Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTC-LLaVA: Rethinking the Transfer from Image to Video Understanding with Temporal Considerations
Multimodal Large Language Models (MLLMs) have significantly improved performance across various image-language applications. Recently, there has been a growing interest in adapting image pre-trained MLLMs for video-related tasks. However, most efforts concentrate on enhancing the vision encoder and projector components, while the core part, Large Language Models (LLMs), remains comparatively under-explored. In this paper, we propose two strategies to enhance the model's capability in video understanding tasks by improving inter-layer attention computation in LLMs. Specifically, the first approach focuses on the enhancement of Rotary Position Embedding (RoPE) with Temporal-Aware Dual RoPE, which introduces temporal position information to strengthen the MLLM's temporal modeling capabilities while preserving the relative position relationships of both visual and text tokens. The second approach involves enhancing the Attention Mask with the Frame-wise Block Causal Attention Mask, a simple yet effective method that broadens visual token interactions within and across video frames while maintaining the causal inference mechanism. Based on these proposed methods, we adapt LLaVA for video understanding tasks, naming it Temporal-Considered LLaVA (TC-LLaVA). Our TC-LLaVA achieves new state-of-the-art performance across various video understanding benchmarks with only supervised fine-tuning (SFT) on video-related datasets.
Interpreting Low-level Vision Models with Causal Effect Maps
Deep neural networks have significantly improved the performance of low-level vision tasks but also increased the difficulty of interpretability. A deep understanding of deep models is beneficial for both network design and practical reliability. To take up this challenge, we introduce causality theory to interpret low-level vision models and propose a model-/task-agnostic method called Causal Effect Map (CEM). With CEM, we can visualize and quantify the input-output relationships on either positive or negative effects. After analyzing various low-level vision tasks with CEM, we have reached several interesting insights, such as: (1) Using more information of input images (e.g., larger receptive field) does NOT always yield positive outcomes. (2) Attempting to incorporate mechanisms with a global receptive field (e.g., channel attention) into image denoising may prove futile. (3) Integrating multiple tasks to train a general model could encourage the network to prioritize local information over global context. Based on the causal effect theory, the proposed diagnostic tool can refresh our common knowledge and bring a deeper understanding of low-level vision models. Codes are available at https://github.com/J-FHu/CEM.
See or Guess: Counterfactually Regularized Image Captioning
Image captioning, which generates natural language descriptions of the visual information in an image, is a crucial task in vision-language research. Previous models have typically addressed this task by aligning the generative capabilities of machines with human intelligence through statistical fitting of existing datasets. While effective for normal images, they may struggle to accurately describe those where certain parts of the image are obscured or edited, unlike humans who excel in such cases. These weaknesses they exhibit, including hallucinations and limited interpretability, often hinder performance in scenarios with shifted association patterns. In this paper, we present a generic image captioning framework that employs causal inference to make existing models more capable of interventional tasks, and counterfactually explainable. Our approach includes two variants leveraging either total effect or natural direct effect. Integrating them into the training process enables models to handle counterfactual scenarios, increasing their generalizability. Extensive experiments on various datasets show that our method effectively reduces hallucinations and improves the model's faithfulness to images, demonstrating high portability across both small-scale and large-scale image-to-text models. The code is available at https://github.com/Aman-4-Real/See-or-Guess.
Localizing and Editing Knowledge in Text-to-Image Generative Models
Text-to-Image Diffusion Models such as Stable-Diffusion and Imagen have achieved unprecedented quality of photorealism with state-of-the-art FID scores on MS-COCO and other generation benchmarks. Given a caption, image generation requires fine-grained knowledge about attributes such as object structure, style, and viewpoint amongst others. Where does this information reside in text-to-image generative models? In our paper, we tackle this question and understand how knowledge corresponding to distinct visual attributes is stored in large-scale text-to-image diffusion models. We adapt Causal Mediation Analysis for text-to-image models and trace knowledge about distinct visual attributes to various (causal) components in the (i) UNet and (ii) text-encoder of the diffusion model. In particular, we show that unlike generative large-language models, knowledge about different attributes is not localized in isolated components, but is instead distributed amongst a set of components in the conditional UNet. These sets of components are often distinct for different visual attributes. Remarkably, we find that the CLIP text-encoder in public text-to-image models such as Stable-Diffusion contains only one causal state across different visual attributes, and this is the first self-attention layer corresponding to the last subject token of the attribute in the caption. This is in stark contrast to the causal states in other language models which are often the mid-MLP layers. Based on this observation of only one causal state in the text-encoder, we introduce a fast, data-free model editing method Diff-QuickFix which can effectively edit concepts in text-to-image models. DiffQuickFix can edit (ablate) concepts in under a second with a closed-form update, providing a significant 1000x speedup and comparable editing performance to existing fine-tuning based editing methods.
Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images
Large Language Models (LLMs) have showcased exceptional ability in causal reasoning from textual information. However, will these causalities remain straightforward for Vision Large Language Models (VLLMs) when only visual hints are provided? Motivated by this, we propose a novel Multimodal Causal Reasoning benchmark, namely MuCR, to challenge VLLMs to infer semantic cause-and-effect relationship when solely relying on visual cues such as action, appearance, clothing, and environment. Specifically, we introduce a prompt-driven image synthesis approach to create siamese images with embedded semantic causality and visual cues, which can effectively evaluate VLLMs' causal reasoning capabilities. Additionally, we develop tailored metrics from multiple perspectives, including image-level match, phrase-level understanding, and sentence-level explanation, to comprehensively assess VLLMs' comprehension abilities. Our extensive experiments reveal that the current state-of-the-art VLLMs are not as skilled at multimodal causal reasoning as we might have hoped. Furthermore, we perform a comprehensive analysis to understand these models' shortcomings from different views and suggest directions for future research. We hope MuCR can serve as a valuable resource and foundational benchmark in multimodal causal reasoning research. The project is available at: https://github.com/Zhiyuan-Li-John/MuCR
CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data
True intelligence hinges on the ability to uncover and leverage hidden causal relations. Despite significant progress in AI and computer vision (CV), there remains a lack of benchmarks for assessing models' abilities to infer latent causality from complex visual data. In this paper, we introduce \textbf{Causal3D}, a novel and comprehensive benchmark that integrates structured data (tables) with corresponding visual representations (images) to evaluate causal reasoning. Designed within a systematic framework, Causal3D comprises 19 3D-scene datasets capturing diverse causal relations, views, and backgrounds, enabling evaluations across scenes of varying complexity. We assess multiple state-of-the-art methods, including classical causal discovery, causal representation learning, and large/vision-language models (LLMs/VLMs). Our experiments show that as causal structures grow more complex without prior knowledge, performance declines significantly, highlighting the challenges even advanced methods face in complex causal scenarios. Causal3D serves as a vital resource for advancing causal reasoning in CV and fostering trustworthy AI in critical domains.
What's Missing in Vision-Language Models? Probing Their Struggles with Causal Order Reasoning
Despite the impressive performance of vision-language models (VLMs) on downstream tasks, their ability to understand and reason about causal relationships in visual inputs remains unclear. Robust causal reasoning is fundamental to solving complex high-level reasoning tasks, yet existing benchmarks often include a mixture of reasoning questions, and VLMs can frequently exploit object recognition and activity identification as shortcuts to arrive at the correct answers, making it challenging to truly assess their causal reasoning abilities. To bridge this gap, we introduce VQA-Causal and VCR-Causal, two new benchmarks specifically designed to isolate and rigorously evaluate VLMs' causal reasoning abilities. Our findings reveal that while VLMs excel in object and activity recognition, they perform poorly on causal reasoning tasks, often only marginally surpassing random guessing. Further analysis suggests that this limitation stems from a severe lack of causal expressions in widely used training datasets, where causal relationships are rarely explicitly conveyed. We additionally explore fine-tuning strategies with hard negative cases, showing that targeted fine-tuning can improve model's causal reasoning while maintaining generalization and downstream performance. Our study highlights a key gap in current VLMs and lays the groundwork for future work on causal understanding.
Causal Tracing of Object Representations in Large Vision Language Models: Mechanistic Interpretability and Hallucination Mitigation
Despite the remarkable advancements of Large Vision-Language Models (LVLMs), the mechanistic interpretability remains underexplored. Existing analyses are insufficiently comprehensive and lack examination covering visual and textual tokens, model components, and the full range of layers. This limitation restricts actionable insights to improve the faithfulness of model output and the development of downstream tasks, such as hallucination mitigation. To address this limitation, we introduce Fine-grained Cross-modal Causal Tracing (FCCT) framework, which systematically quantifies the causal effects on visual object perception. FCCT conducts fine-grained analysis covering the full range of visual and textual tokens, three core model components including multi-head self-attention (MHSA), feed-forward networks (FFNs), and hidden states, across all decoder layers. Our analysis is the first to demonstrate that MHSAs of the last token in middle layers play a critical role in aggregating cross-modal information, while FFNs exhibit a three-stage hierarchical progression for the storage and transfer of visual object representations. Building on these insights, we propose Intermediate Representation Injection (IRI), a training-free inference-time technique that reinforces visual object information flow by precisely intervening on cross-modal representations at specific components and layers, thereby enhancing perception and mitigating hallucination. Consistent improvements across five widely used benchmarks and LVLMs demonstrate IRI achieves state-of-the-art performance, while preserving inference speed and other foundational performance.
Envision: Benchmarking Unified Understanding & Generation for Causal World Process Insights
Current multimodal models aim to transcend the limitations of single-modality representations by unifying understanding and generation, often using text-to-image (T2I) tasks to calibrate semantic consistency. However, their reliance on static, single-image generation in training and evaluation leads to overfitting to static pattern matching and semantic fusion, while fundamentally hindering their ability to model dynamic processes that unfold over time. To address these constraints, we propose Envision-a causal event progression benchmark for chained text-to-multi-image generation. Grounded in world knowledge and structured by spatiotemporal causality, it reorganizes existing evaluation dimensions and includes 1,000 four-stage prompts spanning six scientific and humanities domains. To transition evaluation from single images to sequential frames and assess whether models truly internalize world knowledge while adhering to causal-temporal constraints, we introduce Envision-Score, a holistic metric integrating multi-dimensional consistency, physicality, and aesthetics. Comprehensive evaluation of 15 models (10 specialized T2I models, 5 unified models) uncovers: specialized T2I models demonstrate proficiency in aesthetic rendering yet lack intrinsic world knowledge. Unified multimodal models bridge this gap, consistently outperforming specialized counterparts in causal narrative coherence. However, even these unified architectures remain subordinate to closed-source models and struggle to overcome the core challenge of spatiotemporal consistency. This demonstrates that a focus on causally-isolated single images impedes multi-frame reasoning and generation, promoting static pattern matching over dynamic world modeling-ultimately limiting world knowledge internalization, generation.
Towards Deconfounded Image-Text Matching with Causal Inference
Prior image-text matching methods have shown remarkable performance on many benchmark datasets, but most of them overlook the bias in the dataset, which exists in intra-modal and inter-modal, and tend to learn the spurious correlations that extremely degrade the generalization ability of the model. Furthermore, these methods often incorporate biased external knowledge from large-scale datasets as prior knowledge into image-text matching model, which is inevitable to force model further learn biased associations. To address above limitations, this paper firstly utilizes Structural Causal Models (SCMs) to illustrate how intra- and inter-modal confounders damage the image-text matching. Then, we employ backdoor adjustment to propose an innovative Deconfounded Causal Inference Network (DCIN) for image-text matching task. DCIN (1) decomposes the intra- and inter-modal confounders and incorporates them into the encoding stage of visual and textual features, effectively eliminating the spurious correlations during image-text matching, and (2) uses causal inference to mitigate biases of external knowledge. Consequently, the model can learn causality instead of spurious correlations caused by dataset bias. Extensive experiments on two well-known benchmark datasets, i.e., Flickr30K and MSCOCO, demonstrate the superiority of our proposed method.
CausalVLBench: Benchmarking Visual Causal Reasoning in Large Vision-Language Models
Large language models (LLMs) have shown remarkable ability in various language tasks, especially with their emergent in-context learning capability. Extending LLMs to incorporate visual inputs, large vision-language models (LVLMs) have shown impressive performance in tasks such as recognition and visual question answering (VQA). Despite increasing interest in the utility of LLMs in causal reasoning tasks such as causal discovery and counterfactual reasoning, there has been relatively little work showcasing the abilities of LVLMs on visual causal reasoning tasks. We take this opportunity to formally introduce a comprehensive causal reasoning benchmark for multi-modal in-context learning from LVLMs. Our CausalVLBench encompasses three representative tasks: causal structure inference, intervention target prediction, and counterfactual prediction. We evaluate the ability of state-of-the-art open-source LVLMs on our causal reasoning tasks across three causal representation learning datasets and demonstrate their fundamental strengths and weaknesses. We hope that our benchmark elucidates the drawbacks of existing vision-language models and motivates new directions and paradigms in improving the visual causal reasoning abilities of LVLMs.
Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs
Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of earlier modalities (e.g., images) to incorporate information from later modalities (e.g., text). To address this problem, we propose AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code is publicly available at https://github.com/sony/aki, and we will release our AKI-4B model to encourage further advancements in MLLMs across various directions.
iReason: Multimodal Commonsense Reasoning using Videos and Natural Language with Interpretability
Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.
V-SEAM: Visual Semantic Editing and Attention Modulating for Causal Interpretability of Vision-Language Models
Recent advances in causal interpretability have extended from language models to vision-language models (VLMs), seeking to reveal their internal mechanisms through input interventions. While textual interventions often target semantics, visual interventions typically rely on coarse pixel-level perturbations, limiting semantic insights on multimodal integration. In this study, we introduce V-SEAM, a novel framework that combines Visual Semantic Editing and Attention Modulating for causal interpretation of VLMs. V-SEAM enables concept-level visual manipulations and identifies attention heads with positive or negative contributions to predictions across three semantic levels: objects, attributes, and relationships. We observe that positive heads are often shared within the same semantic level but vary across levels, while negative heads tend to generalize broadly. Finally, we introduce an automatic method to modulate key head embeddings, demonstrating enhanced performance for both LLaVA and InstructBLIP across three diverse VQA benchmarks. Our data and code are released at: https://github.com/petergit1/V-SEAM.
What's in the Image? A Deep-Dive into the Vision of Vision Language Models
Vision-Language Models (VLMs) have recently demonstrated remarkable capabilities in comprehending complex visual content. However, the mechanisms underlying how VLMs process visual information remain largely unexplored. In this paper, we conduct a thorough empirical analysis, focusing on attention modules across layers. We reveal several key insights about how these models process visual data: (i) the internal representation of the query tokens (e.g., representations of "describe the image"), is utilized by VLMs to store global image information; we demonstrate that these models generate surprisingly descriptive responses solely from these tokens, without direct access to image tokens. (ii) Cross-modal information flow is predominantly influenced by the middle layers (approximately 25% of all layers), while early and late layers contribute only marginally.(iii) Fine-grained visual attributes and object details are directly extracted from image tokens in a spatially localized manner, i.e., the generated tokens associated with a specific object or attribute attend strongly to their corresponding regions in the image. We propose novel quantitative evaluation to validate our observations, leveraging real-world complex visual scenes. Finally, we demonstrate the potential of our findings in facilitating efficient visual processing in state-of-the-art VLMs.
