new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 19

BaboonLand Dataset: Tracking Primates in the Wild and Automating Behaviour Recognition from Drone Videos

Using drones to track multiple individuals simultaneously in their natural environment is a powerful approach for better understanding group primate behavior. Previous studies have demonstrated that it is possible to automate the classification of primate behavior from video data, but these studies have been carried out in captivity or from ground-based cameras. To understand group behavior and the self-organization of a collective, the whole troop needs to be seen at a scale where behavior can be seen in relation to the natural environment in which ecological decisions are made. This study presents a novel dataset from drone videos for baboon detection, tracking, and behavior recognition. The baboon detection dataset was created by manually annotating all baboons in drone videos with bounding boxes. A tiling method was subsequently applied to create a pyramid of images at various scales from the original 5.3K resolution images, resulting in approximately 30K images used for baboon detection. The tracking dataset is derived from the detection dataset, where all bounding boxes are assigned the same ID throughout the video. This process resulted in half an hour of very dense tracking data. The behavior recognition dataset was generated by converting tracks into mini-scenes, a video subregion centered on each animal; each mini-scene was manually annotated with 12 distinct behavior types, resulting in over 20 hours of data. Benchmark results show mean average precision (mAP) of 92.62\% for the YOLOv8-X detection model, multiple object tracking precision (MOTA) of 63.81\% for the BotSort tracking algorithm, and micro top-1 accuracy of 63.97\% for the X3D behavior recognition model. Using deep learning to classify wildlife behavior from drone footage facilitates non-invasive insight into the collective behavior of an entire group.

  • 12 authors
·
May 27, 2024

Rethinking Transformers Pre-training for Multi-Spectral Satellite Imagery

Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks by pre-training on large amount of unlabelled data. Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data. Different from standard natural image datasets, remote sensing data is acquired from various sensor technologies and exhibit diverse range of scale variations as well as modalities. Existing satellite image pre-training methods either ignore the scale information present in the remote sensing imagery or restrict themselves to use only a single type of data modality. In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities. Our proposed approach, named SatMAE++, performs multi-scale pre-training and utilizes convolution based upsampling blocks to reconstruct the image at higher scales making it extensible to include more scales. Compared to existing works, the proposed SatMAE++ with multi-scale pre-training is equally effective for both optical as well as multi-spectral imagery. Extensive experiments on six datasets reveal the merits of proposed contributions, leading to state-of-the-art performance on all datasets. SatMAE++ achieves mean average precision (mAP) gain of 2.5\% for multi-label classification task on BigEarthNet dataset. Our code and pre-trained models are available at https://github.com/techmn/satmae_pp.

  • 6 authors
·
Mar 8, 2024

ExposureEngine: Oriented Logo Detection and Sponsor Visibility Analytics in Sports Broadcasts

Quantifying sponsor visibility in sports broadcasts is a critical marketing task traditionally hindered by manual, subjective, and unscalable analysis methods. While automated systems offer an alternative, their reliance on axis-aligned Horizontal Bounding Box (HBB) leads to inaccurate exposuremetrics when logos appear rotated or skewed due to dynamic camera angles and perspective distortions. This paper introduces ExposureEngine, an end-to-end system designed for accurate, rotation-aware sponsor visibility analytics in sports broadcasts, demonstrated in a soccer case study. Our approach predicts Oriented Bounding Box (OBB) to provide a geometrically precise fit to each logo regardless of the orientation on-screen. To train and evaluate our detector, we developed a new dataset comprising 1,103 frames from Swedish elite soccer, featuring 670 unique sponsor logos annotated with OBBs. Our model achieves a mean Average Precision (mAP@0.5) of 0.859, with a precision of 0.96 and recall of 0.87, demonstrating robust performance in localizing logos under diverse broadcast conditions. The system integrates these detections into an analytical pipeline that calculates precise visibility metrics, such as exposure duration and on-screen coverage. Furthermore, we incorporate a language-driven agentic layer, enabling users to generate reports, summaries, and media content through natural language queries. The complete system, including the dataset and the analytics dashboard, provides a comprehensive solution for auditable and interpretable sponsor measurement in sports media. An overview of the ExposureEngine is available online: https://youtu.be/tRw6OBISuW4 .

  • 8 authors
·
Oct 6, 2025

Fusion is Not Enough: Single Modal Attacks on Fusion Models for 3D Object Detection

Multi-sensor fusion (MSF) is widely used in autonomous vehicles (AVs) for perception, particularly for 3D object detection with camera and LiDAR sensors. The purpose of fusion is to capitalize on the advantages of each modality while minimizing its weaknesses. Advanced deep neural network (DNN)-based fusion techniques have demonstrated the exceptional and industry-leading performance. Due to the redundant information in multiple modalities, MSF is also recognized as a general defence strategy against adversarial attacks. In this paper, we attack fusion models from the camera modality that is considered to be of lesser importance in fusion but is more affordable for attackers. We argue that the weakest link of fusion models depends on their most vulnerable modality, and propose an attack framework that targets advanced camera-LiDAR fusion-based 3D object detection models through camera-only adversarial attacks. Our approach employs a two-stage optimization-based strategy that first thoroughly evaluates vulnerable image areas under adversarial attacks, and then applies dedicated attack strategies for different fusion models to generate deployable patches. The evaluations with six advanced camera-LiDAR fusion models and one camera-only model indicate that our attacks successfully compromise all of them. Our approach can either decrease the mean average precision (mAP) of detection performance from 0.824 to 0.353, or degrade the detection score of a target object from 0.728 to 0.156, demonstrating the efficacy of our proposed attack framework. Code is available.

  • 8 authors
·
Apr 27, 2023

Recognize Any Regions

Understanding the semantics of individual regions or patches within unconstrained images, such as in open-world object detection, represents a critical yet challenging task in computer vision. Building on the success of powerful image-level vision-language (ViL) foundation models like CLIP, recent efforts have sought to harness their capabilities by either training a contrastive model from scratch with an extensive collection of region-label pairs or aligning the outputs of a detection model with image-level representations of region proposals. Despite notable progress, these approaches are plagued by computationally intensive training requirements, susceptibility to data noise, and deficiency in contextual information. To address these limitations, we explore the synergistic potential of off-the-shelf foundation models, leveraging their respective strengths in localization and semantics. We introduce a novel, generic, and efficient region recognition architecture, named RegionSpot, designed to integrate position-aware localization knowledge from a localization foundation model (e.g., SAM) with semantic information extracted from a ViL model (e.g., CLIP). To fully exploit pretrained knowledge while minimizing training overhead, we keep both foundation models frozen, focusing optimization efforts solely on a lightweight attention-based knowledge integration module. Through extensive experiments in the context of open-world object recognition, our RegionSpot demonstrates significant performance improvements over prior alternatives, while also providing substantial computational savings. For instance, training our model with 3 million data in a single day using 8 V100 GPUs. Our model outperforms GLIP by 6.5 % in mean average precision (mAP), with an even larger margin by 14.8 % for more challenging and rare categories.

