perception and comprehension indicates that, when we think, our body can naturally take any combination of senses, a.k.a., modalities and form a beautiful picture in our brain. For example, when we see a cattery and simultaneously perceive the cat's purring sound, our brain can construct a picture of a cat in the cattery. Intuitively, generative AI models should hold the versatility of humans and be capable of generating images from any combination of modalities efficiently and collaboratively. This paper presents ImgAny, a novel end-to-end multi-modal generative model that can mimic human reasoning and generate high-quality images. Our method serves as the first attempt in its capacity of efficiently and flexibly taking any combination of seven modalities, ranging from language, audio to vision modalities, including image, point cloud, thermal, depth, and event data. Our key idea is inspired by human-level cognitive processes and involves the integration and harmonization of multiple input modalities at both the entity and attribute levels without specific tuning across modalities. Accordingly, our method brings two novel training-free technical branches: 1) Entity Fusion Branch ensures the coherence between inputs and outputs. It extracts entity features from the multi-modal representations powered by our specially constructed entity knowledge graph; 2) Attribute Fusion Branch adeptly preserves and processes the attributes. It efficiently amalgamates distinct attributes from diverse input modalities via our proposed attribute knowledge graph. Lastly, the entity and attribute features are adaptively fused as the conditional inputs to the pre-trained Stable Diffusion model for image generation. Extensive experiments under diverse modality combinations demonstrate its exceptional capability for visual content creation.
Efficient Image Captioning for Edge Devices
Recent years have witnessed the rapid progress of image captioning. However, the demands for large memory storage and heavy computational burden prevent these captioning models from being deployed on mobile devices. The main obstacles lie in the heavyweight visual feature extractors (i.e., object detectors) and complicated cross-modal fusion networks. To this end, we propose LightCap, a lightweight image captioner for resource-limited devices. The core design is built on the recent CLIP model for efficient image captioning. To be specific, on the one hand, we leverage the CLIP model to extract the compact grid features without relying on the time-consuming object detectors. On the other hand, we transfer the image-text retrieval design of CLIP to image captioning scenarios by devising a novel visual concept extractor and a cross-modal modulator. We further optimize the cross-modal fusion model and parallel prediction heads via sequential and ensemble distillations. With the carefully designed architecture, our model merely contains 40M parameters, saving the model size by more than 75% and the FLOPs by more than 98% in comparison with the current state-of-the-art methods. In spite of the low capacity, our model still exhibits state-of-the-art performance on prevalent datasets, e.g., 136.6 CIDEr on COCO Karpathy test split. Testing on the smartphone with only a single CPU, the proposed LightCap exhibits a fast inference speed of 188ms per image, which is ready for practical applications.
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
Scene understanding based on image segmentation is a crucial component of autonomous vehicles. Pixel-wise semantic segmentation of RGB images can be advanced by exploiting complementary features from the supplementary modality (X-modality). However, covering a wide variety of sensors with a modality-agnostic model remains an unresolved problem due to variations in sensor characteristics among different modalities. Unlike previous modality-specific methods, in this work, we propose a unified fusion framework, CMX, for RGB-X semantic segmentation. To generalize well across different modalities, that often include supplements as well as uncertainties, a unified cross-modal interaction is crucial for modality fusion. Specifically, we design a Cross-Modal Feature Rectification Module (CM-FRM) to calibrate bi-modal features by leveraging the features from one modality to rectify the features of the other modality. With rectified feature pairs, we deploy a Feature Fusion Module (FFM) to perform sufficient exchange of long-range contexts before mixing. To verify CMX, for the first time, we unify five modalities complementary to RGB, i.e., depth, thermal, polarization, event, and LiDAR. Extensive experiments show that CMX generalizes well to diverse multi-modal fusion, achieving state-of-the-art performances on five RGB-Depth benchmarks, as well as RGB-Thermal, RGB-Polarization, and RGB-LiDAR datasets. Besides, to investigate the generalizability to dense-sparse data fusion, we establish an RGB-Event semantic segmentation benchmark based on the EventScape dataset, on which CMX sets the new state-of-the-art. The source code of CMX is publicly available at https://github.com/huaaaliu/RGBX_Semantic_Segmentation.
Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance
In this study, we introduce a methodology for human image animation by leveraging a 3D human parametric model within a latent diffusion framework to enhance shape alignment and motion guidance in curernt human generative techniques. The methodology utilizes the SMPL(Skinned Multi-Person Linear) model as the 3D human parametric model to establish a unified representation of body shape and pose. This facilitates the accurate capture of intricate human geometry and motion characteristics from source videos. Specifically, we incorporate rendered depth images, normal maps, and semantic maps obtained from SMPL sequences, alongside skeleton-based motion guidance, to enrich the conditions to the latent diffusion model with comprehensive 3D shape and detailed pose attributes. A multi-layer motion fusion module, integrating self-attention mechanisms, is employed to fuse the shape and motion latent representations in the spatial domain. By representing the 3D human parametric model as the motion guidance, we can perform parametric shape alignment of the human body between the reference image and the source video motion. Experimental evaluations conducted on benchmark datasets demonstrate the methodology's superior ability to generate high-quality human animations that accurately capture both pose and shape variations. Furthermore, our approach also exhibits superior generalization capabilities on the proposed wild dataset. Project page: https://fudan-generative-vision.github.io/champ.
X-Fusion: Introducing New Modality to Frozen Large Language Models
We propose X-Fusion, a framework that extends pretrained Large Language Models (LLMs) for multimodal tasks while preserving their language capabilities. X-Fusion employs a dual-tower design with modality-specific weights, keeping the LLM's parameters frozen while integrating vision-specific information for both understanding and generation. Our experiments demonstrate that X-Fusion consistently outperforms alternative architectures on both image-to-text and text-to-image tasks. We find that incorporating understanding-focused data improves generation quality, reducing image data noise enhances overall performance, and feature alignment accelerates convergence for smaller models but has minimal impact on larger ones. Our findings provide valuable insights into building efficient unified multimodal models.
Improving Visual Commonsense in Language Models via Multiple Image Generation
Commonsense reasoning is fundamentally based on multimodal knowledge. However, existing large language models (LLMs) are primarily trained using textual data only, limiting their ability to incorporate essential visual information. In contrast, Visual Language Models, which excel at visually-oriented tasks, often fail at non-visual tasks such as basic commonsense reasoning. This divergence highlights a critical challenge - the integration of robust visual understanding with foundational text-based language reasoning. To this end, we introduce a method aimed at enhancing LLMs' visual commonsense. Specifically, our method generates multiple images based on the input text prompt and integrates these into the model's decision-making process by mixing their prediction probabilities. To facilitate multimodal grounded language modeling, we employ a late-fusion layer that combines the projected visual features with the output of a pre-trained LLM conditioned on text only. This late-fusion layer enables predictions based on comprehensive image-text knowledge as well as text only when this is required. We evaluate our approach using several visual commonsense reasoning tasks together with traditional NLP tasks, including common sense reasoning and reading comprehension. Our experimental results demonstrate significant superiority over existing baselines. When applied to recent state-of-the-art LLMs (e.g., Llama3), we observe improvements not only in visual common sense but also in traditional NLP benchmarks. Code and models are available under https://github.com/guyyariv/vLMIG.
Efficient Hybrid Zoom using Camera Fusion on Mobile Phones
DSLR cameras can achieve multiple zoom levels via shifting lens distances or swapping lens types. However, these techniques are not possible on smartphone devices due to space constraints. Most smartphone manufacturers adopt a hybrid zoom system: commonly a Wide (W) camera at a low zoom level and a Telephoto (T) camera at a high zoom level. To simulate zoom levels between W and T, these systems crop and digitally upsample images from W, leading to significant detail loss. In this paper, we propose an efficient system for hybrid zoom super-resolution on mobile devices, which captures a synchronous pair of W and T shots and leverages machine learning models to align and transfer details from T to W. We further develop an adaptive blending method that accounts for depth-of-field mismatches, scene occlusion, flow uncertainty, and alignment errors. To minimize the domain gap, we design a dual-phone camera rig to capture real-world inputs and ground-truths for supervised training. Our method generates a 12-megapixel image in 500ms on a mobile platform and compares favorably against state-of-the-art methods under extensive evaluation on real-world scenarios.