What Do VLMs NOTICE? A Mechanistic Interpretability Pipeline for Noise-free Text-Image Corruption and Evaluation
Vision-Language Models (VLMs) have gained community-spanning prominence due to their ability to integrate visual and textual inputs to perform complex tasks. Despite their success, the internal decision-making processes of these models remain opaque, posing challenges in high-stakes applications. To address this, we introduce NOTICE, the first Noise-free Text-Image Corruption and Evaluation pipeline for mechanistic interpretability in VLMs. NOTICE incorporates a Semantic Minimal Pairs (SMP) framework for image corruption and Symmetric Token Replacement (STR) for text. This approach enables semantically meaningful causal mediation analysis for both modalities, providing a robust method for analyzing multimodal integration within models like BLIP. Our experiments on the SVO-Probes, MIT-States, and Facial Expression Recognition datasets reveal crucial insights into VLM decision-making, identifying the significant role of middle-layer cross-attention heads. Further, we uncover a set of ``universal cross-attention heads'' that consistently contribute across tasks and modalities, each performing distinct functions such as implicit image segmentation, object inhibition, and outlier inhibition. This work paves the way for more transparent and interpretable multimodal systems.
Multimodal Subtask Graph Generation from Instructional Videos
Real-world tasks consist of multiple inter-dependent subtasks (e.g., a dirty pan needs to be washed before it can be used for cooking). In this work, we aim to model the causal dependencies between such subtasks from instructional videos describing the task. This is a challenging problem since complete information about the world is often inaccessible from videos, which demands robust learning mechanisms to understand the causal structure of events. We present Multimodal Subtask Graph Generation (MSG2), an approach that constructs a Subtask Graph defining the dependency between a task's subtasks relevant to a task from noisy web videos. Graphs generated by our multimodal approach are closer to human-annotated graphs compared to prior approaches. MSG2 further performs the downstream task of next subtask prediction 85% and 30% more accurately than recent video transformer models in the ProceL and CrossTask datasets, respectively.
Rotate to Attend: Convolutional Triplet Attention Module
Benefiting from the capability of building inter-dependencies among channels or spatial locations, attention mechanisms have been extensively studied and broadly used in a variety of computer vision tasks recently. In this paper, we investigate light-weight but effective attention mechanisms and present triplet attention, a novel method for computing attention weights by capturing cross-dimension interaction using a three-branch structure. For an input tensor, triplet attention builds inter-dimensional dependencies by the rotation operation followed by residual transformations and encodes inter-channel and spatial information with negligible computational overhead. Our method is simple as well as efficient and can be easily plugged into classic backbone networks as an add-on module. We demonstrate the effectiveness of our method on various challenging tasks including image classification on ImageNet-1k and object detection on MSCOCO and PASCAL VOC datasets. Furthermore, we provide extensive in-sight into the performance of triplet attention by visually inspecting the GradCAM and GradCAM++ results. The empirical evaluation of our method supports our intuition on the importance of capturing dependencies across dimensions when computing attention weights. Code for this paper can be publicly accessed at https://github.com/LandskapeAI/triplet-attention
Cross-Image Attention for Zero-Shot Appearance Transfer
Recent advancements in text-to-image generative models have demonstrated a remarkable ability to capture a deep semantic understanding of images. In this work, we leverage this semantic knowledge to transfer the visual appearance between objects that share similar semantics but may differ significantly in shape. To achieve this, we build upon the self-attention layers of these generative models and introduce a cross-image attention mechanism that implicitly establishes semantic correspondences across images. Specifically, given a pair of images -- one depicting the target structure and the other specifying the desired appearance -- our cross-image attention combines the queries corresponding to the structure image with the keys and values of the appearance image. This operation, when applied during the denoising process, leverages the established semantic correspondences to generate an image combining the desired structure and appearance. In addition, to improve the output image quality, we harness three mechanisms that either manipulate the noisy latent codes or the model's internal representations throughout the denoising process. Importantly, our approach is zero-shot, requiring no optimization or training. Experiments show that our method is effective across a wide range of object categories and is robust to variations in shape, size, and viewpoint between the two input images.
iPerceive: Applying Common-Sense Reasoning to Multi-Modal Dense Video Captioning and Video Question Answering
Most prior art in visual understanding relies solely on analyzing the "what" (e.g., event recognition) and "where" (e.g., event localization), which in some cases, fails to describe correct contextual relationships between events or leads to incorrect underlying visual attention. Part of what defines us as human and fundamentally different from machines is our instinct to seek causality behind any association, say an event Y that happened as a direct result of event X. To this end, we propose iPerceive, a framework capable of understanding the "why" between events in a video by building a common-sense knowledge base using contextual cues to infer causal relationships between objects in the video. We demonstrate the effectiveness of our technique using the dense video captioning (DVC) and video question answering (VideoQA) tasks. Furthermore, while most prior work in DVC and VideoQA relies solely on visual information, other modalities such as audio and speech are vital for a human observer's perception of an environment. We formulate DVC and VideoQA tasks as machine translation problems that utilize multiple modalities. By evaluating the performance of iPerceive DVC and iPerceive VideoQA on the ActivityNet Captions and TVQA datasets respectively, we show that our approach furthers the state-of-the-art. Code and samples are available at: iperceive.amanchadha.com.
Animate Your Thoughts: Decoupled Reconstruction of Dynamic Natural Vision from Slow Brain Activity
Reconstructing human dynamic vision from brain activity is a challenging task with great scientific significance. The difficulty stems from two primary issues: (1) vision-processing mechanisms in the brain are highly intricate and not fully revealed, making it challenging to directly learn a mapping between fMRI and video; (2) the temporal resolution of fMRI is significantly lower than that of natural videos. To overcome these issues, this paper propose a two-stage model named Mind-Animator, which achieves state-of-the-art performance on three public datasets. Specifically, during the fMRI-to-feature stage, we decouple semantic, structural, and motion features from fMRI through fMRI-vision-language tri-modal contrastive learning and sparse causal attention. In the feature-to-video stage, these features are merged to videos by an inflated Stable Diffusion. We substantiate that the reconstructed video dynamics are indeed derived from fMRI, rather than hallucinations of the generative model, through permutation tests. Additionally, the visualization of voxel-wise and ROI-wise importance maps confirms the neurobiological interpretability of our model.
Inherently Faithful Attention Maps for Vision Transformers
We introduce an attention-based method that uses learned binary attention masks to ensure that only attended image regions influence the prediction. Context can strongly affect object perception, sometimes leading to biased representations, particularly when objects appear in out-of-distribution backgrounds. At the same time, many image-level object-centric tasks require identifying relevant regions, often requiring context. To address this conundrum, we propose a two-stage framework: stage 1 processes the full image to discover object parts and identify task-relevant regions, while stage 2 leverages input attention masking to restrict its receptive field to these regions, enabling a focused analysis while filtering out potentially spurious information. Both stages are trained jointly, allowing stage 2 to refine stage 1. Extensive experiments across diverse benchmarks demonstrate that our approach significantly improves robustness against spurious correlations and out-of-distribution backgrounds.
Reasoning in Computer Vision: Taxonomy, Models, Tasks, and Methodologies
Visual reasoning is critical for a wide range of computer vision tasks that go beyond surface-level object detection and classification. Despite notable advances in relational, symbolic, temporal, causal, and commonsense reasoning, existing surveys often address these directions in isolation, lacking a unified analysis and comparison across reasoning types, methodologies, and evaluation protocols. This survey aims to address this gap by categorizing visual reasoning into five major types (relational, symbolic, temporal, causal, and commonsense) and systematically examining their implementation through architectures such as graph-based models, memory networks, attention mechanisms, and neuro-symbolic systems. We review evaluation protocols designed to assess functional correctness, structural consistency, and causal validity, and critically analyze their limitations in terms of generalizability, reproducibility, and explanatory power. Beyond evaluation, we identify key open challenges in visual reasoning, including scalability to complex scenes, deeper integration of symbolic and neural paradigms, the lack of comprehensive benchmark datasets, and reasoning under weak supervision. Finally, we outline a forward-looking research agenda for next-generation vision systems, emphasizing that bridging perception and reasoning is essential for building transparent, trustworthy, and cross-domain adaptive AI systems, particularly in critical domains such as autonomous driving and medical diagnostics.
Causal Analysis for Robust Interpretability of Neural Networks
Interpreting the inner function of neural networks is crucial for the trustworthy development and deployment of these black-box models. Prior interpretability methods focus on correlation-based measures to attribute model decisions to individual examples. However, these measures are susceptible to noise and spurious correlations encoded in the model during the training phase (e.g., biased inputs, model overfitting, or misspecification). Moreover, this process has proven to result in noisy and unstable attributions that prevent any transparent understanding of the model's behavior. In this paper, we develop a robust interventional-based method grounded by causal analysis to capture cause-effect mechanisms in pre-trained neural networks and their relation to the prediction. Our novel approach relies on path interventions to infer the causal mechanisms within hidden layers and isolate relevant and necessary information (to model prediction), avoiding noisy ones. The result is task-specific causal explanatory graphs that can audit model behavior and express the actual causes underlying its performance. We apply our method to vision models trained on classification tasks. On image classification tasks, we provide extensive quantitative experiments to show that our approach can capture more stable and faithful explanations than standard attribution-based methods. Furthermore, the underlying causal graphs reveal the neural interactions in the model, making it a valuable tool in other applications (e.g., model repair).
Correlational Image Modeling for Self-Supervised Visual Pre-Training
We introduce Correlational Image Modeling (CIM), a novel and surprisingly effective approach to self-supervised visual pre-training. Our CIM performs a simple pretext task: we randomly crop image regions (exemplars) from an input image (context) and predict correlation maps between the exemplars and the context. Three key designs enable correlational image modeling as a nontrivial and meaningful self-supervisory task. First, to generate useful exemplar-context pairs, we consider cropping image regions with various scales, shapes, rotations, and transformations. Second, we employ a bootstrap learning framework that involves online and target encoders. During pre-training, the former takes exemplars as inputs while the latter converts the context. Third, we model the output correlation maps via a simple cross-attention block, within which the context serves as queries and the exemplars offer values and keys. We show that CIM performs on par or better than the current state of the art on self-supervised and transfer benchmarks.
PrimeComposer: Faster Progressively Combined Diffusion for Image Composition with Attention Steering
Image composition involves seamlessly integrating given objects into a specific visual context. Current training-free methods rely on composing attention weights from several samplers to guide the generator. However, since these weights are derived from disparate contexts, their combination leads to coherence confusion and loss of appearance information. These issues worsen with their excessive focus on background generation, even when unnecessary in this task. This not only impedes their swift implementation but also compromises foreground generation quality. Moreover, these methods introduce unwanted artifacts in the transition area. In this paper, we formulate image composition as a subject-based local editing task, solely focusing on foreground generation. At each step, the edited foreground is combined with the noisy background to maintain scene consistency. To address the remaining issues, we propose PrimeComposer, a faster training-free diffuser that composites the images by well-designed attention steering across different noise levels. This steering is predominantly achieved by our Correlation Diffuser, utilizing its self-attention layers at each step. Within these layers, the synthesized subject interacts with both the referenced object and background, capturing intricate details and coherent relationships. This prior information is encoded into the attention weights, which are then integrated into the self-attention layers of the generator to guide the synthesis process. Besides, we introduce a Region-constrained Cross-Attention to confine the impact of specific subject-related tokens to desired regions, addressing the unwanted artifacts shown in the prior method thereby further improving the coherence in the transition area. Our method exhibits the fastest inference efficiency and extensive experiments demonstrate our superiority both qualitatively and quantitatively.
CausalVerse: Benchmarking Causal Representation Learning with Configurable High-Fidelity Simulations
Causal Representation Learning (CRL) aims to uncover the data-generating process and identify the underlying causal variables and relations, whose evaluation remains inherently challenging due to the requirement of known ground-truth causal variables and causal structure. Existing evaluations often rely on either simplistic synthetic datasets or downstream performance on real-world tasks, generally suffering a dilemma between realism and evaluative precision. In this paper, we introduce a new benchmark for CRL using high-fidelity simulated visual data that retains both realistic visual complexity and, more importantly, access to ground-truth causal generating processes. The dataset comprises around 200 thousand images and 3 million video frames across 24 sub-scenes in four domains: static image generation, dynamic physical simulations, robotic manipulations, and traffic situation analysis. These scenarios range from static to dynamic settings, simple to complex structures, and single to multi-agent interactions, offering a comprehensive testbed that hopefully bridges the gap between rigorous evaluation and real-world applicability. In addition, we provide flexible access to the underlying causal structures, allowing users to modify or configure them to align with the required assumptions in CRL, such as available domain labels, temporal dependencies, or intervention histories. Leveraging this benchmark, we evaluated representative CRL methods across diverse paradigms and offered empirical insights to assist practitioners and newcomers in choosing or extending appropriate CRL frameworks to properly address specific types of real problems that can benefit from the CRL perspective. Welcome to visit our: Project page:https://causal-verse.github.io/, Dataset:https://huggingface.co/CausalVerse.
AGLA: Mitigating Object Hallucinations in Large Vision-Language Models with Assembly of Global and Local Attention
Despite their great success across various multimodal tasks, Large Vision-Language Models (LVLMs) are facing a prevalent problem with object hallucinations, where the generated textual responses are inconsistent with ground-truth objects in the given image. This paper investigates various LVLMs and pinpoints attention deficiency toward discriminative local image features as one root cause of object hallucinations. Specifically, LVLMs predominantly attend to prompt-independent global image features, while failing to capture prompt-relevant local features, consequently undermining the visual grounding capacity of LVLMs and leading to hallucinations. To this end, we propose Assembly of Global and Local Attention (AGLA), a training-free and plug-and-play approach that mitigates object hallucinations by exploring an ensemble of global features for response generation and local features for visual discrimination simultaneously. Our approach exhibits an image-prompt matching scheme that captures prompt-relevant local features from images, leading to an augmented view of the input image where prompt-relevant content is reserved while irrelevant distractions are masked. With the augmented view, a calibrated decoding distribution can be derived by integrating generative global features from the original image and discriminative local features from the augmented image. Extensive experiments show that AGLA consistently mitigates object hallucinations and enhances general perception capability for LVLMs across various discriminative and generative benchmarks. Our code will be released at https://github.com/Lackel/AGLA.