  • 6 authors
·
Nov 2, 2023

MORDA: A Synthetic Dataset to Facilitate Adaptation of Object Detectors to Unseen Real-target Domain While Preserving Performance on Real-source Domain

Deep neural network (DNN) based perception models are indispensable in the development of autonomous vehicles (AVs). However, their reliance on large-scale, high-quality data is broadly recognized as a burdensome necessity due to the substantial cost of data acquisition and labeling. Further, the issue is not a one-time concern, as AVs might need a new dataset if they are to be deployed to another region (real-target domain) that the in-hand dataset within the real-source domain cannot incorporate. To mitigate this burden, we propose leveraging synthetic environments as an auxiliary domain where the characteristics of real domains are reproduced. This approach could enable indirect experience about the real-target domain in a time- and cost-effective manner. As a practical demonstration of our methodology, nuScenes and South Korea are employed to represent real-source and real-target domains, respectively. That means we construct digital twins for several regions of South Korea, and the data-acquisition framework of nuScenes is reproduced. Blending the aforementioned components within a simulator allows us to obtain a synthetic-fusion domain in which we forge our novel driving dataset, MORDA: Mixture Of Real-domain characteristics for synthetic-data-assisted Domain Adaptation. To verify the value of synthetic features that MORDA provides in learning about driving environments of South Korea, 2D/3D detectors are trained solely on a combination of nuScenes and MORDA. Afterward, their performance is evaluated on the unforeseen real-world dataset (AI-Hub) collected in South Korea. Our experiments present that MORDA can significantly improve mean Average Precision (mAP) on AI-Hub dataset while that on nuScenes is retained or slightly enhanced.

  • 5 authors
·
Jan 8, 2025

PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition

Audio pattern recognition is an important research topic in the machine learning area, and includes several tasks such as audio tagging, acoustic scene classification, music classification, speech emotion classification and sound event detection. Recently, neural networks have been applied to tackle audio pattern recognition problems. However, previous systems are built on specific datasets with limited durations. Recently, in computer vision and natural language processing, systems pretrained on large-scale datasets have generalized well to several tasks. However, there is limited research on pretraining systems on large-scale datasets for audio pattern recognition. In this paper, we propose pretrained audio neural networks (PANNs) trained on the large-scale AudioSet dataset. These PANNs are transferred to other audio related tasks. We investigate the performance and computational complexity of PANNs modeled by a variety of convolutional neural networks. We propose an architecture called Wavegram-Logmel-CNN using both log-mel spectrogram and waveform as input feature. Our best PANN system achieves a state-of-the-art mean average precision (mAP) of 0.439 on AudioSet tagging, outperforming the best previous system of 0.392. We transfer PANNs to six audio pattern recognition tasks, and demonstrate state-of-the-art performance in several of those tasks. We have released the source code and pretrained models of PANNs: https://github.com/qiuqiangkong/audioset_tagging_cnn.

  • 6 authors
·
Dec 21, 2019

Deciphering GunType Hierarchy through Acoustic Analysis of Gunshot Recordings

The escalating rates of gun-related violence and mass shootings represent a significant threat to public safety. Timely and accurate information for law enforcement agencies is crucial in mitigating these incidents. Current commercial gunshot detection systems, while effective, often come with prohibitive costs. This research explores a cost-effective alternative by leveraging acoustic analysis of gunshot recordings, potentially obtainable from ubiquitous devices like cell phones, to not only detect gunshots but also classify the type of firearm used. This paper details a study on deciphering gun type hierarchies using a curated dataset of 3459 recordings. We investigate the fundamental acoustic characteristics of gunshots, including muzzle blasts and shockwaves, which vary based on firearm type, ammunition, and shooting direction. We propose and evaluate machine learning frameworks, including Support Vector Machines (SVMs) as a baseline and a more advanced Convolutional Neural Network (CNN) architecture for joint gunshot detection and gun type classification. Results indicate that our deep learning approach achieves a mean average precision (mAP) of 0.58 on clean labeled data, outperforming the SVM baseline (mAP 0.39). Challenges related to data quality, environmental noise, and the generalization capabilities when using noisy web-sourced data (mAP 0.35) are also discussed. The long-term vision is to develop a highly accurate, real-time system deployable on common recording devices, significantly reducing detection costs and providing critical intelligence to first responders.

  • 4 authors
·
Jun 25, 2025

An Overall Real-Time Mechanism for Classification and Quality Evaluation of Rice

Rice is one of the most widely cultivated crops globally and has been developed into numerous varieties. The quality of rice during cultivation is primarily determined by its cultivar and characteristics. Traditionally, rice classification and quality assessment rely on manual visual inspection, a process that is both time-consuming and prone to errors. However, with advancements in machine vision technology, automating rice classification and quality evaluation based on its cultivar and characteristics has become increasingly feasible, enhancing both accuracy and efficiency. This study proposes a real-time evaluation mechanism for comprehensive rice grain assessment, integrating a one-stage object detection approach, a deep convolutional neural network, and traditional machine learning techniques. The proposed framework enables rice variety identification, grain completeness grading, and grain chalkiness evaluation. The rice grain dataset used in this study comprises approximately 20,000 images from six widely cultivated rice varieties in China. Experimental results demonstrate that the proposed mechanism achieves a mean average precision (mAP) of 99.14% in the object detection task and an accuracy of 97.89% in the classification task. Furthermore, the framework attains an average accuracy of 97.56% in grain completeness grading within the same rice variety, contributing to an effective quality evaluation system.