UltraFusion: Ultra High Dynamic Imaging using Exposure Fusion
Capturing high dynamic range (HDR) scenes is one of the most important issues in camera design. Majority of cameras use exposure fusion technique, which fuses images captured by different exposure levels, to increase dynamic range. However, this approach can only handle images with limited exposure difference, normally 3-4 stops. When applying to very high dynamic scenes where a large exposure difference is required, this approach often fails due to incorrect alignment or inconsistent lighting between inputs, or tone mapping artifacts. In this work, we propose UltraFusion, the first exposure fusion technique that can merge input with 9 stops differences. The key idea is that we model the exposure fusion as a guided inpainting problem, where the under-exposed image is used as a guidance to fill the missing information of over-exposed highlight in the over-exposed region. Using under-exposed image as a soft guidance, instead of a hard constrain, our model is robust to potential alignment issue or lighting variations. Moreover, utilizing the image prior of the generative model, our model also generates natural tone mapping, even for very high-dynamic range scene. Our approach outperforms HDR-Transformer on latest HDR benchmarks. Moreover, to test its performance in ultra high dynamic range scene, we capture a new real-world exposure fusion benchmark, UltraFusion Dataset, with exposure difference up to 9 stops, and experiments show that \model~can generate beautiful and high-quality fusion results under various scenarios. An online demo is provided at https://openimaginglab.github.io/UltraFusion/.
TIP: Tabular-Image Pre-training for Multimodal Classification with Incomplete Data
Images and structured tables are essential parts of real-world databases. Though tabular-image representation learning is promising to create new insights, it remains a challenging task, as tabular data is typically heterogeneous and incomplete, presenting significant modality disparities with images. Earlier works have mainly focused on simple modality fusion strategies in complete data scenarios, without considering the missing data issue, and thus are limited in practice. In this paper, we propose TIP, a novel tabular-image pre-training framework for learning multimodal representations robust to incomplete tabular data. Specifically, TIP investigates a novel self-supervised learning (SSL) strategy, including a masked tabular reconstruction task for tackling data missingness, and image-tabular matching and contrastive learning objectives to capture multimodal information. Moreover, TIP proposes a versatile tabular encoder tailored for incomplete, heterogeneous tabular data and a multimodal interaction module for inter-modality representation learning. Experiments are performed on downstream multimodal classification tasks using both natural and medical image datasets. The results show that TIP outperforms state-of-the-art supervised/SSL image/multimodal algorithms in both complete and incomplete data scenarios. Our code is available at https://github.com/siyi-wind/TIP.
DGInStyle: Domain-Generalizable Semantic Segmentation with Image Diffusion Models and Stylized Semantic Control
Large, pretrained latent diffusion models (LDMs) have demonstrated an extraordinary ability to generate creative content, specialize to user data through few-shot fine-tuning, and condition their output on other modalities, such as semantic maps. However, are they usable as large-scale data generators, e.g., to improve tasks in the perception stack, like semantic segmentation? We investigate this question in the context of autonomous driving, and answer it with a resounding "yes". We propose an efficient data generation pipeline termed DGInStyle. First, we examine the problem of specializing a pretrained LDM to semantically-controlled generation within a narrow domain. Second, we design a Multi-resolution Latent Fusion technique to overcome the bias of LDMs towards dominant objects. Third, we propose a Style Swap technique to endow the rich generative prior with the learned semantic control. Using DGInStyle, we generate a diverse dataset of street scenes, train a domain-agnostic semantic segmentation model on it, and evaluate the model on multiple popular autonomous driving datasets. Our approach consistently increases the performance of several domain generalization methods, in some cases by +2.5 mIoU compared to the previous state-of-the-art method without our generative augmentation scheme. Source code and dataset are available at https://dginstyle.github.io .