CONFORM: Contrast is All You Need For High-Fidelity Text-to-Image Diffusion Models
Images produced by text-to-image diffusion models might not always faithfully represent the semantic intent of the provided text prompt, where the model might overlook or entirely fail to produce certain objects. Existing solutions often require customly tailored functions for each of these problems, leading to sub-optimal results, especially for complex prompts. Our work introduces a novel perspective by tackling this challenge in a contrastive context. Our approach intuitively promotes the segregation of objects in attention maps while also maintaining that pairs of related attributes are kept close to each other. We conduct extensive experiments across a wide variety of scenarios, each involving unique combinations of objects, attributes, and scenes. These experiments effectively showcase the versatility, efficiency, and flexibility of our method in working with both latent and pixel-based diffusion models, including Stable Diffusion and Imagen. Moreover, we publicly share our source code to facilitate further research.
Why do LLaVA Vision-Language Models Reply to Images in English?
We uncover a surprising multilingual bias occurring in a popular class of multimodal vision-language models (VLMs). Including an image in the query to a LLaVA-style VLM significantly increases the likelihood of the model returning an English response, regardless of the language of the query. This paper investigates the causes of this loss with a two-pronged approach that combines extensive ablation of the design space with a mechanistic analysis of the models' internal representations of image and text inputs. Both approaches indicate that the issue stems in the language modelling component of the LLaVA model. Statistically, we find that switching the language backbone for a bilingual language model has the strongest effect on reducing this error. Mechanistically, we provide compelling evidence that visual inputs are not mapped to a similar space as text ones, and that intervening on intermediary attention layers can reduce this bias. Our findings provide important insights to researchers and engineers seeking to understand the crossover between multimodal and multilingual spaces, and contribute to the goal of developing capable and inclusive VLMs for non-English contexts.
CauSight: Learning to Supersense for Visual Causal Discovery
Causal thinking enables humans to understand not just what is seen, but why it happens. To replicate this capability in modern AI systems, we introduce the task of visual causal discovery. It requires models to infer cause-and-effect relations among visual entities across diverse scenarios instead of merely perceiving their presence. To this end, we first construct the Visual Causal Graph dataset (VCG-32K), a large-scale collection of over 32,000 images annotated with entity-level causal graphs, and further develop CauSight, a novel vision-language model to perform visual causal discovery through causally aware reasoning. Our training recipe integrates three components: (1) training data curation from VCG-32K, (2) Tree-of-Causal-Thought (ToCT) for synthesizing reasoning trajectories, and (3) reinforcement learning with a designed causal reward to refine the reasoning policy. Experiments show that CauSight outperforms GPT-4.1 on visual causal discovery, achieving over a threefold performance boost (21% absolute gain). Our code, model, and dataset are fully open-sourced at project page: https://github.com/OpenCausaLab/CauSight.
Ego-centric Predictive Model Conditioned on Hand Trajectories
In egocentric scenarios, anticipating both the next action and its visual outcome is essential for understanding human-object interactions and for enabling robotic planning. However, existing paradigms fall short of jointly modeling these aspects. Vision-Language-Action (VLA) models focus on action prediction but lack explicit modeling of how actions influence the visual scene, while video prediction models generate future frames without conditioning on specific actions, often resulting in implausible or contextually inconsistent outcomes. To bridge this gap, we propose a unified two-stage predictive framework that jointly models action and visual future in egocentric scenarios, conditioned on hand trajectories. In the first stage, we perform consecutive state modeling to process heterogeneous inputs (visual observations, language, and action history) and explicitly predict future hand trajectories. In the second stage, we introduce causal cross-attention to fuse multi-modal cues, leveraging inferred action signals to guide an image-based Latent Diffusion Model (LDM) for frame-by-frame future video generation. Our approach is the first unified model designed to handle both egocentric human activity understanding and robotic manipulation tasks, providing explicit predictions of both upcoming actions and their visual consequences. Extensive experiments on Ego4D, BridgeData, and RLBench demonstrate that our method outperforms state-of-the-art baselines in both action prediction and future video synthesis.
Visual Dependency Transformers: Dependency Tree Emerges from Reversed Attention
Humans possess a versatile mechanism for extracting structured representations of our visual world. When looking at an image, we can decompose the scene into entities and their parts as well as obtain the dependencies between them. To mimic such capability, we propose Visual Dependency Transformers (DependencyViT) that can induce visual dependencies without any labels. We achieve that with a novel neural operator called reversed attention that can naturally capture long-range visual dependencies between image patches. Specifically, we formulate it as a dependency graph where a child token in reversed attention is trained to attend to its parent tokens and send information following a normalized probability distribution rather than gathering information in conventional self-attention. With such a design, hierarchies naturally emerge from reversed attention layers, and a dependency tree is progressively induced from leaf nodes to the root node unsupervisedly. DependencyViT offers several appealing benefits. (i) Entities and their parts in an image are represented by different subtrees, enabling part partitioning from dependencies; (ii) Dynamic visual pooling is made possible. The leaf nodes which rarely send messages can be pruned without hindering the model performance, based on which we propose the lightweight DependencyViT-Lite to reduce the computational and memory footprints; (iii) DependencyViT works well on both self- and weakly-supervised pretraining paradigms on ImageNet, and demonstrates its effectiveness on 8 datasets and 5 tasks, such as unsupervised part and saliency segmentation, recognition, and detection.
Learning Invariant Representations with a Nonparametric Nadaraya-Watson Head
Machine learning models will often fail when deployed in an environment with a data distribution that is different than the training distribution. When multiple environments are available during training, many methods exist that learn representations which are invariant across the different distributions, with the hope that these representations will be transportable to unseen domains. In this work, we present a nonparametric strategy for learning invariant representations based on the recently-proposed Nadaraya-Watson (NW) head. The NW head makes a prediction by comparing the learned representations of the query to the elements of a support set that consists of labeled data. We demonstrate that by manipulating the support set, one can encode different causal assumptions. In particular, restricting the support set to a single environment encourages the model to learn invariant features that do not depend on the environment. We present a causally-motivated setup for our modeling and training strategy and validate on three challenging real-world domain generalization tasks in computer vision.
Autoregressive Image Generation with Randomized Parallel Decoding
We introduce ARPG, a novel visual autoregressive model that enables randomized parallel generation, addressing the inherent limitations of conventional raster-order approaches, which hinder inference efficiency and zero-shot generalization due to their sequential, predefined token generation order. Our key insight is that effective random-order modeling necessitates explicit guidance for determining the position of the next predicted token. To this end, we propose a novel guided decoding framework that decouples positional guidance from content representation, encoding them separately as queries and key-value pairs. By directly incorporating this guidance into the causal attention mechanism, our approach enables fully random-order training and generation, eliminating the need for bidirectional attention. Consequently, ARPG readily generalizes to zero-shot tasks such as image inpainting, outpainting, and resolution expansion. Furthermore, it supports parallel inference by concurrently processing multiple queries using a shared KV cache. On the ImageNet-1K 256 benchmark, our approach attains an FID of 1.94 with only 64 sampling steps, achieving over a 20-fold increase in throughput while reducing memory consumption by over 75% compared to representative recent autoregressive models at a similar scale.
Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image. Our work investigates this phenomenon by analyzing attention patterns across transformer layers and heads, revealing that hallucinations often stem from progressive degradation of visual grounding in deeper layers. We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding throughout the generation process. Our method introduces two key components: (1) a dual-stream token selection mechanism that identifies and prioritizes both locally informative and spatially significant visual tokens, and (2) an attention head-specific modulation strategy that differentially amplifies visual information processing based on measured visual sensitivity of individual attention heads. Through extensive experimentation on the MSCOCO dataset, we demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining comparable task performance. Our analysis reveals that selectively modulating tokens across attention heads with varying levels of visual sensitivity can significantly improve visual grounding without requiring model retraining.
Facing the Elephant in the Room: Visual Prompt Tuning or Full Finetuning?
As the scale of vision models continues to grow, the emergence of Visual Prompt Tuning (VPT) as a parameter-efficient transfer learning technique has gained attention due to its superior performance compared to traditional full-finetuning. However, the conditions favoring VPT (the ``when") and the underlying rationale (the ``why") remain unclear. In this paper, we conduct a comprehensive analysis across 19 distinct datasets and tasks. To understand the ``when" aspect, we identify the scenarios where VPT proves favorable by two dimensions: task objectives and data distributions. We find that VPT is preferrable when there is 1) a substantial disparity between the original and the downstream task objectives (e.g., transitioning from classification to counting), or 2) a similarity in data distributions between the two tasks (e.g., both involve natural images). In exploring the ``why" dimension, our results indicate VPT's success cannot be attributed solely to overfitting and optimization considerations. The unique way VPT preserves original features and adds parameters appears to be a pivotal factor. Our study provides insights into VPT's mechanisms, and offers guidance for its optimal utilization.
"Principal Components" Enable A New Language of Images
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space. While existing visual tokenizers primarily optimize for reconstruction fidelity, they often neglect the structural properties of the latent space -- a critical factor for both interpretability and downstream tasks. Our method generates a 1D causal token sequence for images, where each successive token contributes non-overlapping information with mathematically guaranteed decreasing explained variance, analogous to principal component analysis. This structural constraint ensures the tokenizer extracts the most salient visual features first, with each subsequent token adding diminishing yet complementary information. Additionally, we identified and resolved a semantic-spectrum coupling effect that causes the unwanted entanglement of high-level semantic content and low-level spectral details in the tokens by leveraging a diffusion decoder. Experiments demonstrate that our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system. Moreover, auto-regressive models trained on our token sequences achieve performance comparable to current state-of-the-art methods while requiring fewer tokens for training and inference.
Two Causally Related Needles in a Video Haystack
Evaluating the video understanding capabilities of Video-Language Models (VLMs) remains a significant challenge. We propose a long-context video understanding benchmark, Causal2Needles, that assesses two crucial abilities insufficiently evaluated by existing benchmarks: (1) the ability to extract information from two separate locations in a long video and understand them jointly, and (2) the ability to model the world in terms of cause and effect in human behaviors. Specifically, Causal2Needles introduces 2-needle questions, which require extracting information from both the cause and effect human-behavior events in a long video and the associated narration text. To prevent textual bias, these questions comprise two complementary formats: one asking to identify the video clip containing the answer, and one asking for the textual description of an unrelated visual detail from that video clip. Our experiments reveal that models excelling in pre-existing benchmarks struggle with 2-needle visual grounding, and the model performance is negatively correlated with the distance between the two needles. These findings highlight critical limitations in current VLMs.
Causal Attention with Lookahead Keys
In standard causal attention, each token's query, key, and value (QKV) are static and encode only preceding context. We introduce CAuSal aTtention with Lookahead kEys (CASTLE), an attention mechanism that continually updates each token's keys as the context unfolds. We term these updated keys lookahead keys because they belong to earlier positions yet integrate information from tokens that appear later relative to those positions, while strictly preserving the autoregressive property. Although the mechanism appears sequential, we derive a mathematical equivalence that avoids explicitly materializing lookahead keys at each position and enables efficient parallel training. On language modeling benchmarks, CASTLE consistently outperforms standard causal attention across model scales, reducing validation perplexity and improving performance on a range of downstream tasks.
Object-centric architectures enable efficient causal representation learning
Causal representation learning has showed a variety of settings in which we can disentangle latent variables with identifiability guarantees (up to some reasonable equivalence class). Common to all of these approaches is the assumption that (1) the latent variables are represented as d-dimensional vectors, and (2) that the observations are the output of some injective generative function of these latent variables. While these assumptions appear benign, we show that when the observations are of multiple objects, the generative function is no longer injective and disentanglement fails in practice. We can address this failure by combining recent developments in object-centric learning and causal representation learning. By modifying the Slot Attention architecture arXiv:2006.15055, we develop an object-centric architecture that leverages weak supervision from sparse perturbations to disentangle each object's properties. This approach is more data-efficient in the sense that it requires significantly fewer perturbations than a comparable approach that encodes to a Euclidean space and we show that this approach successfully disentangles the properties of a set of objects in a series of simple image-based disentanglement experiments.
ARFlow: Autogressive Flow with Hybrid Linear Attention
Flow models are effective at progressively generating realistic images, but they generally struggle to capture long-range dependencies during the generation process as they compress all the information from previous time steps into a single corrupted image. To address this limitation, we propose integrating autoregressive modeling -- known for its excellence in modeling complex, high-dimensional joint probability distributions -- into flow models. During training, at each step, we construct causally-ordered sequences by sampling multiple images from the same semantic category and applying different levels of noise, where images with higher noise levels serve as causal predecessors to those with lower noise levels. This design enables the model to learn broader category-level variations while maintaining proper causal relationships in the flow process. During generation, the model autoregressively conditions the previously generated images from earlier denoising steps, forming a contextual and coherent generation trajectory. Additionally, we design a customized hybrid linear attention mechanism tailored to our modeling approach to enhance computational efficiency. Our approach, termed ARFlow, under 400k training steps, achieves 14.08 FID scores on ImageNet at 128 * 128 without classifier-free guidance, reaching 4.34 FID with classifier-free guidance 1.5, significantly outperforming the previous flow-based model SiT's 9.17 FID. Extensive ablation studies demonstrate the effectiveness of our modeling strategy and chunk-wise attention design.
Neural Representations of Dynamic Visual Stimuli
Humans experience the world through constantly changing visual stimuli, where scenes can shift and move, change in appearance, and vary in distance. The dynamic nature of visual perception is a fundamental aspect of our daily lives, yet the large majority of research on object and scene processing, particularly using fMRI, has focused on static stimuli. While studies of static image perception are attractive due to their computational simplicity, they impose a strong non-naturalistic constraint on our investigation of human vision. In contrast, dynamic visual stimuli offer a more ecologically-valid approach but present new challenges due to the interplay between spatial and temporal information, making it difficult to disentangle the representations of stable image features and motion. To overcome this limitation -- given dynamic inputs, we explicitly decouple the modeling of static image representations and motion representations in the human brain. Three results demonstrate the feasibility of this approach. First, we show that visual motion information as optical flow can be predicted (or decoded) from brain activity as measured by fMRI. Second, we show that this predicted motion can be used to realistically animate static images using a motion-conditioned video diffusion model (where the motion is driven by fMRI brain activity). Third, we show prediction in the reverse direction: existing video encoders can be fine-tuned to predict fMRI brain activity from video imagery, and can do so more effectively than image encoders. This foundational work offers a novel, extensible framework for interpreting how the human brain processes dynamic visual information.
ReGround: Improving Textual and Spatial Grounding at No Cost
When an image generation process is guided by both a text prompt and spatial cues, such as a set of bounding boxes, do these elements work in harmony, or does one dominate the other? Our analysis of a pretrained image diffusion model that integrates gated self-attention into the U-Net reveals that spatial grounding often outweighs textual grounding due to the sequential flow from gated self-attention to cross-attention. We demonstrate that such bias can be significantly mitigated without sacrificing accuracy in either grounding by simply rewiring the network architecture, changing from sequential to parallel for gated self-attention and cross-attention. This surprisingly simple yet effective solution does not require any fine-tuning of the network but significantly reduces the trade-off between the two groundings. Our experiments demonstrate significant improvements from the original GLIGEN to the rewired version in the trade-off between textual grounding and spatial grounding.