  • 6 authors
·
Feb 19, 2025

INTACT: Inducing Noise Tolerance through Adversarial Curriculum Training for LiDAR-based Safety-Critical Perception and Autonomy

In this work, we present INTACT, a novel two-phase framework designed to enhance the robustness of deep neural networks (DNNs) against noisy LiDAR data in safety-critical perception tasks. INTACT combines meta-learning with adversarial curriculum training (ACT) to systematically address challenges posed by data corruption and sparsity in 3D point clouds. The meta-learning phase equips a teacher network with task-agnostic priors, enabling it to generate robust saliency maps that identify critical data regions. The ACT phase leverages these saliency maps to progressively expose a student network to increasingly complex noise patterns, ensuring targeted perturbation and improved noise resilience. INTACT's effectiveness is demonstrated through comprehensive evaluations on object detection, tracking, and classification benchmarks using diverse datasets, including KITTI, Argoverse, and ModelNet40. Results indicate that INTACT improves model robustness by up to 20% across all tasks, outperforming standard adversarial and curriculum training methods. This framework not only addresses the limitations of conventional training strategies but also offers a scalable and efficient solution for real-world deployment in resource-constrained safety-critical systems. INTACT's principled integration of meta-learning and adversarial training establishes a new paradigm for noise-tolerant 3D perception in safety-critical applications. INTACT improved KITTI Multiple Object Tracking Accuracy (MOTA) by 9.6% (64.1% -> 75.1%) and by 12.4% under Gaussian noise (52.5% -> 73.7%). Similarly, KITTI mean Average Precision (mAP) rose from 59.8% to 69.8% (50% point drop) and 49.3% to 70.9% (Gaussian noise), highlighting the framework's ability to enhance deep learning model resilience in safety-critical object tracking scenarios.

  • 4 authors
·
Feb 3, 2025

Improved YOLOv12 with LLM-Generated Synthetic Data for Enhanced Apple Detection and Benchmarking Against YOLOv11 and YOLOv10

This study evaluated the performance of the YOLOv12 object detection model, and compared against the performances YOLOv11 and YOLOv10 for apple detection in commercial orchards based on the model training completed entirely on synthetic images generated by Large Language Models (LLMs). The YOLOv12n configuration achieved the highest precision at 0.916, the highest recall at 0.969, and the highest mean Average Precision (mAP@50) at 0.978. In comparison, the YOLOv11 series was led by YOLO11x, which achieved the highest precision at 0.857, recall at 0.85, and mAP@50 at 0.91. For the YOLOv10 series, YOLOv10b and YOLOv10l both achieved the highest precision at 0.85, with YOLOv10n achieving the highest recall at 0.8 and mAP@50 at 0.89. These findings demonstrated that YOLOv12, when trained on realistic LLM-generated datasets surpassed its predecessors in key performance metrics. The technique also offered a cost-effective solution by reducing the need for extensive manual data collection in the agricultural field. In addition, this study compared the computational efficiency of all versions of YOLOv12, v11 and v10, where YOLOv11n reported the lowest inference time at 4.7 ms, compared to YOLOv12n's 5.6 ms and YOLOv10n's 5.9 ms. Although YOLOv12 is new and more accurate than YOLOv11, and YOLOv10, YOLO11n still stays the fastest YOLO model among YOLOv10, YOLOv11 and YOLOv12 series of models. (Index: YOLOv12, YOLOv11, YOLOv10, YOLOv13, YOLOv14, YOLOv15, YOLOE, YOLO Object detection)

  • 2 authors
·
Feb 26, 2025

CR3DT: Camera-RADAR Fusion for 3D Detection and Tracking

To enable self-driving vehicles accurate detection and tracking of surrounding objects is essential. While Light Detection and Ranging (LiDAR) sensors have set the benchmark for high-performance systems, the appeal of camera-only solutions lies in their cost-effectiveness. Notably, despite the prevalent use of Radio Detection and Ranging (RADAR) sensors in automotive systems, their potential in 3D detection and tracking has been largely disregarded due to data sparsity and measurement noise. As a recent development, the combination of RADARs and cameras is emerging as a promising solution. This paper presents Camera-RADAR 3D Detection and Tracking (CR3DT), a camera-RADAR fusion model for 3D object detection, and Multi-Object Tracking (MOT). Building upon the foundations of the State-of-the-Art (SotA) camera-only BEVDet architecture, CR3DT demonstrates substantial improvements in both detection and tracking capabilities, by incorporating the spatial and velocity information of the RADAR sensor. Experimental results demonstrate an absolute improvement in detection performance of 5.3% in mean Average Precision (mAP) and a 14.9% increase in Average Multi-Object Tracking Accuracy (AMOTA) on the nuScenes dataset when leveraging both modalities. CR3DT bridges the gap between high-performance and cost-effective perception systems in autonomous driving, by capitalizing on the ubiquitous presence of RADAR in automotive applications. The code is available at: https://github.com/ETH-PBL/CR3DT.

  • 8 authors
·
Mar 22, 2024

Detecting and recognizing characters in Greek papyri with YOLOv8, DeiT and SimCLR

Purpose: The capacity to isolate and recognize individual characters from facsimile images of papyrus manuscripts yields rich opportunities for digital analysis. For this reason the `ICDAR 2023 Competition on Detection and Recognition of Greek Letters on Papyri' was held as part of the 17th International Conference on Document Analysis and Recognition. This paper discusses our submission to the competition. Methods: We used an ensemble of YOLOv8 models to detect and classify individual characters and employed two different approaches for refining the character predictions, including a transformer based DeiT approach and a ResNet-50 model trained on a large corpus of unlabelled data using SimCLR, a self-supervised learning method. Results: Our submission won the recognition challenge with a mAP of 42.2%, and was runner-up in the detection challenge with a mean average precision (mAP) of 51.4%. At the more relaxed intersection over union threshold of 0.5, we achieved the highest mean average precision and mean average recall results for both detection and classification. Conclusion: The results demonstrate the potential for these techniques for automated character recognition on historical manuscripts. We ran the prediction pipeline on more than 4,500 images from the Oxyrhynchus Papyri to illustrate the utility of our approach, and we release the results publicly in multiple formats.