High-fidelity Person-centric Subject-to-Image Synthesis
Current subject-driven image generation methods encounter significant challenges in person-centric image generation. The reason is that they learn the semantic scene and person generation by fine-tuning a common pre-trained diffusion, which involves an irreconcilable training imbalance. Precisely, to generate realistic persons, they need to sufficiently tune the pre-trained model, which inevitably causes the model to forget the rich semantic scene prior and makes scene generation over-fit to the training data. Moreover, even with sufficient fine-tuning, these methods can still not generate high-fidelity persons since joint learning of the scene and person generation also lead to quality compromise. In this paper, we propose Face-diffuser, an effective collaborative generation pipeline to eliminate the above training imbalance and quality compromise. Specifically, we first develop two specialized pre-trained diffusion models, i.e., Text-driven Diffusion Model (TDM) and Subject-augmented Diffusion Model (SDM), for scene and person generation, respectively. The sampling process is divided into three sequential stages, i.e., semantic scene construction, subject-scene fusion, and subject enhancement. The first and last stages are performed by TDM and SDM respectively. The subject-scene fusion stage, that is the collaboration achieved through a novel and highly effective mechanism, Saliency-adaptive Noise Fusion (SNF). Specifically, it is based on our key observation that there exists a robust link between classifier-free guidance responses and the saliency of generated images. In each time step, SNF leverages the unique strengths of each model and allows for the spatial blending of predicted noises from both models automatically in a saliency-aware manner. Extensive experiments confirm the impressive effectiveness and robustness of the Face-diffuser.
TNet: Terrace Convolutional Decoder Network for Remote Sensing Image Semantic Segmentation
In remote sensing, most segmentation networks adopt the UNet architecture, often incorporating modules such as Transformers or Mamba to enhance global-local feature interactions within decoder stages. However, these enhancements typically focus on intra-scale relationships and neglect the global contextual dependencies across multiple resolutions. To address this limitation, we introduce the Terrace Convolutional Decoder Network (TNet), a simple yet effective architecture that leverages only convolution and addition operations to progressively integrate low-resolution features (rich in global context) into higher-resolution features (rich in local details) across decoding stages. This progressive fusion enables the model to learn spatially-aware convolutional kernels that naturally blend global and local information in a stage-wise manner. We implement TNet with a ResNet-18 encoder (TNet-R) and evaluate it on three benchmark datasets. TNet-R achieves competitive performance with a mean Intersection-over-Union (mIoU) of 85.35\% on ISPRS Vaihingen, 87.05\% on ISPRS Potsdam, and 52.19\% on LoveDA, while maintaining high computational efficiency. Code is publicly available.
pyMEAL: A Multi-Encoder Augmentation-Aware Learning for Robust and Generalizable Medical Image Translation
Medical imaging is critical for diagnostics, but clinical adoption of advanced AI-driven imaging faces challenges due to patient variability, image artifacts, and limited model generalization. While deep learning has transformed image analysis, 3D medical imaging still suffers from data scarcity and inconsistencies due to acquisition protocols, scanner differences, and patient motion. Traditional augmentation uses a single pipeline for all transformations, disregarding the unique traits of each augmentation and struggling with large data volumes. To address these challenges, we propose a Multi-encoder Augmentation-Aware Learning (MEAL) framework that leverages four distinct augmentation variants processed through dedicated encoders. Three fusion strategies such as concatenation (CC), fusion layer (FL), and adaptive controller block (BD) are integrated to build multi-encoder models that combine augmentation-specific features before decoding. MEAL-BD uniquely preserves augmentation-aware representations, enabling robust, protocol-invariant feature learning. As demonstrated in a Computed Tomography (CT)-to-T1-weighted Magnetic Resonance Imaging (MRI) translation study, MEAL-BD consistently achieved the best performance on both unseen- and predefined-test data. On both geometric transformations (like rotations and flips) and non-augmented inputs, MEAL-BD outperformed other competing methods, achieving higher mean peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) scores. These results establish MEAL as a reliable framework for preserving structural fidelity and generalizing across clinically relevant variability. By reframing augmentation as a source of diverse, generalizable features, MEAL supports robust, protocol-invariant learning, advancing clinically reliable medical imaging solutions.