Generative causal explanations of black-box classifiers
We develop a method for generating causal post-hoc explanations of black-box classifiers based on a learned low-dimensional representation of the data. The explanation is causal in the sense that changing learned latent factors produces a change in the classifier output statistics. To construct these explanations, we design a learning framework that leverages a generative model and information-theoretic measures of causal influence. Our objective function encourages both the generative model to faithfully represent the data distribution and the latent factors to have a large causal influence on the classifier output. Our method learns both global and local explanations, is compatible with any classifier that admits class probabilities and a gradient, and does not require labeled attributes or knowledge of causal structure. Using carefully controlled test cases, we provide intuition that illuminates the function of our objective. We then demonstrate the practical utility of our method on image recognition tasks.
Mitigating Object Hallucination via Concentric Causal Attention
Recent Large Vision Language Models (LVLMs) present remarkable zero-shot conversational and reasoning capabilities given multimodal queries. Nevertheless, they suffer from object hallucination, a phenomenon where LVLMs are prone to generate textual responses not factually aligned with image inputs. Our pilot study reveals that object hallucination is closely tied with Rotary Position Encoding (RoPE), a widely adopted positional dependency modeling design in existing LVLMs. Due to the long-term decay in RoPE, LVLMs tend to hallucinate more when relevant visual cues are distant from instruction tokens in the multimodal input sequence. Additionally, we observe a similar effect when reversing the sequential order of visual tokens during multimodal alignment. Our tests indicate that long-term decay in RoPE poses challenges to LVLMs while capturing visual-instruction interactions across long distances. We propose Concentric Causal Attention (CCA), a simple yet effective positional alignment strategy that mitigates the impact of RoPE long-term decay in LVLMs by naturally reducing relative distance between visual and instruction tokens. With CCA, visual tokens can better interact with instruction tokens, thereby enhancing model's perception capability and alleviating object hallucination. Without bells and whistles, our positional alignment method surpasses existing hallucination mitigation strategies by large margins on multiple object hallucination benchmarks.
Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.
Mitigating Modality Prior-Induced Hallucinations in Multimodal Large Language Models via Deciphering Attention Causality
Multimodal Large Language Models (MLLMs) have emerged as a central focus in both industry and academia, but often suffer from biases introduced by visual and language priors, which can lead to multimodal hallucination. These biases arise from the visual encoder and the Large Language Model (LLM) backbone, affecting the attention mechanism responsible for aligning multimodal inputs. Existing decoding-based mitigation methods focus on statistical correlations and overlook the causal relationships between attention mechanisms and model output, limiting their effectiveness in addressing these biases. To tackle this issue, we propose a causal inference framework termed CausalMM that applies structural causal modeling to MLLMs, treating modality priors as a confounder between attention mechanisms and output. Specifically, by employing backdoor adjustment and counterfactual reasoning at both the visual and language attention levels, our method mitigates the negative effects of modality priors and enhances the alignment of MLLM's inputs and outputs, with a maximum score improvement of 65.3% on 6 VLind-Bench indicators and 164 points on MME Benchmark compared to conventional methods. Extensive experiments validate the effectiveness of our approach while being a plug-and-play solution. Our code is available at: https://github.com/The-Martyr/CausalMM
AID: Attention Interpolation of Text-to-Image Diffusion
Conditional diffusion models can create unseen images in various settings, aiding image interpolation. Interpolation in latent spaces is well-studied, but interpolation with specific conditions like text or poses is less understood. Simple approaches, such as linear interpolation in the space of conditions, often result in images that lack consistency, smoothness, and fidelity. To that end, we introduce a novel training-free technique named Attention Interpolation via Diffusion (AID). Our key contributions include 1) proposing an inner/outer interpolated attention layer; 2) fusing the interpolated attention with self-attention to boost fidelity; and 3) applying beta distribution to selection to increase smoothness. We also present a variant, Prompt-guided Attention Interpolation via Diffusion (PAID), that considers interpolation as a condition-dependent generative process. This method enables the creation of new images with greater consistency, smoothness, and efficiency, and offers control over the exact path of interpolation. Our approach demonstrates effectiveness for conceptual and spatial interpolation. Code and demo are available at https://github.com/QY-H00/attention-interpolation-diffusion.
MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings
Multimodal embedding models, built upon causal Vision Language Models (VLMs), have shown promise in various tasks. However, current approaches face three key limitations: the use of causal attention in VLM backbones is suboptimal for embedding tasks; scalability issues due to reliance on high-quality labeled paired data for contrastive learning; and limited diversity in training objectives and data. To address these issues, we propose MoCa, a two-stage framework for transforming pre-trained VLMs into effective bidirectional multimodal embedding models. The first stage, Modality-aware Continual Pre-training, introduces a joint reconstruction objective that simultaneously denoises interleaved text and image inputs, enhancing bidirectional context-aware reasoning. The second stage, Heterogeneous Contrastive Fine-tuning, leverages diverse, semantically rich multimodal data beyond simple image-caption pairs to enhance generalization and alignment. Our method addresses the stated limitations by introducing bidirectional attention through continual pre-training, scaling effectively with massive unlabeled datasets via joint reconstruction objectives, and utilizing diverse multimodal data for enhanced representation robustness. Experiments demonstrate that MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results, and exhibits strong scalability with both model size and training data on MMEB.
Token Coordinated Prompt Attention is Needed for Visual Prompting
Visual prompting techniques are widely used to efficiently fine-tune pretrained Vision Transformers (ViT) by learning a small set of shared prompts for all tokens. However, existing methods overlook the unique roles of different tokens in conveying discriminative information and interact with all tokens using the same prompts, thereby limiting the representational capacity of ViT. This often leads to indistinguishable and biased prompt-extracted features, hindering performance. To address this issue, we propose a plug-and-play Token Coordinated Prompt Attention (TCPA) module, which assigns specific coordinated prompts to different tokens for attention-based interactions. Firstly, recognizing the distinct functions of CLS and image tokens-global information aggregation and local feature extraction, we disentangle the prompts into CLS Prompts and Image Prompts, which interact exclusively with CLS tokens and image tokens through attention mechanisms. This enhances their respective discriminative abilities. Furthermore, as different image tokens correspond to distinct image patches and contain diverse information, we employ a matching function to automatically assign coordinated prompts to individual tokens. This enables more precise attention interactions, improving the diversity and representational capacity of the extracted features. Extensive experiments across various benchmarks demonstrate that TCPA significantly enhances the diversity and discriminative power of the extracted features. The code is available at https://github.com/zhoujiahuan1991/ICML2025-TCPA.
DiffusionPID: Interpreting Diffusion via Partial Information Decomposition
Text-to-image diffusion models have made significant progress in generating naturalistic images from textual inputs, and demonstrate the capacity to learn and represent complex visual-semantic relationships. While these diffusion models have achieved remarkable success, the underlying mechanisms driving their performance are not yet fully accounted for, with many unanswered questions surrounding what they learn, how they represent visual-semantic relationships, and why they sometimes fail to generalize. Our work presents Diffusion Partial Information Decomposition (DiffusionPID), a novel technique that applies information-theoretic principles to decompose the input text prompt into its elementary components, enabling a detailed examination of how individual tokens and their interactions shape the generated image. We introduce a formal approach to analyze the uniqueness, redundancy, and synergy terms by applying PID to the denoising model at both the image and pixel level. This approach enables us to characterize how individual tokens and their interactions affect the model output. We first present a fine-grained analysis of characteristics utilized by the model to uniquely localize specific concepts, we then apply our approach in bias analysis and show it can recover gender and ethnicity biases. Finally, we use our method to visually characterize word ambiguity and similarity from the model's perspective and illustrate the efficacy of our method for prompt intervention. Our results show that PID is a potent tool for evaluating and diagnosing text-to-image diffusion models.
Add-it: Training-Free Object Insertion in Images With Pretrained Diffusion Models
Adding Object into images based on text instructions is a challenging task in semantic image editing, requiring a balance between preserving the original scene and seamlessly integrating the new object in a fitting location. Despite extensive efforts, existing models often struggle with this balance, particularly with finding a natural location for adding an object in complex scenes. We introduce Add-it, a training-free approach that extends diffusion models' attention mechanisms to incorporate information from three key sources: the scene image, the text prompt, and the generated image itself. Our weighted extended-attention mechanism maintains structural consistency and fine details while ensuring natural object placement. Without task-specific fine-tuning, Add-it achieves state-of-the-art results on both real and generated image insertion benchmarks, including our newly constructed "Additing Affordance Benchmark" for evaluating object placement plausibility, outperforming supervised methods. Human evaluations show that Add-it is preferred in over 80% of cases, and it also demonstrates improvements in various automated metrics.
MATRIX: Mask Track Alignment for Interaction-aware Video Generation
Video DiTs have advanced video generation, yet they still struggle to model multi-instance or subject-object interactions. This raises a key question: How do these models internally represent interactions? To answer this, we curate MATRIX-11K, a video dataset with interaction-aware captions and multi-instance mask tracks. Using this dataset, we conduct a systematic analysis that formalizes two perspectives of video DiTs: semantic grounding, via video-to-text attention, which evaluates whether noun and verb tokens capture instances and their relations; and semantic propagation, via video-to-video attention, which assesses whether instance bindings persist across frames. We find both effects concentrate in a small subset of interaction-dominant layers. Motivated by this, we introduce MATRIX, a simple and effective regularization that aligns attention in specific layers of video DiTs with multi-instance mask tracks from the MATRIX-11K dataset, enhancing both grounding and propagation. We further propose InterGenEval, an evaluation protocol for interaction-aware video generation. In experiments, MATRIX improves both interaction fidelity and semantic alignment while reducing drift and hallucination. Extensive ablations validate our design choices. Codes and weights will be released.
VCRBench: Exploring Long-form Causal Reasoning Capabilities of Large Video Language Models
Despite recent advances in video understanding, the capabilities of Large Video Language Models (LVLMs) to perform video-based causal reasoning remains underexplored, largely due to the absence of relevant and dedicated benchmarks for evaluating causal reasoning in visually grounded and goal-driven settings. To fill this gap, we introduce a novel benchmark named Video-based long-form Causal Reasoning (VCRBench). We create VCRBench using procedural videos of simple everyday activities, where the steps are deliberately shuffled with each clip capturing a key causal event, to test whether LVLMs can identify, reason about, and correctly sequence the events needed to accomplish a specific goal. Moreover, the benchmark is carefully designed to prevent LVLMs from exploiting linguistic shortcuts, as seen in multiple-choice or binary QA formats, while also avoiding the challenges associated with evaluating open-ended QA. Our evaluation of state-of-the-art LVLMs on VCRBench suggests that these models struggle with video-based long-form causal reasoning, primarily due to their difficulty in modeling long-range causal dependencies directly from visual observations. As a simple step toward enabling such capabilities, we propose Recognition-Reasoning Decomposition (RRD), a modular approach that breaks video-based causal reasoning into two sub-tasks of video recognition and causal reasoning. Our experiments on VCRBench show that RRD significantly boosts accuracy on VCRBench, with gains of up to 25.2%. Finally, our thorough analysis reveals interesting insights, for instance, that LVLMs primarily rely on language knowledge for complex video-based long-form causal reasoning tasks.
High Fidelity Image Counterfactuals with Probabilistic Causal Models
We present a general causal generative modelling framework for accurate estimation of high fidelity image counterfactuals with deep structural causal models. Estimation of interventional and counterfactual queries for high-dimensional structured variables, such as images, remains a challenging task. We leverage ideas from causal mediation analysis and advances in generative modelling to design new deep causal mechanisms for structured variables in causal models. Our experiments demonstrate that our proposed mechanisms are capable of accurate abduction and estimation of direct, indirect and total effects as measured by axiomatic soundness of counterfactuals.
From Local Cues to Global Percepts: Emergent Gestalt Organization in Self-Supervised Vision Models
Human vision organizes local cues into coherent global forms using Gestalt principles like closure, proximity, and figure-ground assignment -- functions reliant on global spatial structure. We investigate whether modern vision models show similar behaviors, and under what training conditions these emerge. We find that Vision Transformers (ViTs) trained with Masked Autoencoding (MAE) exhibit activation patterns consistent with Gestalt laws, including illusory contour completion, convexity preference, and dynamic figure-ground segregation. To probe the computational basis, we hypothesize that modeling global dependencies is necessary for Gestalt-like organization. We introduce the Distorted Spatial Relationship Testbench (DiSRT), which evaluates sensitivity to global spatial perturbations while preserving local textures. Using DiSRT, we show that self-supervised models (e.g., MAE, CLIP) outperform supervised baselines and sometimes even exceed human performance. ConvNeXt models trained with MAE also exhibit Gestalt-compatible representations, suggesting such sensitivity can arise without attention architectures. However, classification finetuning degrades this ability. Inspired by biological vision, we show that a Top-K activation sparsity mechanism can restore global sensitivity. Our findings identify training conditions that promote or suppress Gestalt-like perception and establish DiSRT as a diagnostic for global structure sensitivity across models.
Fine-grained Audio-Visual Joint Representations for Multimodal Large Language Models
Audio-visual large language models (LLM) have drawn significant attention, yet the fine-grained combination of both input streams is rather under-explored, which is challenging but necessary for LLMs to understand general video inputs. To this end, a fine-grained audio-visual joint representation (FAVOR) learning framework for multimodal LLMs is proposed in this paper, which extends a text-based LLM to simultaneously perceive speech and audio events in the audio input stream and images or videos in the visual input stream, at the frame level. To fuse the audio and visual feature streams into joint representations and to align the joint space with the LLM input embedding space, we propose a causal Q-Former structure with a causal attention module to enhance the capture of causal relations of the audio-visual frames across time. An audio-visual evaluation benchmark (AVEB) is also proposed which comprises six representative single-modal tasks with five cross-modal tasks reflecting audio-visual co-reasoning abilities. While achieving competitive single-modal performance on audio, speech and image tasks in AVEB, FAVOR achieved over 20% accuracy improvements on the video question-answering task when fine-grained information or temporal causal reasoning is required. FAVOR, in addition, demonstrated remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other multimodal LLMs. An interactive demo of FAVOR is available at https://github.com/BriansIDP/AudioVisualLLM.git, and the training code and model checkpoints will be released soon.
StyleDiffusion: Prompt-Embedding Inversion for Text-Based Editing
A significant research effort is focused on exploiting the amazing capacities of pretrained diffusion models for the editing of images. They either finetune the model, or invert the image in the latent space of the pretrained model. However, they suffer from two problems: (1) Unsatisfying results for selected regions, and unexpected changes in nonselected regions. (2) They require careful text prompt editing where the prompt should include all visual objects in the input image. To address this, we propose two improvements: (1) Only optimizing the input of the value linear network in the cross-attention layers, is sufficiently powerful to reconstruct a real image. (2) We propose attention regularization to preserve the object-like attention maps after editing, enabling us to obtain accurate style editing without invoking significant structural changes. We further improve the editing technique which is used for the unconditional branch of classifier-free guidance, as well as the conditional one as used by P2P. Extensive experimental prompt-editing results on a variety of images, demonstrate qualitatively and quantitatively that our method has superior editing capabilities than existing and concurrent works.