  • 2 authors
·
Jan 23, 2024

Open-YOLO 3D: Towards Fast and Accurate Open-Vocabulary 3D Instance Segmentation

Recent works on open-vocabulary 3D instance segmentation show strong promise, but at the cost of slow inference speed and high computation requirements. This high computation cost is typically due to their heavy reliance on 3D clip features, which require computationally expensive 2D foundation models like Segment Anything (SAM) and CLIP for multi-view aggregation into 3D. As a consequence, this hampers their applicability in many real-world applications that require both fast and accurate predictions. To this end, we propose a fast yet accurate open-vocabulary 3D instance segmentation approach, named Open-YOLO 3D, that effectively leverages only 2D object detection from multi-view RGB images for open-vocabulary 3D instance segmentation. We address this task by generating class-agnostic 3D masks for objects in the scene and associating them with text prompts. We observe that the projection of class-agnostic 3D point cloud instances already holds instance information; thus, using SAM might only result in redundancy that unnecessarily increases the inference time. We empirically find that a better performance of matching text prompts to 3D masks can be achieved in a faster fashion with a 2D object detector. We validate our Open-YOLO 3D on two benchmarks, ScanNet200 and Replica, under two scenarios: (i) with ground truth masks, where labels are required for given object proposals, and (ii) with class-agnostic 3D proposals generated from a 3D proposal network. Our Open-YOLO 3D achieves state-of-the-art performance on both datasets while obtaining up to sim16times speedup compared to the best existing method in literature. On ScanNet200 val. set, our Open-YOLO 3D achieves mean average precision (mAP) of 24.7\% while operating at 22 seconds per scene. Code and model are available at github.com/aminebdj/OpenYOLO3D.

  • 7 authors
·
Jun 4, 2024

HieraEdgeNet: A Multi-Scale Edge-Enhanced Framework for Automated Pollen Recognition

Automated pollen recognition is vital to paleoclimatology, biodiversity monitoring, and public health, yet conventional methods are hampered by inefficiency and subjectivity. Existing deep learning models often struggle to achieve the requisite localization accuracy for microscopic targets like pollen, which are characterized by their minute size, indistinct edges, and complex backgrounds. To overcome this limitation, we introduce HieraEdgeNet, a multi-scale edge-enhancement framework. The framework's core innovation is the introduction of three synergistic modules: the Hierarchical Edge Module (HEM), which explicitly extracts a multi-scale pyramid of edge features that corresponds to the semantic hierarchy at early network stages; the Synergistic Edge Fusion (SEF) module, for deeply fusing these edge priors with semantic information at each respective scale; and the Cross Stage Partial Omni-Kernel Module (CSPOKM), which maximally refines the most detail-rich feature layers using an Omni-Kernel operator - comprising anisotropic large-kernel convolutions and mixed-domain attention - all within a computationally efficient Cross-Stage Partial (CSP) framework. On a large-scale dataset comprising 120 pollen classes, HieraEdgeNet achieves a mean Average Precision (mAP@.5) of 0.9501, significantly outperforming state-of-the-art baseline models such as YOLOv12n and RT-DETR. Furthermore, qualitative analysis confirms that our approach generates feature representations that are more precisely focused on object boundaries. By systematically integrating edge information, HieraEdgeNet provides a robust and powerful solution for high-precision, high-efficiency automated detection of microscopic objects.

  • 6 authors
·
Jun 9, 2025

Fine-Tuning Florence2 for Enhanced Object Detection in Un-constructed Environments: Vision-Language Model Approach

Vision-Language Models (VLMs) have emerged as powerful tools in artificial intelli-gence, capable of integrating textual and visual data for a unified understanding of complex scenes. While models such as Florence2, built on transformer architectures, have shown promise across general tasks, their performance in object detection within unstructured or cluttered environments remains underexplored. In this study, we fi-ne-tuned the Florence2 model for object detection tasks in non-constructed, complex environments. A comprehensive experimental framework was established involving multiple hardware configurations (NVIDIA T4, L4, and A100 GPUs), optimizers (AdamW, SGD), and varied hyperparameters including learning rates and LoRA (Low-Rank Adaptation) setups. Model training and evaluation were conducted on challenging datasets representative of real-world, disordered settings. The optimized Florence2 models exhibited significant improvements in object detection accuracy, with Mean Average Precision (mAP) metrics approaching or matching those of estab-lished models such as YOLOv8, YOLOv9, and YOLOv10. The integration of LoRA and careful fine-tuning of transformer layers contributed notably to these gains. Our find-ings highlight the adaptability of transformer-based VLMs like Florence2 for do-main-specific tasks, particularly in visually complex environments. The study under-scores the potential of fine-tuned VLMs to rival traditional convolution-based detec-tors, offering a flexible and scalable approach for advanced vision applications in re-al-world, unstructured settings.

  • 5 authors
·
Mar 6, 2025

GRAPHITE: Graph-Based Interpretable Tissue Examination for Enhanced Explainability in Breast Cancer Histopathology

Explainable AI (XAI) in medical histopathology is essential for enhancing the interpretability and clinical trustworthiness of deep learning models in cancer diagnosis. However, the black-box nature of these models often limits their clinical adoption. We introduce GRAPHITE (Graph-based Interpretable Tissue Examination), a post-hoc explainable framework designed for breast cancer tissue microarray (TMA) analysis. GRAPHITE employs a multiscale approach, extracting patches at various magnification levels, constructing an hierarchical graph, and utilising graph attention networks (GAT) with scalewise attention (SAN) to capture scale-dependent features. We trained the model on 140 tumour TMA cores and four benign whole slide images from which 140 benign samples were created, and tested it on 53 pathologist-annotated TMA samples. GRAPHITE outperformed traditional XAI methods, achieving a mean average precision (mAP) of 0.56, an area under the receiver operating characteristic curve (AUROC) of 0.94, and a threshold robustness (ThR) of 0.70, indicating that the model maintains high performance across a wide range of thresholds. In clinical utility, GRAPHITE achieved the highest area under the decision curve (AUDC) of 4.17e+5, indicating reliable decision support across thresholds. These results highlight GRAPHITE's potential as a clinically valuable tool in computational pathology, providing interpretable visualisations that align with the pathologists' diagnostic reasoning and support precision medicine.