SwimVG: Step-wise Multimodal Fusion and Adaption for Visual Grounding
Visual grounding aims to ground an image region through natural language, which heavily relies on cross-modal alignment. Most existing methods transfer visual/linguistic knowledge separately by fully fine-tuning uni-modal pre-trained models, followed by a simple stack of visual-language transformers for multimodal fusion. However, these approaches not only limit adequate interaction between visual and linguistic contexts, but also incur significant computational costs. Therefore, to address these issues, we explore a step-wise multimodal fusion and adaption framework, namely SwimVG. Specifically, SwimVG proposes step-wise multimodal prompts (Swip) and cross-modal interactive adapters (CIA) for visual grounding, replacing the cumbersome transformer stacks for multimodal fusion. Swip can improve {the} alignment between the vision and language representations step by step, in a token-level fusion manner. In addition, weight-level CIA further promotes multimodal fusion by cross-modal interaction. Swip and CIA are both parameter-efficient paradigms, and they fuse the cross-modal features from shallow to deep layers gradually. Experimental results on four widely-used benchmarks demonstrate that SwimVG achieves remarkable abilities and considerable benefits in terms of efficiency. Our code is available at https://github.com/liuting20/SwimVG.
Tree-D Fusion: Simulation-Ready Tree Dataset from Single Images with Diffusion Priors
We introduce Tree D-fusion, featuring the first collection of 600,000 environmentally aware, 3D simulation-ready tree models generated through Diffusion priors. Each reconstructed 3D tree model corresponds to an image from Google's Auto Arborist Dataset, comprising street view images and associated genus labels of trees across North America. Our method distills the scores of two tree-adapted diffusion models by utilizing text prompts to specify a tree genus, thus facilitating shape reconstruction. This process involves reconstructing a 3D tree envelope filled with point markers, which are subsequently utilized to estimate the tree's branching structure using the space colonization algorithm conditioned on a specified genus.
XPSR: Cross-modal Priors for Diffusion-based Image Super-Resolution
Diffusion-based methods, endowed with a formidable generative prior, have received increasing attention in Image Super-Resolution (ISR) recently. However, as low-resolution (LR) images often undergo severe degradation, it is challenging for ISR models to perceive the semantic and degradation information, resulting in restoration images with incorrect content or unrealistic artifacts. To address these issues, we propose a Cross-modal Priors for Super-Resolution (XPSR) framework. Within XPSR, to acquire precise and comprehensive semantic conditions for the diffusion model, cutting-edge Multimodal Large Language Models (MLLMs) are utilized. To facilitate better fusion of cross-modal priors, a Semantic-Fusion Attention is raised. To distill semantic-preserved information instead of undesired degradations, a Degradation-Free Constraint is attached between LR and its high-resolution (HR) counterpart. Quantitative and qualitative results show that XPSR is capable of generating high-fidelity and high-realism images across synthetic and real-world datasets. Codes are released at https://github.com/qyp2000/XPSR.
Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation
Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PNN
Deep Fusion Transformer Network with Weighted Vector-Wise Keypoints Voting for Robust 6D Object Pose Estimation
One critical challenge in 6D object pose estimation from a single RGBD image is efficient integration of two different modalities, i.e., color and depth. In this work, we tackle this problem by a novel Deep Fusion Transformer~(DFTr) block that can aggregate cross-modality features for improving pose estimation. Unlike existing fusion methods, the proposed DFTr can better model cross-modality semantic correlation by leveraging their semantic similarity, such that globally enhanced features from different modalities can be better integrated for improved information extraction. Moreover, to further improve robustness and efficiency, we introduce a novel weighted vector-wise voting algorithm that employs a non-iterative global optimization strategy for precise 3D keypoint localization while achieving near real-time inference. Extensive experiments show the effectiveness and strong generalization capability of our proposed 3D keypoint voting algorithm. Results on four widely used benchmarks also demonstrate that our method outperforms the state-of-the-art methods by large margins.
Data Roaming and Quality Assessment for Composed Image Retrieval
The task of Composed Image Retrieval (CoIR) involves queries that combine image and text modalities, allowing users to express their intent more effectively. However, current CoIR datasets are orders of magnitude smaller compared to other vision and language (V&L) datasets. Additionally, some of these datasets have noticeable issues, such as queries containing redundant modalities. To address these shortcomings, we introduce the Large Scale Composed Image Retrieval (LaSCo) dataset, a new CoIR dataset which is ten times larger than existing ones. Pre-training on our LaSCo, shows a noteworthy improvement in performance, even in zero-shot. Furthermore, we propose a new approach for analyzing CoIR datasets and methods, which detects modality redundancy or necessity, in queries. We also introduce a new CoIR baseline, the Cross-Attention driven Shift Encoder (CASE). This baseline allows for early fusion of modalities using a cross-attention module and employs an additional auxiliary task during training. Our experiments demonstrate that this new baseline outperforms the current state-of-the-art methods on established benchmarks like FashionIQ and CIRR.