SPAD : Spatially Aware Multiview Diffusers
We present SPAD, a novel approach for creating consistent multi-view images from text prompts or single images. To enable multi-view generation, we repurpose a pretrained 2D diffusion model by extending its self-attention layers with cross-view interactions, and fine-tune it on a high quality subset of Objaverse. We find that a naive extension of the self-attention proposed in prior work (e.g. MVDream) leads to content copying between views. Therefore, we explicitly constrain the cross-view attention based on epipolar geometry. To further enhance 3D consistency, we utilize Plucker coordinates derived from camera rays and inject them as positional encoding. This enables SPAD to reason over spatial proximity in 3D well. In contrast to recent works that can only generate views at fixed azimuth and elevation, SPAD offers full camera control and achieves state-of-the-art results in novel view synthesis on unseen objects from the Objaverse and Google Scanned Objects datasets. Finally, we demonstrate that text-to-3D generation using SPAD prevents the multi-face Janus issue. See more details at our webpage: https://yashkant.github.io/spad
Behind RoPE: How Does Causal Mask Encode Positional Information?
While explicit positional encodings such as RoPE are a primary source of positional information in Transformer decoders, the causal mask also provides positional information. In this work, we prove that the causal mask can induce position-dependent patterns in attention scores, even without parameters or causal dependency in the input. Our theoretical analysis indicates that the induced attention pattern tends to favor nearby query-key pairs, mirroring the behavior of common positional encodings. Empirical analysis confirms that trained models exhibit the same behavior, with learned parameters further amplifying these patterns. Notably, we found that the interaction of causal mask and RoPE distorts RoPE's relative attention score patterns into non-relative ones. We consistently observed this effect in modern large language models, suggesting the importance of considering the causal mask as a source of positional information alongside explicit positional encodings.
Can We Achieve Efficient Diffusion without Self-Attention? Distilling Self-Attention into Convolutions
Contemporary diffusion models built upon U-Net or Diffusion Transformer (DiT) architectures have revolutionized image generation through transformer-based attention mechanisms. The prevailing paradigm has commonly employed self-attention with quadratic computational complexity to handle global spatial relationships in complex images, thereby synthesizing high-fidelity images with coherent visual semantics.Contrary to conventional wisdom, our systematic layer-wise analysis reveals an interesting discrepancy: self-attention in pre-trained diffusion models predominantly exhibits localized attention patterns, closely resembling convolutional inductive biases. This suggests that global interactions in self-attention may be less critical than commonly assumed.Driven by this, we propose \(\Delta\)ConvFusion to replace conventional self-attention modules with Pyramid Convolution Blocks (\(\Delta\)ConvBlocks).By distilling attention patterns into localized convolutional operations while keeping other components frozen, \(\Delta\)ConvFusion achieves performance comparable to transformer-based counterparts while reducing computational cost by 6929times and surpassing LinFusion by 5.42times in efficiency--all without compromising generative fidelity.
VSSD: Vision Mamba with Non-Casual State Space Duality
Vision transformers have significantly advanced the field of computer vision, offering robust modeling capabilities and global receptive field. However, their high computational demands limit their applicability in processing long sequences. To tackle this issue, State Space Models (SSMs) have gained prominence in vision tasks as they offer linear computational complexity. Recently, State Space Duality (SSD), an improved variant of SSMs, was introduced in Mamba2 to enhance model performance and efficiency. However, the inherent causal nature of SSD/SSMs restricts their applications in non-causal vision tasks. To address this limitation, we introduce Visual State Space Duality (VSSD) model, which has a non-causal format of SSD. Specifically, we propose to discard the magnitude of interactions between the hidden state and tokens while preserving their relative weights, which relieves the dependencies of token contribution on previous tokens. Together with the involvement of multi-scan strategies, we show that the scanning results can be integrated to achieve non-causality, which not only improves the performance of SSD in vision tasks but also enhances its efficiency. We conduct extensive experiments on various benchmarks including image classification, detection, and segmentation, where VSSD surpasses existing state-of-the-art SSM-based models. Code and weights are available at https://github.com/YuHengsss/VSSD.
Don't Miss the Forest for the Trees: Attentional Vision Calibration for Large Vision Language Models
This study addresses the issue observed in Large Vision Language Models (LVLMs), where excessive attention on a few image tokens, referred to as blind tokens, leads to hallucinatory responses in tasks requiring fine-grained understanding of visual objects. We found that tokens receiving lower attention weights often hold essential information for identifying nuanced object details -- ranging from merely recognizing object existence to identifying their attributes (color, position, etc.) and understanding their relationships. To counteract the over-emphasis on blind tokens and to accurately respond to user queries, we introduce a technique called Attentional Vision Calibration (AVC). During the decoding phase, AVC identifies blind tokens by analyzing the image-related attention distribution. It then dynamically adjusts the logits for the next token prediction by contrasting the logits conditioned on the original visual tokens with those conditioned on the blind tokens. This effectively lowers the dependency on blind tokens and promotes a more balanced consideration of all tokens. We validate AVC on benchmarks such as POPE, MME, and AMBER, where it consistently outperforms existing decoding techniques in mitigating object hallucinations in LVLMs.
DiSa: Directional Saliency-Aware Prompt Learning for Generalizable Vision-Language Models
Prompt learning has emerged as a powerful paradigm for adapting vision-language models such as CLIP to downstream tasks. However, existing methods often overfit to seen data, leading to significant performance degradation when generalizing to novel classes or unseen domains. To address this limitation, we propose DiSa, a Directional Saliency-Aware Prompt Learning framework that integrates two complementary regularization strategies to enhance generalization. First, our Cross-Interactive Regularization (CIR) fosters cross-modal alignment by enabling cooperative learning between prompted and frozen encoders. Within CIR, a saliency-aware masking strategy guides the image encoder to prioritize semantically critical image regions, reducing reliance on less informative patches. Second, we introduce a directional regularization strategy that aligns visual embeddings with class-wise prototype features in a directional manner to prioritize consistency in feature orientation over strict proximity. This approach ensures robust generalization by leveraging stable prototype directions derived from class-mean statistics. Extensive evaluations on 11 diverse image classification benchmarks demonstrate that DiSa consistently outperforms state-of-the-art prompt learning methods across various settings, including base-to-novel generalization, cross-dataset transfer, domain generalization, and few-shot learning.
Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt. While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt. We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt. Moreover, we find that in some cases the model also fails to correctly bind attributes (e.g., colors) to their corresponding subjects. To help mitigate these failure cases, we introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness of the generated images. Using an attention-based formulation of GSN, dubbed Attend-and-Excite, we guide the model to refine the cross-attention units to attend to all subject tokens in the text prompt and strengthen - or excite - their activations, encouraging the model to generate all subjects described in the text prompt. We compare our approach to alternative approaches and demonstrate that it conveys the desired concepts more faithfully across a range of text prompts.
Planting a SEED of Vision in Large Language Model
We present SEED, an elaborate image tokenizer that empowers Large Language Models (LLMs) with the emergent ability to SEE and Draw at the same time. Research on image tokenizers has previously reached an impasse, as frameworks employing quantized visual tokens have lost prominence due to subpar performance and convergence in multimodal comprehension (compared to BLIP-2, etc.) or generation (compared to Stable Diffusion, etc.). Despite the limitations, we remain confident in its natural capacity to unify visual and textual representations, facilitating scalable multimodal training with LLM's original recipe. In this study, we identify two crucial principles for the architecture and training of SEED that effectively ease subsequent alignment with LLMs. (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. As a result, the off-the-shelf LLM is able to perform both image-to-text and text-to-image generation by incorporating our SEED through efficient LoRA tuning. Comprehensive multimodal pretraining and instruction tuning, which may yield improved results, are reserved for future investigation. This version of SEED was trained in 5.7 days using only 64 V100 GPUs and 5M publicly available image-text pairs. Our preliminary study emphasizes the great potential of discrete visual tokens in versatile multimodal LLMs and the importance of proper image tokenizers in broader research.
An Attentive Survey of Attention Models
Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. We also describe how attention has been used to improve the interpretability of neural networks. Finally, we discuss some future research directions in attention. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.
Causal Diffusion Transformers for Generative Modeling
We introduce Causal Diffusion as the autoregressive (AR) counterpart of Diffusion models. It is a next-token(s) forecasting framework that is friendly to both discrete and continuous modalities and compatible with existing next-token prediction models like LLaMA and GPT. While recent works attempt to combine diffusion with AR models, we show that introducing sequential factorization to a diffusion model can substantially improve its performance and enables a smooth transition between AR and diffusion generation modes. Hence, we propose CausalFusion - a decoder-only transformer that dual-factorizes data across sequential tokens and diffusion noise levels, leading to state-of-the-art results on the ImageNet generation benchmark while also enjoying the AR advantage of generating an arbitrary number of tokens for in-context reasoning. We further demonstrate CausalFusion's multimodal capabilities through a joint image generation and captioning model, and showcase CausalFusion's ability for zero-shot in-context image manipulations. We hope that this work could provide the community with a fresh perspective on training multimodal models over discrete and continuous data.
Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas
Large Vision Language Models (VLMs) have long struggled with spatial reasoning tasks. Surprisingly, even simple spatial reasoning tasks, such as recognizing "under" or "behind" relationships between only two objects, pose significant challenges for current VLMs. In this work, we study the spatial reasoning challenge from the lens of mechanistic interpretability, diving into the model's internal states to examine the interactions between image and text tokens. By tracing attention distribution over the image through out intermediate layers, we observe that successful spatial reasoning correlates strongly with the model's ability to align its attention distribution with actual object locations, particularly differing between familiar and unfamiliar spatial relationships. Motivated by these findings, we propose ADAPTVIS based on inference-time confidence scores to sharpen the attention on highly relevant regions when confident, while smoothing and broadening the attention window to consider a wider context when confidence is lower. This training-free decoding method shows significant improvement (e.g., up to a 50 absolute point improvement) on spatial reasoning benchmarks such as WhatsUp and VSR with negligible cost. We make code and data publicly available for research purposes at https://github.com/shiqichen17/AdaptVis.
Have the VLMs Lost Confidence? A Study of Sycophancy in VLMs
In the study of LLMs, sycophancy represents a prevalent hallucination that poses significant challenges to these models. Specifically, LLMs often fail to adhere to original correct responses, instead blindly agreeing with users' opinions, even when those opinions are incorrect or malicious. However, research on sycophancy in visual language models (VLMs) has been scarce. In this work, we extend the exploration of sycophancy from LLMs to VLMs, introducing the MM-SY benchmark to evaluate this phenomenon. We present evaluation results from multiple representative models, addressing the gap in sycophancy research for VLMs. To mitigate sycophancy, we propose a synthetic dataset for training and employ methods based on prompts, supervised fine-tuning, and DPO. Our experiments demonstrate that these methods effectively alleviate sycophancy in VLMs. Additionally, we probe VLMs to assess the semantic impact of sycophancy and analyze the attention distribution of visual tokens. Our findings indicate that the ability to prevent sycophancy is predominantly observed in higher layers of the model. The lack of attention to image knowledge in these higher layers may contribute to sycophancy, and enhancing image attention at high layers proves beneficial in mitigating this issue.
See What You Are Told: Visual Attention Sink in Large Multimodal Models
Large multimodal models (LMMs) "see" images by leveraging the attention mechanism between text and visual tokens in the transformer decoder. Ideally, these models should focus on key visual information relevant to the text token. However, recent findings indicate that LMMs have an extraordinary tendency to consistently allocate high attention weights to specific visual tokens, even when these tokens are irrelevant to the corresponding text. In this study, we investigate the property behind the appearance of these irrelevant visual tokens and examine their characteristics. Our findings show that this behavior arises due to the massive activation of certain hidden state dimensions, which resembles the attention sink found in language models. Hence, we refer to this phenomenon as the visual attention sink. In particular, our analysis reveals that removing the irrelevant visual sink tokens does not impact model performance, despite receiving high attention weights. Consequently, we recycle the attention to these tokens as surplus resources, redistributing the attention budget to enhance focus on the image. To achieve this, we introduce Visual Attention Redistribution (VAR), a method that redistributes attention in image-centric heads, which we identify as innately focusing on visual information. VAR can be seamlessly applied across different LMMs to improve performance on a wide range of tasks, including general vision-language tasks, visual hallucination tasks, and vision-centric tasks, all without the need for additional training, models, or inference steps. Experimental results demonstrate that VAR enables LMMs to process visual information more effectively by adjusting their internal attention mechanisms, offering a new direction to enhancing the multimodal capabilities of LMMs.
Equivariant Image Modeling
Current generative models, such as autoregressive and diffusion approaches, decompose high-dimensional data distribution learning into a series of simpler subtasks. However, inherent conflicts arise during the joint optimization of these subtasks, and existing solutions fail to resolve such conflicts without sacrificing efficiency or scalability. We propose a novel equivariant image modeling framework that inherently aligns optimization targets across subtasks by leveraging the translation invariance of natural visual signals. Our method introduces (1) column-wise tokenization which enhances translational symmetry along the horizontal axis, and (2) windowed causal attention which enforces consistent contextual relationships across positions. Evaluated on class-conditioned ImageNet generation at 256x256 resolution, our approach achieves performance comparable to state-of-the-art AR models while using fewer computational resources. Systematic analysis demonstrates that enhanced equivariance reduces inter-task conflicts, significantly improving zero-shot generalization and enabling ultra-long image synthesis. This work establishes the first framework for task-aligned decomposition in generative modeling, offering insights into efficient parameter sharing and conflict-free optimization. The code and models are publicly available at https://github.com/drx-code/EquivariantModeling.
DaViT: Dual Attention Vision Transformers
In this work, we introduce Dual Attention Vision Transformers (DaViT), a simple yet effective vision transformer architecture that is able to capture global context while maintaining computational efficiency. We propose approaching the problem from an orthogonal angle: exploiting self-attention mechanisms with both "spatial tokens" and "channel tokens". With spatial tokens, the spatial dimension defines the token scope, and the channel dimension defines the token feature dimension. With channel tokens, we have the inverse: the channel dimension defines the token scope, and the spatial dimension defines the token feature dimension. We further group tokens along the sequence direction for both spatial and channel tokens to maintain the linear complexity of the entire model. We show that these two self-attentions complement each other: (i) since each channel token contains an abstract representation of the entire image, the channel attention naturally captures global interactions and representations by taking all spatial positions into account when computing attention scores between channels; (ii) the spatial attention refines the local representations by performing fine-grained interactions across spatial locations, which in turn helps the global information modeling in channel attention. Extensive experiments show our DaViT achieves state-of-the-art performance on four different tasks with efficient computations. Without extra data, DaViT-Tiny, DaViT-Small, and DaViT-Base achieve 82.8%, 84.2%, and 84.6% top-1 accuracy on ImageNet-1K with 28.3M, 49.7M, and 87.9M parameters, respectively. When we further scale up DaViT with 1.5B weakly supervised image and text pairs, DaViT-Gaint reaches 90.4% top-1 accuracy on ImageNet-1K. Code is available at https://github.com/dingmyu/davit.