  • 6 authors
·
Jan 7, 2025

A New Dataset and Comparative Study for Aphid Cluster Detection and Segmentation in Sorghum Fields

Aphid infestations are one of the primary causes of extensive damage to wheat and sorghum fields and are one of the most common vectors for plant viruses, resulting in significant agricultural yield losses. To address this problem, farmers often employ the inefficient use of harmful chemical pesticides that have negative health and environmental impacts. As a result, a large amount of pesticide is wasted on areas without significant pest infestation. This brings to attention the urgent need for an intelligent autonomous system that can locate and spray sufficiently large infestations selectively within the complex crop canopies. We have developed a large multi-scale dataset for aphid cluster detection and segmentation, collected from actual sorghum fields and meticulously annotated to include clusters of aphids. Our dataset comprises a total of 54,742 image patches, showcasing a variety of viewpoints, diverse lighting conditions, and multiple scales, highlighting its effectiveness for real-world applications. In this study, we trained and evaluated four real-time semantic segmentation models and three object detection models specifically for aphid cluster segmentation and detection. Considering the balance between accuracy and efficiency, Fast-SCNN delivered the most effective segmentation results, achieving 80.46% mean precision, 81.21% mean recall, and 91.66 frames per second (FPS). For object detection, RT-DETR exhibited the best overall performance with a 61.63% mean average precision (mAP), 92.6% mean recall, and 72.55 on an NVIDIA V100 GPU. Our experiments further indicate that aphid cluster segmentation is more suitable for assessing aphid infestations than using detection models.

  • 11 authors
·
May 7, 2024

Evaluating ChatGPT as a Recommender System: A Rigorous Approach

Recent popularity surrounds large AI language models due to their impressive natural language capabilities. They contribute significantly to language-related tasks, including prompt-based learning, making them valuable for various specific tasks. This approach unlocks their full potential, enhancing precision and generalization. Research communities are actively exploring their applications, with ChatGPT receiving recognition. Despite extensive research on large language models, their potential in recommendation scenarios still needs to be explored. This study aims to fill this gap by investigating ChatGPT's capabilities as a zero-shot recommender system. Our goals include evaluating its ability to use user preferences for recommendations, reordering existing recommendation lists, leveraging information from similar users, and handling cold-start situations. We assess ChatGPT's performance through comprehensive experiments using three datasets (MovieLens Small, Last.FM, and Facebook Book). We compare ChatGPT's performance against standard recommendation algorithms and other large language models, such as GPT-3.5 and PaLM-2. To measure recommendation effectiveness, we employ widely-used evaluation metrics like Mean Average Precision (MAP), Recall, Precision, F1, normalized Discounted Cumulative Gain (nDCG), Item Coverage, Expected Popularity Complement (EPC), Average Coverage of Long Tail (ACLT), Average Recommendation Popularity (ARP), and Popularity-based Ranking-based Equal Opportunity (PopREO). Through thoroughly exploring ChatGPT's abilities in recommender systems, our study aims to contribute to the growing body of research on the versatility and potential applications of large language models. Our experiment code is available on the GitHub repository: https://github.com/sisinflab/Recommender-ChatGPT

  • 6 authors
·
Sep 7, 2023

RESTORE: Graph Embedding Assessment Through Reconstruction

Following the success of Word2Vec embeddings, graph embeddings (GEs) have gained substantial traction. GEs are commonly generated and evaluated extrinsically on downstream applications, but intrinsic evaluations of the original graph properties in terms of topological structure and semantic information have been lacking. Understanding these will help identify the deficiency of the various families of GE methods when vectorizing graphs in terms of preserving the relevant knowledge or learning incorrect knowledge. To address this, we propose RESTORE, a framework for intrinsic GEs assessment through graph reconstruction. We show that reconstructing the original graph from the underlying GEs yields insights into the relative amount of information preserved in a given vector form. We first introduce the graph reconstruction task. We generate GEs from three GE families based on factorization methods, random walks, and deep learning (with representative algorithms from each family) on the CommonSense Knowledge Graph (CSKG). We analyze their effectiveness in preserving the (a) topological structure of node-level graph reconstruction with an increasing number of hops and (b) semantic information on various word semantic and analogy tests. Our evaluations show deep learning-based GE algorithm (SDNE) is overall better at preserving (a) with a mean average precision (mAP) of 0.54 and 0.35 for 2 and 3-hop reconstruction respectively, while the factorization-based algorithm (HOPE) is better at encapsulating (b) with an average Euclidean distance of 0.14, 0.17, and 0.11 for 1, 2, and 3-hop reconstruction respectively. The modest performance of these GEs leaves room for further research avenues on better graph representation learning.

  • 7 authors
·
Aug 28, 2023

Enhancing Automated Software Traceability by Transfer Learning from Open-World Data

Software requirements traceability is a critical component of the software engineering process, enabling activities such as requirements validation, compliance verification, and safety assurance. However, the cost and effort of manually creating a complete set of trace links across natural language artifacts such as requirements, design, and test-cases can be prohibitively expensive. Researchers have therefore proposed automated link-generation solutions primarily based on information-retrieval (IR) techniques; however, these solutions have failed to deliver the accuracy needed for full adoption in industrial projects. Improvements can be achieved using deep-learning traceability models; however, their efficacy is impeded by the limited size and availability of project-level artifacts and links to serve as training data. In this paper, we address this problem by proposing and evaluating several deep-learning approaches for text-to-text traceability. Our method, named NLTrace, explores three transfer learning strategies that use datasets mined from open world platforms. Through pretraining Language Models (LMs) and leveraging adjacent tracing tasks, we demonstrate that NLTrace can significantly improve the performance of LM based trace models when training links are available. In such scenarios NLTrace outperforms the best performing classical IR method with an 188% improvement in F2 score and 94.01% in Mean Average Precision (MAP). It also outperforms the general LM based trace model by 7% and 23% for F2 and MAP respectively. In addition, NLTrace can adapt to low-resource tracing scenarios where other LM models can not. The knowledge learned from adjacent tasks enables NLTrace to outperform VSM models by 28% F2 on generation challenges when presented with a small number of training examples.

  • 6 authors
·
Jul 3, 2022

BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla Handwritten Text Recognition (HTR) and Line Segmentation

We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations. The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts. These texts were subsequently used to generate the annotations that were filled out by people with their handwriting. Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers. It can be adopted as a basis for various handwriting classification tasks such as end-to-end document recognition, word-spotting, word or line segmentation, and so on. We also propose a scheme to segment Bangla handwritten document images into corresponding lines in an unsupervised manner. Our line segmentation approach takes care of the variability involved in different writing styles, accurately segmenting complex handwritten text lines of curvilinear nature. Along with a bunch of pre-processing and morphological operations, both Hough line and circle transforms were employed to distinguish different linear components. In order to arrange those components into their corresponding lines, we followed an unsupervised clustering approach. The average success rate of our segmentation technique is 81.57% in terms of FM metrics (similar to F-measure) with a mean Average Precision (mAP) of 0.547.