Recursive Generalization Transformer for Image Super-Resolution
Transformer architectures have exhibited remarkable performance in image super-resolution (SR). Since the quadratic computational complexity of the self-attention (SA) in Transformer, existing methods tend to adopt SA in a local region to reduce overheads. However, the local design restricts the global context exploitation, which is crucial for accurate image reconstruction. In this work, we propose the Recursive Generalization Transformer (RGT) for image SR, which can capture global spatial information and is suitable for high-resolution images. Specifically, we propose the recursive-generalization self-attention (RG-SA). It recursively aggregates input features into representative feature maps, and then utilizes cross-attention to extract global information. Meanwhile, the channel dimensions of attention matrices (query, key, and value) are further scaled to mitigate the redundancy in the channel domain. Furthermore, we combine the RG-SA with local self-attention to enhance the exploitation of the global context, and propose the hybrid adaptive integration (HAI) for module integration. The HAI allows the direct and effective fusion between features at different levels (local or global). Extensive experiments demonstrate that our RGT outperforms recent state-of-the-art methods quantitatively and qualitatively. Code and pre-trained models are available at https://github.com/zhengchen1999/RGT.
A Sketch Is Worth a Thousand Words: Image Retrieval with Text and Sketch
We address the problem of retrieving images with both a sketch and a text query. We present TASK-former (Text And SKetch transformer), an end-to-end trainable model for image retrieval using a text description and a sketch as input. We argue that both input modalities complement each other in a manner that cannot be achieved easily by either one alone. TASK-former follows the late-fusion dual-encoder approach, similar to CLIP, which allows efficient and scalable retrieval since the retrieval set can be indexed independently of the queries. We empirically demonstrate that using an input sketch (even a poorly drawn one) in addition to text considerably increases retrieval recall compared to traditional text-based image retrieval. To evaluate our approach, we collect 5,000 hand-drawn sketches for images in the test set of the COCO dataset. The collected sketches are available a https://janesjanes.github.io/tsbir/.
TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations
Image inpainting is the task of plausibly restoring missing pixels within a hole region that is to be removed from a target image. Most existing technologies exploit patch similarities within the image, or leverage large-scale training data to fill the hole using learned semantic and texture information. However, due to the ill-posed nature of the inpainting task, such methods struggle to complete larger holes containing complicated scenes. In this paper, we propose TransFill, a multi-homography transformed fusion method to fill the hole by referring to another source image that shares scene contents with the target image. We first align the source image to the target image by estimating multiple homographies guided by different depth levels. We then learn to adjust the color and apply a pixel-level warping to each homography-warped source image to make it more consistent with the target. Finally, a pixel-level fusion module is learned to selectively merge the different proposals. Our method achieves state-of-the-art performance on pairs of images across a variety of wide baselines and color differences, and generalizes to user-provided image pairs.
Contextual Fusion For Adversarial Robustness
Mammalian brains handle complex reasoning tasks in a gestalt manner by integrating information from regions of the brain that are specialised to individual sensory modalities. This allows for improved robustness and better generalisation ability. In contrast, deep neural networks are usually designed to process one particular information stream and susceptible to various types of adversarial perturbations. While many methods exist for detecting and defending against adversarial attacks, they do not generalise across a range of attacks and negatively affect performance on clean, unperturbed data. We developed a fusion model using a combination of background and foreground features extracted in parallel from Places-CNN and Imagenet-CNN. We tested the benefits of the fusion approach on preserving adversarial robustness for human perceivable (e.g., Gaussian blur) and network perceivable (e.g., gradient-based) attacks for CIFAR-10 and MS COCO data sets. For gradient based attacks, our results show that fusion allows for significant improvements in classification without decreasing performance on unperturbed data and without need to perform adversarial retraining. Our fused model revealed improvements for Gaussian blur type perturbations as well. The increase in performance from fusion approach depended on the variability of the image contexts; larger increases were seen for classes of images with larger differences in their contexts. We also demonstrate the effect of regularization to bias the classifier decision in the presence of a known adversary. We propose that this biologically inspired approach to integrate information across multiple modalities provides a new way to improve adversarial robustness that can be complementary to current state of the art approaches.