FocalLens: Instruction Tuning Enables Zero-Shot Conditional Image Representations
Visual understanding is inherently contextual -- what we focus on in an image depends on the task at hand. For instance, given an image of a person holding a bouquet of flowers, we may focus on either the person such as their clothing, or the type of flowers, depending on the context of interest. Yet, most existing image encoding paradigms represent an image as a fixed, generic feature vector, overlooking the potential needs of prioritizing varying visual information for different downstream use cases. In this work, we introduce FocalLens, a conditional visual encoding method that produces different representations for the same image based on the context of interest, expressed flexibly through natural language. We leverage vision instruction tuning data and contrastively finetune a pretrained vision encoder to take natural language instructions as additional inputs for producing conditional image representations. Extensive experiments validate that conditional image representation from FocalLens better pronounce the visual features of interest compared to generic features produced by standard vision encoders like CLIP. In addition, we show FocalLens further leads to performance improvements on a range of downstream tasks including image-image retrieval, image classification, and image-text retrieval, with an average gain of 5 and 10 points on the challenging SugarCrepe and MMVP-VLM benchmarks, respectively.
Stable and Causal Inference for Discriminative Self-supervised Deep Visual Representations
In recent years, discriminative self-supervised methods have made significant strides in advancing various visual tasks. The central idea of learning a data encoder that is robust to data distortions/augmentations is straightforward yet highly effective. Although many studies have demonstrated the empirical success of various learning methods, the resulting learned representations can exhibit instability and hinder downstream performance. In this study, we analyze discriminative self-supervised methods from a causal perspective to explain these unstable behaviors and propose solutions to overcome them. Our approach draws inspiration from prior works that empirically demonstrate the ability of discriminative self-supervised methods to demix ground truth causal sources to some extent. Unlike previous work on causality-empowered representation learning, we do not apply our solutions during the training process but rather during the inference process to improve time efficiency. Through experiments on both controlled image datasets and realistic image datasets, we show that our proposed solutions, which involve tempering a linear transformation with controlled synthetic data, are effective in addressing these issues.
INTER: Mitigating Hallucination in Large Vision-Language Models by Interaction Guidance Sampling
Hallucinations in large vision-language models (LVLMs) pose significant challenges for real-world applications, as LVLMs may generate responses that appear plausible yet remain inconsistent with the associated visual content. This issue rarely occurs in human cognition. We argue that this discrepancy arises from humans' ability to effectively leverage multimodal interaction information in data samples. Specifically, humans typically first gather multimodal information, analyze the interactions across modalities for understanding, and then express their understanding through language. Motivated by this observation, we conduct extensive experiments on popular LVLMs and obtained insights that surprisingly reveal human-like, though less pronounced, cognitive behavior of LVLMs on multimodal samples. Building on these findings, we further propose INTER: Interaction Guidance Sampling, a novel training-free algorithm that mitigate hallucinations without requiring additional data. Specifically, INTER explicitly guides LVLMs to effectively reapply their understanding of multimodal interaction information when generating responses, thereby reducing potential hallucinations. On six benchmarks including VQA and image captioning tasks, INTER achieves an average improvement of up to 3.4\% on five LVLMs compared to the state-of-the-art decoding strategy. The code will be released when the paper is accepted.
MiCo: Multi-image Contrast for Reinforcement Visual Reasoning
This work explores enabling Chain-of-Thought (CoT) reasoning to link visual cues across multiple images. A straightforward solution is to adapt rule-based reinforcement learning for Vision-Language Models (VLMs). However, such methods typically rely on manually curated question-answer pairs, which can be particularly challenging when dealing with fine grained visual details and complex logic across images. Inspired by self-supervised visual representation learning, we observe that images contain inherent constraints that can serve as supervision. Based on this insight, we construct image triplets comprising two augmented views of the same image and a third, similar but distinct image. During training, the model is prompted to generate a reasoning process to compare these images (i.e., determine same or different). Then we optimize the model with rule-based reinforcement learning. Due to the high visual similarity and the presence of augmentations, the model must attend to subtle visual changes and perform logical reasoning to succeed. Experiments show that, although trained solely on visual comparison tasks, the learned reasoning ability generalizes effectively to a wide range of questions. Without relying on any human-annotated question-answer pairs, our method achieves significant improvements on multi-image reasoning benchmarks and shows strong performance on general vision tasks.
Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing
Large-scale text-to-image generative models have been a ground-breaking development in generative AI, with diffusion models showing their astounding ability to synthesize convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques are susceptible to unintended modifications of regions outside the targeted area, such as on the background or on distractor objects which have some semantic or visual relationship with the targeted object. According to our experimental findings, inaccurate cross-attention maps are at the root of this problem. Based on this observation, we propose Dynamic Prompt Learning (DPL) to force cross-attention maps to focus on correct noun words in the text prompt. By updating the dynamic tokens for nouns in the textual input with the proposed leakage repairment losses, we achieve fine-grained image editing over particular objects while preventing undesired changes to other image regions. Our method DPL, based on the publicly available Stable Diffusion, is extensively evaluated on a wide range of images, and consistently obtains superior results both quantitatively (CLIP score, Structure-Dist) and qualitatively (on user-evaluation). We show improved prompt editing results for Word-Swap, Prompt Refinement, and Attention Re-weighting, especially for complex multi-object scenes.
Instruction-Aligned Visual Attention for Mitigating Hallucinations in Large Vision-Language Models
Despite the significant success of Large Vision-Language models(LVLMs), these models still suffer hallucinations when describing images, generating answers that include non-existent objects. It is reported that these models tend to over-focus on certain irrelevant image tokens that do not contain critical information for answering the question and distort the output. To address this, we propose an Instruction-Aligned Visual Attention(IAVA) approach, which identifies irrelevant tokens by comparing changes in attention weights under two different instructions. By applying contrastive decoding, we dynamically adjust the logits generated from original image tokens and irrelevant image tokens, reducing the model's over-attention to irrelevant information. The experimental results demonstrate that IAVA consistently outperforms existing decoding techniques on benchmarks such as MME, POPE, and TextVQA in mitigating object hallucinations. Our IAVA approach is available online at https://github.com/Lee-lab558/IAVA.
DeepSketcher: Internalizing Visual Manipulation for Multimodal Reasoning
The "thinking with images" paradigm represents a pivotal shift in the reasoning of Vision Language Models (VLMs), moving from text-dominant chain-of-thought to image-interactive reasoning. By invoking visual tools or generating intermediate visual representations, VLMs can iteratively attend to fine-grained regions, enabling deeper image understanding and more faithful multimodal reasoning. As an emerging paradigm, however, it still leaves substantial room for exploration in data construction accuracy, structural design, and broader application scenarios, which offer rich opportunities for advancing multimodal reasoning. To further advance this line of work, we present DeepSketcher, a comprehensive suite comprising both an image-text interleaved dataset and a self-contained model. The dataset contains 31k chain-of-thought (CoT) reasoning trajectories with diverse tool calls and resulting edited images, covering a wide range of data types and manipulation instructions with high annotation accuracy. Building on this resource, we design a model that performs interleaved image-text reasoning and natively generates "visual thoughts" by operating directly in the visual embedding space, rather than invoking external tools and repeatedly re-encoding generated images. This design enables tool-free and more flexible "thinking with images". Extensive experiments on multimodal reasoning benchmarks demonstrate strong performance, validating both the utility of the dataset and the effectiveness of the model design.
Causal Head Gating: A Framework for Interpreting Roles of Attention Heads in Transformers
We present causal head gating (CHG), a scalable method for interpreting the functional roles of attention heads in transformer models. CHG learns soft gates over heads and assigns them a causal taxonomy - facilitating, interfering, or irrelevant - based on their impact on task performance. Unlike prior approaches in mechanistic interpretability, which are hypothesis-driven and require prompt templates or target labels, CHG applies directly to any dataset using standard next-token prediction. We evaluate CHG across multiple large language models (LLMs) in the Llama 3 model family and diverse tasks, including syntax, commonsense, and mathematical reasoning, and show that CHG scores yield causal, not merely correlational, insight validated via ablation and causal mediation analyses. We also introduce contrastive CHG, a variant that isolates sub-circuits for specific task components. Our findings reveal that LLMs contain multiple sparse task-sufficient sub-circuits, that individual head roles depend on interactions with others (low modularity), and that instruction following and in-context learning rely on separable mechanisms.
BrainExplore: Large-Scale Discovery of Interpretable Visual Representations in the Human Brain
Understanding how the human brain represents visual concepts, and in which brain regions these representations are encoded, remains a long-standing challenge. Decades of work have advanced our understanding of visual representations, yet brain signals remain large and complex, and the space of possible visual concepts is vast. As a result, most studies remain small-scale, rely on manual inspection, focus on specific regions and properties, and rarely include systematic validation. We present a large-scale, automated framework for discovering and explaining visual representations across the human cortex. Our method comprises two main stages. First, we discover candidate interpretable patterns in fMRI activity through unsupervised, data-driven decomposition methods. Next, we explain each pattern by identifying the set of natural images that most strongly elicit it and generating a natural-language description of their shared visual meaning. To scale this process, we introduce an automated pipeline that tests multiple candidate explanations, assigns quantitative reliability scores, and selects the most consistent description for each voxel pattern. Our framework reveals thousands of interpretable patterns spanning many distinct visual concepts, including fine-grained representations previously unreported.
Striped Attention: Faster Ring Attention for Causal Transformers
To help address the growing demand for ever-longer sequence lengths in transformer models, Liu et al. recently proposed Ring Attention, an exact attention algorithm capable of overcoming per-device memory bottle- necks by distributing self-attention across multiple devices. In this paper, we study the performance characteristics of Ring Attention in the important special case of causal transformer models, and identify a key workload imbal- ance due to triangular structure of causal attention computations. We propose a simple extension to Ring Attention, which we call Striped Attention to fix this imbalance. Instead of devices having contiguous subsequences, each device has a subset of tokens distributed uniformly throughout the sequence, which we demonstrate leads to more even workloads. In experiments running Striped Attention on A100 GPUs and TPUv4s, we are able to achieve up to 1.45x end-to-end throughput improvements over the original Ring Attention algorithm on causal transformer training at a sequence length of 256k. Furthermore, on 16 TPUv4 chips, we were able to achieve 1.65x speedups at sequence lengths of 786k. We release the code for our experiments as open source
Focusing by Contrastive Attention: Enhancing VLMs' Visual Reasoning
Vision-Language Models (VLMs) have demonstrated remarkable success across diverse visual tasks, yet their performance degrades in complex visual environments. While existing enhancement approaches require additional training, rely on external segmentation tools, or operate at coarse-grained levels, they overlook the innate ability within VLMs. To bridge this gap, we investigate VLMs' attention patterns and discover that: (1) visual complexity strongly correlates with attention entropy, negatively impacting reasoning performance; (2) attention progressively refines from global scanning in shallow layers to focused convergence in deeper layers, with convergence degree determined by visual complexity. (3) Theoretically, we prove that the contrast of attention maps between general queries and task-specific queries enables the decomposition of visual signal into semantic signals and visual noise components. Building on these insights, we propose Contrastive Attention Refinement for Visual Enhancement (CARVE), a training-free method that extracts task-relevant visual signals through attention contrasting at the pixel level. Extensive experiments demonstrate that CARVE consistently enhances performance, achieving up to 75% improvement on open-source models. Our work provides critical insights into the interplay between visual complexity and attention mechanisms, offering an efficient pathway for improving visual reasoning with contrasting attention.
LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. \method consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
ThinkMorph: Emergent Properties in Multimodal Interleaved Chain-of-Thought Reasoning
Multimodal reasoning requires iterative coordination between language and vision, yet it remains unclear what constitutes a meaningful interleaved chain of thought. We posit that text and image thoughts should function as complementary, rather than isomorphic, modalities that mutually advance reasoning. Guided by this principle, we build ThinkMorph, a unified model fine-tuned on 24K high-quality interleaved reasoning traces spanning tasks with varying visual engagement. ThinkMorph learns to generate progressive text-image reasoning steps that concretely manipulate visual content while maintaining coherent verbal logic. It delivers large gains on vision-centric benchmarks (averaging 34.7% over the base model) and generalizes to out-of-domain tasks, matching or surpassing larger and proprietary VLMs. Beyond performance, ThinkMorph exhibits emergent multimodal intelligence, including unseen visual manipulation skills, adaptive switching between reasoning modes, and better test-time scaling through diversified multimodal thoughts.These findings suggest promising directions for characterizing the emergent capabilities of unified models for multimodal reasoning.
InitNO: Boosting Text-to-Image Diffusion Models via Initial Noise Optimization
Recent strides in the development of diffusion models, exemplified by advancements such as Stable Diffusion, have underscored their remarkable prowess in generating visually compelling images. However, the imperative of achieving a seamless alignment between the generated image and the provided prompt persists as a formidable challenge. This paper traces the root of these difficulties to invalid initial noise, and proposes a solution in the form of Initial Noise Optimization (InitNO), a paradigm that refines this noise. Considering text prompts, not all random noises are effective in synthesizing semantically-faithful images. We design the cross-attention response score and the self-attention conflict score to evaluate the initial noise, bifurcating the initial latent space into valid and invalid sectors. A strategically crafted noise optimization pipeline is developed to guide the initial noise towards valid regions. Our method, validated through rigorous experimentation, shows a commendable proficiency in generating images in strict accordance with text prompts. Our code is available at https://github.com/xiefan-guo/initno.
From Perception to Cognition: A Survey of Vision-Language Interactive Reasoning in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) strive to achieve a profound, human-like understanding of and interaction with the physical world, but often exhibit a shallow and incoherent integration when acquiring information (Perception) and conducting reasoning (Cognition). This disconnect leads to a spectrum of reasoning failures, with hallucination being the most prominent. Collectively, these issues expose a fundamental challenge: the ability to process pixels does not yet confer the ability to construct a coherent, credible internal world model. To systematically dissect and address this challenge, this survey introduces a novel and unified analytical framework: ``From Perception to Cognition." We deconstruct the complex process of vision-language interactive understanding into two interdependent layers: Perception, the foundational ability to accurately extract visual information and achieve fine-grained alignment with textual instructions; and Cognition, the higher-order capability for proactive, multi-step, goal-oriented reasoning built upon this perceptual foundation, the core of which is the formation of a dynamic observe-think-verify reasoning loop. Guided by this framework, this paper systematically analyzes the key bottlenecks of current MLLMs at both layers. It surveys the landscape of cutting-edge methods designed to address these challenges, spanning from techniques that enhance low-level visual representations to those that improve high-level reasoning paradigms. Furthermore, we review critical benchmarks and delineate future research directions. This survey aims to provide the research community with a clear, structured perspective for understanding the intrinsic limitations of current MLLMs and to illuminate the path toward building next-generation models capable of deep reasoning and a genuine understanding of the world.
Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models
Diffusion probabilistic models (DPMs) have become the state-of-the-art in high-quality image generation. However, DPMs have an arbitrary noisy latent space with no interpretable or controllable semantics. Although there has been significant research effort to improve image sample quality, there is little work on representation-controlled generation using diffusion models. Specifically, causal modeling and controllable counterfactual generation using DPMs is an underexplored area. In this work, we propose CausalDiffAE, a diffusion-based causal representation learning framework to enable counterfactual generation according to a specified causal model. Our key idea is to use an encoder to extract high-level semantically meaningful causal variables from high-dimensional data and model stochastic variation using reverse diffusion. We propose a causal encoding mechanism that maps high-dimensional data to causally related latent factors and parameterize the causal mechanisms among latent factors using neural networks. To enforce the disentanglement of causal variables, we formulate a variational objective and leverage auxiliary label information in a prior to regularize the latent space. We propose a DDIM-based counterfactual generation procedure subject to do-interventions. Finally, to address the limited label supervision scenario, we also study the application of CausalDiffAE when a part of the training data is unlabeled, which also enables granular control over the strength of interventions in generating counterfactuals during inference. We empirically show that CausalDiffAE learns a disentangled latent space and is capable of generating high-quality counterfactual images.
Adapting LLaMA Decoder to Vision Transformer
This work examines whether decoder-only Transformers such as LLaMA, which were originally designed for large language models (LLMs), can be adapted to the computer vision field. We first "LLaMAfy" a standard ViT step-by-step to align with LLaMA's architecture, and find that directly applying a casual mask to the self-attention brings an attention collapse issue, resulting in the failure to the network training. We suggest to reposition the class token behind the image tokens with a post-sequence class token technique to overcome this challenge, enabling causal self-attention to efficiently capture the entire image's information. Additionally, we develop a soft mask strategy that gradually introduces a casual mask to the self-attention at the onset of training to facilitate the optimization behavior. The tailored model, dubbed as image LLaMA (iLLaMA), is akin to LLaMA in architecture and enables direct supervised learning. Its causal self-attention boosts computational efficiency and learns complex representation by elevating attention map ranks. iLLaMA rivals the performance with its encoder-only counterparts, achieving 75.1% ImageNet top-1 accuracy with only 5.7M parameters. Scaling the model to ~310M and pre-training on ImageNet-21K further enhances the accuracy to 86.0%. Extensive experiments demonstrate iLLaMA's reliable properties: calibration, shape-texture bias, quantization compatibility, ADE20K segmentation and CIFAR transfer learning. We hope our study can kindle fresh views to visual model design in the wave of LLMs. Pre-trained models and codes are available here.
MMRA: A Benchmark for Multi-granularity Multi-image Relational Association
Given the remarkable success that large visual language models (LVLMs) have achieved in image perception tasks, the endeavor to make LVMLs perceive the world like humans is drawing increasing attention. Current multi-modal benchmarks mainly focus on the objective fact or certain topic related potential knowledge within a image, but overlook the associative relations between multiple images. Therefore, we define a multi-image relation association task, and meticulously curate MMRA benchmark, a Multi-granularity Multi-image Relational Association benchmark, consisted of 1026 samples. In order to systematically and comprehensively evaluate mainstream LVLMs, we establish an associational relation system among images that contain 11 subtasks (e.g, UsageSimilarity, SubEvent, etc.) at two granularity levels (i.e., "image" and "entity") according to the relations in ConceptNet. Our experiments demonstrate that, on our MMRA benchmark, current mainstream LVLMs all have their own advantages and disadvantages across different subtasks. It is worth noting that, at the entity level, the performance of all models is worse than that of them at the image level, indicating that the fine-grained multi-image perception task is still challenging for LVLMs. The tasks related to spatial perception are relatively difficult for LVLMs to handle. Furthermore, we find that LVMLs exhibit a good ability to perceive image details, and the key to enhancing their multi-image association capability is to strengthen the reasoning ability of their language model component. All our codes and data are released at htthttps://github.com/Wusiwei0410/MMRA.
Making LLaMA SEE and Draw with SEED Tokenizer
The great success of Large Language Models (LLMs) has expanded the potential of multimodality, contributing to the gradual evolution of General Artificial Intelligence (AGI). A true AGI agent should not only possess the capability to perform predefined multi-tasks but also exhibit emergent abilities in an open-world context. However, despite the considerable advancements made by recent multimodal LLMs, they still fall short in effectively unifying comprehension and generation tasks, let alone open-world emergent abilities. We contend that the key to overcoming the present impasse lies in enabling text and images to be represented and processed interchangeably within a unified autoregressive Transformer. To this end, we introduce SEED, an elaborate image tokenizer that empowers LLMs with the ability to SEE and Draw at the same time. We identify two crucial design principles: (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. With SEED tokens, LLM is able to perform scalable multimodal autoregression under its original training recipe, i.e., next-word prediction. SEED-LLaMA is therefore produced by large-scale pretraining and instruction tuning on the interleaved textual and visual data, demonstrating impressive performance on a broad range of multimodal comprehension and generation tasks. More importantly, SEED-LLaMA has exhibited compositional emergent abilities such as multi-turn in-context multimodal generation, acting like your AI assistant.
Delving into Inter-Image Invariance for Unsupervised Visual Representations
Contrastive learning has recently shown immense potential in unsupervised visual representation learning. Existing studies in this track mainly focus on intra-image invariance learning. The learning typically uses rich intra-image transformations to construct positive pairs and then maximizes agreement using a contrastive loss. The merits of inter-image invariance, conversely, remain much less explored. One major obstacle to exploit inter-image invariance is that it is unclear how to reliably construct inter-image positive pairs, and further derive effective supervision from them since no pair annotations are available. In this work, we present a comprehensive empirical study to better understand the role of inter-image invariance learning from three main constituting components: pseudo-label maintenance, sampling strategy, and decision boundary design. To facilitate the study, we introduce a unified and generic framework that supports the integration of unsupervised intra- and inter-image invariance learning. Through carefully-designed comparisons and analysis, multiple valuable observations are revealed: 1) online labels converge faster and perform better than offline labels; 2) semi-hard negative samples are more reliable and unbiased than hard negative samples; 3) a less stringent decision boundary is more favorable for inter-image invariance learning. With all the obtained recipes, our final model, namely InterCLR, shows consistent improvements over state-of-the-art intra-image invariance learning methods on multiple standard benchmarks. We hope this work will provide useful experience for devising effective unsupervised inter-image invariance learning. Code: https://github.com/open-mmlab/mmselfsup.
OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction
Visual search is important in our daily life. The efficient allocation of visual attention is critical to effectively complete visual search tasks. Prior research has predominantly modelled the spatial allocation of visual attention in images at the pixel level, e.g. using a saliency map. However, emerging evidence shows that visual attention is guided by objects rather than pixel intensities. This paper introduces the Object-level Attention Transformer (OAT), which predicts human scanpaths as they search for a target object within a cluttered scene of distractors. OAT uses an encoder-decoder architecture. The encoder captures information about the position and appearance of the objects within an image and about the target. The decoder predicts the gaze scanpath as a sequence of object fixations, by integrating output features from both the encoder and decoder. We also propose a new positional encoding that better reflects spatial relationships between objects. We evaluated OAT on the Amazon book cover dataset and a new dataset for visual search that we collected. OAT's predicted gaze scanpaths align more closely with human gaze patterns, compared to predictions by algorithms based on spatial attention on both established metrics and a novel behavioural-based metric. Our results demonstrate the generalization ability of OAT, as it accurately predicts human scanpaths for unseen layouts and target objects.
Sparse Attention Decomposition Applied to Circuit Tracing
Many papers have shown that attention heads work in conjunction with each other to perform complex tasks. It's frequently assumed that communication between attention heads is via the addition of specific features to token residuals. In this work we seek to isolate and identify the features used to effect communication and coordination among attention heads in GPT-2 small. Our key leverage on the problem is to show that these features are very often sparsely coded in the singular vectors of attention head matrices. We characterize the dimensionality and occurrence of these signals across the attention heads in GPT-2 small when used for the Indirect Object Identification (IOI) task. The sparse encoding of signals, as provided by attention head singular vectors, allows for efficient separation of signals from the residual background and straightforward identification of communication paths between attention heads. We explore the effectiveness of this approach by tracing portions of the circuits used in the IOI task. Our traces reveal considerable detail not present in previous studies, shedding light on the nature of redundant paths present in GPT-2. And our traces go beyond previous work by identifying features used to communicate between attention heads when performing IOI.
Faster VGGT with Block-Sparse Global Attention
Efficient and accurate feed-forward multi-view reconstruction has long been an important task in computer vision. Recent transformer-based models like VGGT and pi^3 have achieved impressive results with simple architectures, yet they face an inherent runtime bottleneck, due to the quadratic complexity of the global attention layers, that limits the scalability to large image sets. In this paper, we empirically analyze the global attention matrix of these models and observe that probability mass concentrates on a small subset of patch-patch interactions that correspond to cross-view geometric matches. Motivated by the structured attention and inspired by recent advancement in large language models, we propose a replacement for the dense global attention operation based on highly optimized block-sparse kernels, yielding up to 4times faster inference with comparable task performance. Our retrofit requires no retraining of the backbone, extends to both VGGT and pi^3, and supports large image collections. Evaluations on a comprehensive suite of multi-view benchmarks demonstrate the effectiveness of our approach.
CAB: Comprehensive Attention Benchmarking on Long Sequence Modeling
Transformer has achieved remarkable success in language, image, and speech processing. Recently, various efficient attention architectures have been proposed to improve transformer's efficiency while largely preserving its efficacy, especially in modeling long sequences. A widely-used benchmark to test these efficient methods' capability on long-range modeling is Long Range Arena (LRA). However, LRA only focuses on the standard bidirectional (or noncausal) self attention, and completely ignores cross attentions and unidirectional (or causal) attentions, which are equally important to downstream applications. Although designing cross and causal variants of an attention method is straightforward for vanilla attention, it is often challenging for efficient attentions with subquadratic time and memory complexity. In this paper, we propose Comprehensive Attention Benchmark (CAB) under a fine-grained attention taxonomy with four distinguishable attention patterns, namely, noncausal self, causal self, noncausal cross, and causal cross attentions. CAB collects seven real-world tasks from different research areas to evaluate efficient attentions under the four attention patterns. Among these tasks, CAB validates efficient attentions in eight backbone networks to show their generalization across neural architectures. We conduct exhaustive experiments to benchmark the performances of nine widely-used efficient attention architectures designed with different philosophies on CAB. Extensive experimental results also shed light on the fundamental problems of efficient attentions, such as efficiency length against vanilla attention, performance consistency across attention patterns, the benefit of attention mechanisms, and interpolation/extrapolation on long-context language modeling.
PAROAttention: Pattern-Aware ReOrdering for Efficient Sparse and Quantized Attention in Visual Generation Models
In visual generation, the quadratic complexity of attention mechanisms results in high memory and computational costs, especially for longer token sequences required in high-resolution image or multi-frame video generation. To address this, prior research has explored techniques such as sparsification and quantization. However, these techniques face significant challenges under low density and reduced bitwidths. Through systematic analysis, we identify that the core difficulty stems from the dispersed and irregular characteristics of visual attention patterns. Therefore, instead of introducing specialized sparsification and quantization design to accommodate such patterns, we propose an alternative strategy: *reorganizing* the attention pattern to alleviate the challenges. Inspired by the local aggregation nature of visual feature extraction, we design a novel **Pattern-Aware token ReOrdering (PARO)** technique, which unifies the diverse attention patterns into a hardware-friendly block-wise pattern. This unification substantially simplifies and enhances both sparsification and quantization. We evaluate the performance-efficiency trade-offs of various design choices and finalize a methodology tailored for the unified pattern. Our approach, **PAROAttention**, achieves video and image generation with lossless metrics, and nearly identical results from full-precision (FP) baselines, while operating at notably lower density (~20%-30%) and bitwidth (**INT8/INT4**), achieving a **1.9x** to **2.7x** end-to-end latency speedup.
DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy
Referring Image Segmentation (RIS) is a challenging task that aims to segment objects in an image based on natural language expressions. While prior studies have predominantly concentrated on improving vision-language interactions and achieving fine-grained localization, a systematic analysis of the fundamental bottlenecks in existing RIS frameworks remains underexplored. To bridge this gap, we propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition. This modular decomposition facilitates a systematic analysis of the primary bottlenecks impeding RIS performance. Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models. To mitigate this, we propose a Loopback Synergy mechanism, which enhances the synergy between the perception and cognition modules, thereby enabling precise segmentation while simultaneously improving robust image-text comprehension. Additionally, we analyze and introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement in general scenarios. Notably, DeRIS demonstrates inherent adaptability to both non- and multi-referents scenarios without requiring specialized architectural modifications, enhancing its general applicability. The codes and models are available at https://github.com/Dmmm1997/DeRIS.
Vision-guided and Mask-enhanced Adaptive Denoising for Prompt-based Image Editing
Text-to-image diffusion models have demonstrated remarkable progress in synthesizing high-quality images from text prompts, which boosts researches on prompt-based image editing that edits a source image according to a target prompt. Despite their advances, existing methods still encounter three key issues: 1) limited capacity of the text prompt in guiding target image generation, 2) insufficient mining of word-to-patch and patch-to-patch relationships for grounding editing areas, and 3) unified editing strength for all regions during each denoising step. To address these issues, we present a Vision-guided and Mask-enhanced Adaptive Editing (ViMAEdit) method with three key novel designs. First, we propose to leverage image embeddings as explicit guidance to enhance the conventional textual prompt-based denoising process, where a CLIP-based target image embedding estimation strategy is introduced. Second, we devise a self-attention-guided iterative editing area grounding strategy, which iteratively exploits patch-to-patch relationships conveyed by self-attention maps to refine those word-to-patch relationships contained in cross-attention maps. Last, we present a spatially adaptive variance-guided sampling, which highlights sampling variances for critical image regions to promote the editing capability. Experimental results demonstrate the superior editing capacity of ViMAEdit over all existing methods.
Token Sequence Compression for Efficient Multimodal Computing
The exponential growth of Large Multimodal Models (LMMs) has driven advancements in cross-modal reasoning but at significant computational costs. In this work, we focus on visual language models. We highlight the redundancy and inefficiency in current vision encoders, and seek to construct an adaptive compression method for multimodal data. In this work, we characterize a panoply of visual token selection and merging approaches through both benchmarking and qualitative analysis. In particular, we demonstrate that simple cluster-level token aggregation outperforms prior state-of-the-art works in token selection and merging, including merging at the vision encoder level and attention-based approaches. We underline the redundancy in current vision encoders, and shed light on several puzzling trends regarding principles of visual token selection through cross-modal attention visualizations. This work is a first effort towards more effective encoding and processing of high-dimensional data, and paves the way for more scalable and sustainable multimodal systems.