  • 5 authors
·
May 29, 2022

Mask-to-Height: A YOLOv11-Based Architecture for Joint Building Instance Segmentation and Height Classification from Satellite Imagery

Accurate building instance segmentation and height classification are critical for urban planning, 3D city modeling, and infrastructure monitoring. This paper presents a detailed analysis of YOLOv11, the recent advancement in the YOLO series of deep learning models, focusing on its application to joint building extraction and discrete height classification from satellite imagery. YOLOv11 builds on the strengths of earlier YOLO models by introducing a more efficient architecture that better combines features at different scales, improves object localization accuracy, and enhances performance in complex urban scenes. Using the DFC2023 Track 2 dataset -- which includes over 125,000 annotated buildings across 12 cities -- we evaluate YOLOv11's performance using metrics such as precision, recall, F1 score, and mean average precision (mAP). Our findings demonstrate that YOLOv11 achieves strong instance segmentation performance with 60.4\% mAP@50 and 38.3\% mAP@50--95 while maintaining robust classification accuracy across five predefined height tiers. The model excels in handling occlusions, complex building shapes, and class imbalance, particularly for rare high-rise structures. Comparative analysis confirms that YOLOv11 outperforms earlier multitask frameworks in both detection accuracy and inference speed, making it well-suited for real-time, large-scale urban mapping. This research highlights YOLOv11's potential to advance semantic urban reconstruction through streamlined categorical height modeling, offering actionable insights for future developments in remote sensing and geospatial intelligence.

  • 4 authors
·
Oct 31, 2025 1

MARS: Paying more attention to visual attributes for text-based person search

Text-based person search (TBPS) is a problem that gained significant interest within the research community. The task is that of retrieving one or more images of a specific individual based on a textual description. The multi-modal nature of the task requires learning representations that bridge text and image data within a shared latent space. Existing TBPS systems face two major challenges. One is defined as inter-identity noise that is due to the inherent vagueness and imprecision of text descriptions and it indicates how descriptions of visual attributes can be generally associated to different people; the other is the intra-identity variations, which are all those nuisances e.g. pose, illumination, that can alter the visual appearance of the same textual attributes for a given subject. To address these issues, this paper presents a novel TBPS architecture named MARS (Mae-Attribute-Relation-Sensitive), which enhances current state-of-the-art models by introducing two key components: a Visual Reconstruction Loss and an Attribute Loss. The former employs a Masked AutoEncoder trained to reconstruct randomly masked image patches with the aid of the textual description. In doing so the model is encouraged to learn more expressive representations and textual-visual relations in the latent space. The Attribute Loss, instead, balances the contribution of different types of attributes, defined as adjective-noun chunks of text. This loss ensures that every attribute is taken into consideration in the person retrieval process. Extensive experiments on three commonly used datasets, namely CUHK-PEDES, ICFG-PEDES, and RSTPReid, report performance improvements, with significant gains in the mean Average Precision (mAP) metric w.r.t. the current state of the art.

  • 5 authors
·
Jul 5, 2024

RLocator: Reinforcement Learning for Bug Localization

Software developers spend a significant portion of time fixing bugs in their projects. To streamline this process, bug localization approaches have been proposed to identify the source code files that are likely responsible for a particular bug. Prior work proposed several similarity-based machine-learning techniques for bug localization. Despite significant advances in these techniques, they do not directly optimize the evaluation measures. We argue that directly optimizing evaluation measures can positively contribute to the performance of bug localization approaches. Therefore, In this paper, we utilize Reinforcement Learning (RL) techniques to directly optimize the ranking metrics. We propose RLocator, a Reinforcement Learning-based bug localization approach. We formulate RLocator using a Markov Decision Process (MDP) to optimize the evaluation measures directly. We present the technique and experimentally evaluate it based on a benchmark dataset of 8,316 bug reports from six highly popular Apache projects. The results of our evaluation reveal that RLocator achieves a Mean Reciprocal Rank (MRR) of 0.62, a Mean Average Precision (MAP) of 0.59, and a Top 1 score of 0.46. We compare RLocator with two state-of-the-art bug localization tools, FLIM and BugLocator. Our evaluation reveals that RLocator outperforms both approaches by a substantial margin, with improvements of 38.3% in MAP, 36.73% in MRR, and 23.68% in the Top K metric. These findings highlight that directly optimizing evaluation measures considerably contributes to performance improvement of the bug localization problem.

  • 3 authors
·
May 9, 2023

ARIAL: An Agentic Framework for Document VQA with Precise Answer Localization

Document Visual Question Answering (VQA) requires models to not only extract accurate textual answers but also precisely localize them within document images, a capability critical for interpretability in high-stakes applications. However, existing systems achieve strong textual accuracy while producing unreliable spatial grounding, or sacrifice performance for interpretability. We present ARIAL (Agentic Reasoning for Interpretable Answer Localization), a modular framework that orchestrates specialized tools through an LLM-based planning agent to achieve both precise answer extraction and reliable spatial grounding. ARIAL decomposes Document VQA into structured subtasks: OCR-based text extraction with TrOCR, retrieval-augmented context selection using semantic search, answer generation via a fine-tuned Gemma 3-27B model, and explicit bounding-box localization through text-to-region alignment. This modular architecture produces transparent reasoning traces, enabling tool-level auditability and independent component optimization. We evaluate ARIAL on four benchmarks (DocVQA, FUNSD, CORD, and SROIE) using both textual accuracy (ANLS) and spatial precision (mAP at IoU 0.50 to 0.95). ARIAL achieves state-of-the-art results across all datasets: 88.7 ANLS and 50.1 mAP on DocVQA, 90.0 ANLS and 50.3 mAP on FUNSD, 85.5 ANLS and 60.2 mAP on CORD, and 93.1 ANLS on SROIE, surpassing the previous best method (DLaVA) by +2.8 ANLS and +3.9 mAP on DocVQA. Our work demonstrates how agentic orchestration of specialized tools can simultaneously improve performance and interpretability, providing a pathway toward trustworthy, explainable document AI systems.