Wonder3D: Single Image to 3D using Cross-Domain Diffusion
In this work, we introduce Wonder3D, a novel method for efficiently generating high-fidelity textured meshes from single-view images.Recent methods based on Score Distillation Sampling (SDS) have shown the potential to recover 3D geometry from 2D diffusion priors, but they typically suffer from time-consuming per-shape optimization and inconsistent geometry. In contrast, certain works directly produce 3D information via fast network inferences, but their results are often of low quality and lack geometric details. To holistically improve the quality, consistency, and efficiency of image-to-3D tasks, we propose a cross-domain diffusion model that generates multi-view normal maps and the corresponding color images. To ensure consistency, we employ a multi-view cross-domain attention mechanism that facilitates information exchange across views and modalities. Lastly, we introduce a geometry-aware normal fusion algorithm that extracts high-quality surfaces from the multi-view 2D representations. Our extensive evaluations demonstrate that our method achieves high-quality reconstruction results, robust generalization, and reasonably good efficiency compared to prior works.
Guide3D: Create 3D Avatars from Text and Image Guidance
Recently, text-to-image generation has exhibited remarkable advancements, with the ability to produce visually impressive results. In contrast, text-to-3D generation has not yet reached a comparable level of quality. Existing methods primarily rely on text-guided score distillation sampling (SDS), and they encounter difficulties in transferring 2D attributes of the generated images to 3D content. In this work, we aim to develop an effective 3D generative model capable of synthesizing high-resolution textured meshes by leveraging both textual and image information. To this end, we introduce Guide3D, a zero-shot text-and-image-guided generative model for 3D avatar generation based on diffusion models. Our model involves (1) generating sparse-view images of a text-consistent character using diffusion models, and (2) jointly optimizing multi-resolution differentiable marching tetrahedral grids with pixel-aligned image features. We further propose a similarity-aware feature fusion strategy for efficiently integrating features from different views. Moreover, we introduce two novel training objectives as an alternative to calculating SDS, significantly enhancing the optimization process. We thoroughly evaluate the performance and components of our framework, which outperforms the current state-of-the-art in producing topologically and structurally correct geometry and high-resolution textures. Guide3D enables the direct transfer of 2D-generated images to the 3D space. Our code will be made publicly available.
Sentence-level Prompts Benefit Composed Image Retrieval
Composed image retrieval (CIR) is the task of retrieving specific images by using a query that involves both a reference image and a relative caption. Most existing CIR models adopt the late-fusion strategy to combine visual and language features. Besides, several approaches have also been suggested to generate a pseudo-word token from the reference image, which is further integrated into the relative caption for CIR. However, these pseudo-word-based prompting methods have limitations when target image encompasses complex changes on reference image, e.g., object removal and attribute modification. In this work, we demonstrate that learning an appropriate sentence-level prompt for the relative caption (SPRC) is sufficient for achieving effective composed image retrieval. Instead of relying on pseudo-word-based prompts, we propose to leverage pretrained V-L models, e.g., BLIP-2, to generate sentence-level prompts. By concatenating the learned sentence-level prompt with the relative caption, one can readily use existing text-based image retrieval models to enhance CIR performance. Furthermore, we introduce both image-text contrastive loss and text prompt alignment loss to enforce the learning of suitable sentence-level prompts. Experiments show that our proposed method performs favorably against the state-of-the-art CIR methods on the Fashion-IQ and CIRR datasets. The source code and pretrained model are publicly available at https://github.com/chunmeifeng/SPRC
Towards Real-World Burst Image Super-Resolution: Benchmark and Method
Despite substantial advances, single-image super-resolution (SISR) is always in a dilemma to reconstruct high-quality images with limited information from one input image, especially in realistic scenarios. In this paper, we establish a large-scale real-world burst super-resolution dataset, i.e., RealBSR, to explore the faithful reconstruction of image details from multiple frames. Furthermore, we introduce a Federated Burst Affinity network (FBAnet) to investigate non-trivial pixel-wise displacements among images under real-world image degradation. Specifically, rather than using pixel-wise alignment, our FBAnet employs a simple homography alignment from a structural geometry aspect and a Federated Affinity Fusion (FAF) strategy to aggregate the complementary information among frames. Those fused informative representations are fed to a Transformer-based module of burst representation decoding. Besides, we have conducted extensive experiments on two versions of our datasets, i.e., RealBSR-RAW and RealBSR-RGB. Experimental results demonstrate that our FBAnet outperforms existing state-of-the-art burst SR methods and also achieves visually-pleasant SR image predictions with model details. Our dataset, codes, and models are publicly available at https://github.com/yjsunnn/FBANet.