Photorealistic Video Generation with Diffusion Models
We present W.A.L.T, a transformer-based approach for photorealistic video generation via diffusion modeling. Our approach has two key design decisions. First, we use a causal encoder to jointly compress images and videos within a unified latent space, enabling training and generation across modalities. Second, for memory and training efficiency, we use a window attention architecture tailored for joint spatial and spatiotemporal generative modeling. Taken together these design decisions enable us to achieve state-of-the-art performance on established video (UCF-101 and Kinetics-600) and image (ImageNet) generation benchmarks without using classifier free guidance. Finally, we also train a cascade of three models for the task of text-to-video generation consisting of a base latent video diffusion model, and two video super-resolution diffusion models to generate videos of 512 times 896 resolution at 8 frames per second.
Causal Reasoning Elicits Controllable 3D Scene Generation
Existing 3D scene generation methods often struggle to model the complex logical dependencies and physical constraints between objects, limiting their ability to adapt to dynamic and realistic environments. We propose CausalStruct, a novel framework that embeds causal reasoning into 3D scene generation. Utilizing large language models (LLMs), We construct causal graphs where nodes represent objects and attributes, while edges encode causal dependencies and physical constraints. CausalStruct iteratively refines the scene layout by enforcing causal order to determine the placement order of objects and applies causal intervention to adjust the spatial configuration according to physics-driven constraints, ensuring consistency with textual descriptions and real-world dynamics. The refined scene causal graph informs subsequent optimization steps, employing a Proportional-Integral-Derivative(PID) controller to iteratively tune object scales and positions. Our method uses text or images to guide object placement and layout in 3D scenes, with 3D Gaussian Splatting and Score Distillation Sampling improving shape accuracy and rendering stability. Extensive experiments show that CausalStruct generates 3D scenes with enhanced logical coherence, realistic spatial interactions, and robust adaptability.
FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation
The remarkable efficacy of text-to-image diffusion models has motivated extensive exploration of their potential application in video domains. Zero-shot methods seek to extend image diffusion models to videos without necessitating model training. Recent methods mainly focus on incorporating inter-frame correspondence into attention mechanisms. However, the soft constraint imposed on determining where to attend to valid features can sometimes be insufficient, resulting in temporal inconsistency. In this paper, we introduce FRESCO, intra-frame correspondence alongside inter-frame correspondence to establish a more robust spatial-temporal constraint. This enhancement ensures a more consistent transformation of semantically similar content across frames. Beyond mere attention guidance, our approach involves an explicit update of features to achieve high spatial-temporal consistency with the input video, significantly improving the visual coherence of the resulting translated videos. Extensive experiments demonstrate the effectiveness of our proposed framework in producing high-quality, coherent videos, marking a notable improvement over existing zero-shot methods.
MambaEye: A Size-Agnostic Visual Encoder with Causal Sequential Processing
Despite decades of progress, a truly input-size agnostic visual encoder-a fundamental characteristic of human vision-has remained elusive. We address this limitation by proposing MambaEye, a novel, causal sequential encoder that leverages the low complexity and causal-process based pure Mamba2 backbone. Unlike previous Mamba-based vision encoders that often employ bidirectional processing, our strictly unidirectional approach preserves the inherent causality of State Space Models, enabling the model to generate a prediction at any point in its input sequence. A core innovation is our use of relative move embedding, which encodes the spatial shift between consecutive patches, providing a strong inductive bias for translation invariance and making the model inherently adaptable to arbitrary image resolutions and scanning patterns. To achieve this, we introduce a novel diffusion-inspired loss function that provides dense, step-wise supervision, training the model to build confidence as it gathers more visual evidence. We demonstrate that MambaEye exhibits robust performance across a wide range of image resolutions, especially at higher resolutions such as 1536^2 on the ImageNet-1K classification task. This feat is achieved while maintaining linear time and memory complexity relative to the number of patches.
From Recognition to Cognition: Visual Commonsense Reasoning
Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world. We formalize this task as Visual Commonsense Reasoning. Given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer. Next, we introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe for generating non-trivial and high-quality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-the-art vision models struggle (~45%). To move towards cognition-level understanding, we present a new reasoning engine, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. R2C helps narrow the gap between humans and machines (~65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.
Benchmarking Spatial Relationships in Text-to-Image Generation
Spatial understanding is a fundamental aspect of computer vision and integral for human-level reasoning about images, making it an important component for grounded language understanding. While recent text-to-image synthesis (T2I) models have shown unprecedented improvements in photorealism, it is unclear whether they have reliable spatial understanding capabilities. We investigate the ability of T2I models to generate correct spatial relationships among objects and present VISOR, an evaluation metric that captures how accurately the spatial relationship described in text is generated in the image. To benchmark existing models, we introduce a dataset, SR_{2D}, that contains sentences describing two or more objects and the spatial relationships between them. We construct an automated evaluation pipeline to recognize objects and their spatial relationships, and employ it in a large-scale evaluation of T2I models. Our experiments reveal a surprising finding that, although state-of-the-art T2I models exhibit high image quality, they are severely limited in their ability to generate multiple objects or the specified spatial relations between them. Our analyses demonstrate several biases and artifacts of T2I models such as the difficulty with generating multiple objects, a bias towards generating the first object mentioned, spatially inconsistent outputs for equivalent relationships, and a correlation between object co-occurrence and spatial understanding capabilities. We conduct a human study that shows the alignment between VISOR and human judgement about spatial understanding. We offer the SR_{2D} dataset and the VISOR metric to the community in support of T2I reasoning research.
Transformer Language Models without Positional Encodings Still Learn Positional Information
Causal transformer language models (LMs), such as GPT-3, typically require some form of positional encoding, such as positional embeddings. However, we show that LMs without any explicit positional encoding are still competitive with standard models, and that this phenomenon is robust across different datasets, model sizes, and sequence lengths. Probing experiments reveal that such models acquire an implicit notion of absolute positions throughout the network, effectively compensating for the missing information. We conjecture that causal attention enables the model to infer the number of predecessors that each token can attend to, thereby approximating its absolute position. Our findings indicate that causal LMs might derive positional awareness not only from the explicit positioning mechanism, but also from the effects of the causal mask.
Relational Visual Similarity
Humans do not just see attribute similarity -- we also see relational similarity. An apple is like a peach because both are reddish fruit, but the Earth is also like a peach: its crust, mantle, and core correspond to the peach's skin, flesh, and pit. This ability to perceive and recognize relational similarity, is arguable by cognitive scientist to be what distinguishes humans from other species. Yet, all widely used visual similarity metrics today (e.g., LPIPS, CLIP, DINO) focus solely on perceptual attribute similarity and fail to capture the rich, often surprising relational similarities that humans perceive. How can we go beyond the visible content of an image to capture its relational properties? How can we bring images with the same relational logic closer together in representation space? To answer these questions, we first formulate relational image similarity as a measurable problem: two images are relationally similar when their internal relations or functions among visual elements correspond, even if their visual attributes differ. We then curate 114k image-caption dataset in which the captions are anonymized -- describing the underlying relational logic of the scene rather than its surface content. Using this dataset, we finetune a Vision-Language model to measure the relational similarity between images. This model serves as the first step toward connecting images by their underlying relational structure rather than their visible appearance. Our study shows that while relational similarity has a lot of real-world applications, existing image similarity models fail to capture it -- revealing a critical gap in visual computing.
Attention IoU: Examining Biases in CelebA using Attention Maps
Computer vision models have been shown to exhibit and amplify biases across a wide array of datasets and tasks. Existing methods for quantifying bias in classification models primarily focus on dataset distribution and model performance on subgroups, overlooking the internal workings of a model. We introduce the Attention-IoU (Attention Intersection over Union) metric and related scores, which use attention maps to reveal biases within a model's internal representations and identify image features potentially causing the biases. First, we validate Attention-IoU on the synthetic Waterbirds dataset, showing that the metric accurately measures model bias. We then analyze the CelebA dataset, finding that Attention-IoU uncovers correlations beyond accuracy disparities. Through an investigation of individual attributes through the protected attribute of Male, we examine the distinct ways biases are represented in CelebA. Lastly, by subsampling the training set to change attribute correlations, we demonstrate that Attention-IoU reveals potential confounding variables not present in dataset labels.
PatchCT: Aligning Patch Set and Label Set with Conditional Transport for Multi-Label Image Classification
Multi-label image classification is a prediction task that aims to identify more than one label from a given image. This paper considers the semantic consistency of the latent space between the visual patch and linguistic label domains and introduces the conditional transport (CT) theory to bridge the acknowledged gap. While recent cross-modal attention-based studies have attempted to align such two representations and achieved impressive performance, they required carefully-designed alignment modules and extra complex operations in the attention computation. We find that by formulating the multi-label classification as a CT problem, we can exploit the interactions between the image and label efficiently by minimizing the bidirectional CT cost. Specifically, after feeding the images and textual labels into the modality-specific encoders, we view each image as a mixture of patch embeddings and a mixture of label embeddings, which capture the local region features and the class prototypes, respectively. CT is then employed to learn and align those two semantic sets by defining the forward and backward navigators. Importantly, the defined navigators in CT distance model the similarities between patches and labels, which provides an interpretable tool to visualize the learned prototypes. Extensive experiments on three public image benchmarks show that the proposed model consistently outperforms the previous methods.
Multimodal Neurons in Pretrained Text-Only Transformers
Language models demonstrate remarkable capacity to generalize representations learned in one modality to downstream tasks in other modalities. Can we trace this ability to individual neurons? We study the case where a frozen text transformer is augmented with vision using a self-supervised visual encoder and a single linear projection learned on an image-to-text task. Outputs of the projection layer are not immediately decodable into language describing image content; instead, we find that translation between modalities occurs deeper within the transformer. We introduce a procedure for identifying "multimodal neurons" that convert visual representations into corresponding text, and decoding the concepts they inject into the model's residual stream. In a series of experiments, we show that multimodal neurons operate on specific visual concepts across inputs, and have a systematic causal effect on image captioning.
Enhancing Conditional Image Generation with Explainable Latent Space Manipulation
In the realm of image synthesis, achieving fidelity to a reference image while adhering to conditional prompts remains a significant challenge. This paper proposes a novel approach that integrates a diffusion model with latent space manipulation and gradient-based selective attention mechanisms to address this issue. Leveraging Grad-SAM (Gradient-based Selective Attention Manipulation), we analyze the cross attention maps of the cross attention layers and gradients for the denoised latent vector, deriving importance scores of elements of denoised latent vector related to the subject of interest. Using this information, we create masks at specific timesteps during denoising to preserve subjects while seamlessly integrating the reference image features. This approach ensures the faithful formation of subjects based on conditional prompts, while concurrently refining the background for a more coherent composition. Our experiments on places365 dataset demonstrate promising results, with our proposed model achieving the lowest mean and median Frechet Inception Distance (FID) scores compared to baseline models, indicating superior fidelity preservation. Furthermore, our model exhibits competitive performance in aligning the generated images with provided textual descriptions, as evidenced by high CLIP scores. These results highlight the effectiveness of our approach in both fidelity preservation and textual context preservation, offering a significant advancement in text-to-image synthesis tasks.
Understanding Cross-modal Interactions in V&L Models that Generate Scene Descriptions
Image captioning models tend to describe images in an object-centric way, emphasising visible objects. But image descriptions can also abstract away from objects and describe the type of scene depicted. In this paper, we explore the potential of a state-of-the-art Vision and Language model, VinVL, to caption images at the scene level using (1) a novel dataset which pairs images with both object-centric and scene descriptions. Through (2) an in-depth analysis of the effect of the fine-tuning, we show (3) that a small amount of curated data suffices to generate scene descriptions without losing the capability to identify object-level concepts in the scene; the model acquires a more holistic view of the image compared to when object-centric descriptions are generated. We discuss the parallels between these results and insights from computational and cognitive science research on scene perception.
A Study on Multimodal and Interactive Explanations for Visual Question Answering
Explainability and interpretability of AI models is an essential factor affecting the safety of AI. While various explainable AI (XAI) approaches aim at mitigating the lack of transparency in deep networks, the evidence of the effectiveness of these approaches in improving usability, trust, and understanding of AI systems are still missing. We evaluate multimodal explanations in the setting of a Visual Question Answering (VQA) task, by asking users to predict the response accuracy of a VQA agent with and without explanations. We use between-subjects and within-subjects experiments to probe explanation effectiveness in terms of improving user prediction accuracy, confidence, and reliance, among other factors. The results indicate that the explanations help improve human prediction accuracy, especially in trials when the VQA system's answer is inaccurate. Furthermore, we introduce active attention, a novel method for evaluating causal attentional effects through intervention by editing attention maps. User explanation ratings are strongly correlated with human prediction accuracy and suggest the efficacy of these explanations in human-machine AI collaboration tasks.
Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers
Large language models (LLMs) can acquire new knowledge through fine-tuning, but this process exhibits a puzzling duality: models can generalize remarkably from new facts, yet are also prone to hallucinating incorrect information. However, the reasons for this phenomenon remain poorly understood. In this work, we argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR): the ability to deduce implications by associating concepts, even those without a causal link. Our experiments across five prominent LLMs confirm that OCR indeed drives both generalization and hallucination, depending on whether the associated concepts are causally related. To build a rigorous theoretical understanding of this phenomenon, we then formalize OCR as a synthetic factual recall task. We empirically show that a one-layer single-head attention-only transformer with factorized output and value matrices can learn to solve this task, while a model with combined weights cannot, highlighting the crucial role of matrix factorization. Our theoretical analysis shows that the OCR capability can be attributed to the implicit bias of gradient descent, which favors solutions that minimize the nuclear norm of the combined output-value matrix. This mathematical structure explains why the model learns to associate facts and implications with high sample efficiency, regardless of whether the correlation is causal or merely spurious. Ultimately, our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
SIFThinker: Spatially-Aware Image Focus for Visual Reasoning
Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware "think-with-images" framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method.
BiFormer: Vision Transformer with Bi-Level Routing Attention
As the core building block of vision transformers, attention is a powerful tool to capture long-range dependency. However, such power comes at a cost: it incurs a huge computation burden and heavy memory footprint as pairwise token interaction across all spatial locations is computed. A series of works attempt to alleviate this problem by introducing handcrafted and content-agnostic sparsity into attention, such as restricting the attention operation to be inside local windows, axial stripes, or dilated windows. In contrast to these approaches, we propose a novel dynamic sparse attention via bi-level routing to enable a more flexible allocation of computations with content awareness. Specifically, for a query, irrelevant key-value pairs are first filtered out at a coarse region level, and then fine-grained token-to-token attention is applied in the union of remaining candidate regions (\ie, routed regions). We provide a simple yet effective implementation of the proposed bi-level routing attention, which utilizes the sparsity to save both computation and memory while involving only GPU-friendly dense matrix multiplications. Built with the proposed bi-level routing attention, a new general vision transformer, named BiFormer, is then presented. As BiFormer attends to a small subset of relevant tokens in a query adaptive manner without distraction from other irrelevant ones, it enjoys both good performance and high computational efficiency, especially in dense prediction tasks. Empirical results across several computer vision tasks such as image classification, object detection, and semantic segmentation verify the effectiveness of our design. Code is available at https://github.com/rayleizhu/BiFormer.