  • 4 authors
·
Nov 22, 2025

Comprehensive Benchmarking of YOLOv11 Architectures for Scalable and Granular Peripheral Blood Cell Detection

Manual peripheral blood smear (PBS) analysis is labor intensive and subjective. While deep learning offers a promising alternative, a systematic evaluation of state of the art models such as YOLOv11 for fine grained PBS detection is still lacking. In this work, we make two key contributions. First, we curate a large scale annotated dataset for blood cell detection and classification, comprising 16,891 images across 12 peripheral blood cell (PBC) classes, along with the red blood cell class, all carefully re annotated for object detection tasks. In total, the dataset contains 298,850 annotated cells. Second, we leverage this dataset to conduct a comprehensive evaluation of five YOLOv11 variants (ranging from Nano to XLarge). These models are rigorously benchmarked under two data splitting strategies (70:20:10 and 80:10:10) and systematically assessed using multiple performance criteria, including mean Average Precision (mAP), precision, recall, F1 score, and computational efficiency. Our experiments show that the YOLOv11 Medium variant achieves the best trade off, reaching a [email protected] of 0.934 under the 8:1:1 split. Larger models (Large and XLarge) provide only marginal accuracy gains at substantially higher computational cost. Moreover, the 8:1:1 split consistently outperforms the 7:2:1 split across all models. These findings highlight YOLOv11, particularly the Medium variant, as a highly effective framework for automated, fine grained PBS detection. Beyond benchmarking, our publicly released dataset (github.com/Mohamad-AbouAli/OI-PBC-Dataset) offers a valuable resource to advance research on blood cell detection and classification in hematology.

  • 7 authors
·
Sep 29, 2025

Coconut Palm Tree Counting on Drone Images with Deep Object Detection and Synthetic Training Data

Drones have revolutionized various domains, including agriculture. Recent advances in deep learning have propelled among other things object detection in computer vision. This study utilized YOLO, a real-time object detector, to identify and count coconut palm trees in Ghanaian farm drone footage. The farm presented has lost track of its trees due to different planting phases. While manual counting would be very tedious and error-prone, accurately determining the number of trees is crucial for efficient planning and management of agricultural processes, especially for optimizing yields and predicting production. We assessed YOLO for palm detection within a semi-automated framework, evaluated accuracy augmentations, and pondered its potential for farmers. Data was captured in September 2022 via drones. To optimize YOLO with scarce data, synthetic images were created for model training and validation. The YOLOv7 model, pretrained on the COCO dataset (excluding coconut palms), was adapted using tailored data. Trees from footage were repositioned on synthetic images, with testing on distinct authentic images. In our experiments, we adjusted hyperparameters, improving YOLO's mean average precision (mAP). We also tested various altitudes to determine the best drone height. From an initial [email protected] of 0.65, we achieved 0.88, highlighting the value of synthetic images in agricultural scenarios.

  • 6 authors
·
Dec 16, 2024

Bounding Box Stability against Feature Dropout Reflects Detector Generalization across Environments

Bounding boxes uniquely characterize object detection, where a good detector gives accurate bounding boxes of categories of interest. However, in the real-world where test ground truths are not provided, it is non-trivial to find out whether bounding boxes are accurate, thus preventing us from assessing the detector generalization ability. In this work, we find under feature map dropout, good detectors tend to output bounding boxes whose locations do not change much, while bounding boxes of poor detectors will undergo noticeable position changes. We compute the box stability score (BoS score) to reflect this stability. Specifically, given an image, we compute a normal set of bounding boxes and a second set after feature map dropout. To obtain BoS score, we use bipartite matching to find the corresponding boxes between the two sets and compute the average Intersection over Union (IoU) across the entire test set. We contribute to finding that BoS score has a strong, positive correlation with detection accuracy measured by mean average precision (mAP) under various test environments. This relationship allows us to predict the accuracy of detectors on various real-world test sets without accessing test ground truths, verified on canonical detection tasks such as vehicle detection and pedestrian detection. Code and data are available at https://github.com/YangYangGirl/BoS.

  • 5 authors
·
Mar 20, 2024

Traceability Transformed: Generating more Accurate Links with Pre-Trained BERT Models

Software traceability establishes and leverages associations between diverse development artifacts. Researchers have proposed the use of deep learning trace models to link natural language artifacts, such as requirements and issue descriptions, to source code; however, their effectiveness has been restricted by availability of labeled data and efficiency at runtime. In this study, we propose a novel framework called Trace BERT (T-BERT) to generate trace links between source code and natural language artifacts. To address data sparsity, we leverage a three-step training strategy to enable trace models to transfer knowledge from a closely related Software Engineering challenge, which has a rich dataset, to produce trace links with much higher accuracy than has previously been achieved. We then apply the T-BERT framework to recover links between issues and commits in Open Source Projects. We comparatively evaluated accuracy and efficiency of three BERT architectures. Results show that a Single-BERT architecture generated the most accurate links, while a Siamese-BERT architecture produced comparable results with significantly less execution time. Furthermore, by learning and transferring knowledge, all three models in the framework outperform classical IR trace models. On the three evaluated real-word OSS projects, the best T-BERT stably outperformed the VSM model with average improvements of 60.31% measured using Mean Average Precision (MAP). RNN severely underperformed on these projects due to insufficient training data, while T-BERT overcame this problem by using pretrained language models and transfer learning.

  • 5 authors
·
Feb 8, 2021

Zero-Shot Automatic Annotation and Instance Segmentation using LLM-Generated Datasets: Eliminating Field Imaging and Manual Annotation for Deep Learning Model Development

Currently, deep learning-based instance segmentation for various applications (e.g., Agriculture) is predominantly performed using a labor-intensive process involving extensive field data collection using sophisticated sensors, followed by careful manual annotation of images, presenting significant logistical and financial challenges to researchers and organizations. The process also slows down the model development and training process. In this study, we presented a novel method for deep learning-based instance segmentation of apples in commercial orchards that eliminates the need for labor-intensive field data collection and manual annotation. Utilizing a Large Language Model (LLM), we synthetically generated orchard images and automatically annotated them using the Segment Anything Model (SAM) integrated with a YOLO11 base model. This method significantly reduces reliance on physical sensors and manual data processing, presenting a major advancement in "Agricultural AI". The synthetic, auto-annotated dataset was used to train the YOLO11 model for Apple instance segmentation, which was then validated on real orchard images. The results showed that the automatically generated annotations achieved a Dice Coefficient of 0.9513 and an IoU of 0.9303, validating the accuracy and overlap of the mask annotations. All YOLO11 configurations, trained solely on these synthetic datasets with automated annotations, accurately recognized and delineated apples, highlighting the method's efficacy. Specifically, the YOLO11m-seg configuration achieved a mask precision of 0.902 and a mask mAP@50 of 0.833 on test images collected from a commercial orchard. Additionally, the YOLO11l-seg configuration outperformed other models in validation on 40 LLM-generated images, achieving the highest mask precision and mAP@50 metrics. Keywords: YOLO, SAM, SAMv2, YOLO11, YOLOv11, Segment Anything, YOLO-SAM