CoNAN: Conditional Neural Aggregation Network For Unconstrained Face Feature Fusion
Face recognition from image sets acquired under unregulated and uncontrolled settings, such as at large distances, low resolutions, varying viewpoints, illumination, pose, and atmospheric conditions, is challenging. Face feature aggregation, which involves aggregating a set of N feature representations present in a template into a single global representation, plays a pivotal role in such recognition systems. Existing works in traditional face feature aggregation either utilize metadata or high-dimensional intermediate feature representations to estimate feature quality for aggregation. However, generating high-quality metadata or style information is not feasible for extremely low-resolution faces captured in long-range and high altitude settings. To overcome these limitations, we propose a feature distribution conditioning approach called CoNAN for template aggregation. Specifically, our method aims to learn a context vector conditioned over the distribution information of the incoming feature set, which is utilized to weigh the features based on their estimated informativeness. The proposed method produces state-of-the-art results on long-range unconstrained face recognition datasets such as BTS, and DroneSURF, validating the advantages of such an aggregation strategy.
Fusion is Not Enough: Single Modal Attacks on Fusion Models for 3D Object Detection
Multi-sensor fusion (MSF) is widely used in autonomous vehicles (AVs) for perception, particularly for 3D object detection with camera and LiDAR sensors. The purpose of fusion is to capitalize on the advantages of each modality while minimizing its weaknesses. Advanced deep neural network (DNN)-based fusion techniques have demonstrated the exceptional and industry-leading performance. Due to the redundant information in multiple modalities, MSF is also recognized as a general defence strategy against adversarial attacks. In this paper, we attack fusion models from the camera modality that is considered to be of lesser importance in fusion but is more affordable for attackers. We argue that the weakest link of fusion models depends on their most vulnerable modality, and propose an attack framework that targets advanced camera-LiDAR fusion-based 3D object detection models through camera-only adversarial attacks. Our approach employs a two-stage optimization-based strategy that first thoroughly evaluates vulnerable image areas under adversarial attacks, and then applies dedicated attack strategies for different fusion models to generate deployable patches. The evaluations with six advanced camera-LiDAR fusion models and one camera-only model indicate that our attacks successfully compromise all of them. Our approach can either decrease the mean average precision (mAP) of detection performance from 0.824 to 0.353, or degrade the detection score of a target object from 0.728 to 0.156, demonstrating the efficacy of our proposed attack framework. Code is available.
Robustness of Fusion-based Multimodal Classifiers to Cross-Modal Content Dilutions
As multimodal learning finds applications in a wide variety of high-stakes societal tasks, investigating their robustness becomes important. Existing work has focused on understanding the robustness of vision-and-language models to imperceptible variations on benchmark tasks. In this work, we investigate the robustness of multimodal classifiers to cross-modal dilutions - a plausible variation. We develop a model that, given a multimodal (image + text) input, generates additional dilution text that (a) maintains relevance and topical coherence with the image and existing text, and (b) when added to the original text, leads to misclassification of the multimodal input. Via experiments on Crisis Humanitarianism and Sentiment Detection tasks, we find that the performance of task-specific fusion-based multimodal classifiers drops by 23.3% and 22.5%, respectively, in the presence of dilutions generated by our model. Metric-based comparisons with several baselines and human evaluations indicate that our dilutions show higher relevance and topical coherence, while simultaneously being more effective at demonstrating the brittleness of the multimodal classifiers. Our work aims to highlight and encourage further research on the robustness of deep multimodal models to realistic variations, especially in human-facing societal applications. The code and other resources are available at https://claws-lab.github.io/multimodal-robustness/.