  • 3 authors
·
Nov 18, 2024

Novel Human Machine Interface via Robust Hand Gesture Recognition System using Channel Pruned YOLOv5s Model

Hand gesture recognition (HGR) is a vital component in enhancing the human-computer interaction experience, particularly in multimedia applications, such as virtual reality, gaming, smart home automation systems, etc. Users can control and navigate through these applications seamlessly by accurately detecting and recognizing gestures. However, in a real-time scenario, the performance of the gesture recognition system is sometimes affected due to the presence of complex background, low-light illumination, occlusion problems, etc. Another issue is building a fast and robust gesture-controlled human-computer interface (HCI) in the real-time scenario. The overall objective of this paper is to develop an efficient hand gesture detection and classification model using a channel-pruned YOLOv5-small model and utilize the model to build a gesture-controlled HCI with a quick response time (in ms) and higher detection speed (in fps). First, the YOLOv5s model is chosen for the gesture detection task. Next, the model is simplified by using a channel-pruned algorithm. After that, the pruned model is further fine-tuned to ensure detection efficiency. We have compared our suggested scheme with other state-of-the-art works, and it is observed that our model has shown superior results in terms of mAP (mean average precision), precision (\%), recall (\%), and F1-score (\%), fast inference time (in ms), and detection speed (in fps). Our proposed method paves the way for deploying a pruned YOLOv5s model for a real-time gesture-command-based HCI to control some applications, such as the VLC media player, Spotify player, etc., using correctly classified gesture commands in real-time scenarios. The average detection speed of our proposed system has reached more than 60 frames per second (fps) in real-time, which meets the perfect requirement in real-time application control.

  • 3 authors
·
Jul 2, 2024

HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference

The Mixture-of-Experts (MoE) architecture has demonstrated significant advantages in the era of Large Language Models (LLMs), offering enhanced capabilities with reduced inference costs. However, deploying MoE-based LLMs on memoryconstrained edge devices remains challenging due to their substantial memory requirements. While existing expertoffloading methods alleviate the memory requirements, they often incur significant expert-loading costs or compromise model accuracy. We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference. Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency while preserving model accuracy. HOBBIT introduces three innovative techniques that map the natural hierarchy of MoE computation: (1) a token-level dynamic expert loading mechanism, (2) a layer-level adaptive expert prefetching technique, and (3) a sequence-level multidimensional expert caching policy. These innovations fully leverage the benefits of mixedprecision expert inference. By implementing HOBBIT on top of the renowned LLM inference framework Llama.cpp, we evaluate its performance across different edge devices with representative MoE models. The results demonstrate that HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.

  • 8 authors
·
Nov 3, 2024

Value-Driven Mixed-Precision Quantization for Patch-Based Inference on Microcontrollers

Deploying neural networks on microcontroller units (MCUs) presents substantial challenges due to their constrained computation and memory resources. Previous researches have explored patch-based inference as a strategy to conserve memory without sacrificing model accuracy. However, this technique suffers from severe redundant computation overhead, leading to a substantial increase in execution latency. A feasible solution to address this issue is mixed-precision quantization, but it faces the challenges of accuracy degradation and a time-consuming search time. In this paper, we propose QuantMCU, a novel patch-based inference method that utilizes value-driven mixed-precision quantization to reduce redundant computation. We first utilize value-driven patch classification (VDPC) to maintain the model accuracy. VDPC classifies patches into two classes based on whether they contain outlier values. For patches containing outlier values, we apply 8-bit quantization to the feature maps on the dataflow branches that follow. In addition, for patches without outlier values, we utilize value-driven quantization search (VDQS) on the feature maps of their following dataflow branches to reduce search time. Specifically, VDQS introduces a novel quantization search metric that takes into account both computation and accuracy, and it employs entropy as an accuracy representation to avoid additional training. VDQS also adopts an iterative approach to determine the bitwidth of each feature map to further accelerate the search process. Experimental results on real-world MCU devices show that QuantMCU can reduce computation by 2.2x on average while maintaining comparable model accuracy compared to the state-of-the-art patch-based inference methods.

  • 8 authors
·
Jan 23, 2024

MM-LINS: a Multi-Map LiDAR-Inertial System for Over-Degenerate Environments

SLAM plays a crucial role in automation tasks, such as warehouse logistics, healthcare robotics, and restaurant delivery. These scenes come with various challenges, including navigating around crowds of people, dealing with flying plastic bags that can temporarily blind sensors, and addressing reduced LiDAR density caused by cooking smoke. Such scenarios can result in over-degeneracy, causing the map to drift. To address this issue, this paper presents a multi-map LiDAR-inertial system (MM-LINS) for the first time. The front-end employs an iterated error state Kalman filter for state estimation and introduces a reliable evaluation strategy for degeneracy detection. If over-degeneracy is detected, the active map will be stored into sleeping maps. Subsequently, the system continuously attempts to construct new maps using a dynamic initialization method to ensure successful initialization upon leaving the over-degeneracy. Regarding the back-end, the Scan Context descriptor is utilized to detect inter-map similarity. Upon successful recognition of a sleeping map that shares a common region with the active map, the overlapping trajectory region is utilized to constrain the positional transformation near the edge of the prior map. In response to this, a constraint-enhanced map fusion strategy is proposed to achieve high-precision positional and mapping results. Experiments have been conducted separately on both public datasets that exhibited over-degenerate conditions and in real-world environments. These tests demonstrated the effectiveness of MM-LINS in over-degeneracy environment. Our codes are open-sourced on Github.

  • 7 authors
·
Mar 25, 2025

DiffSemanticFusion: Semantic Raster BEV Fusion for Autonomous Driving via Online HD Map Diffusion

Autonomous driving requires accurate scene understanding, including road geometry, traffic agents, and their semantic relationships. In online HD map generation scenarios, raster-based representations are well-suited to vision models but lack geometric precision, while graph-based representations retain structural detail but become unstable without precise maps. To harness the complementary strengths of both, we propose DiffSemanticFusion -- a fusion framework for multimodal trajectory prediction and planning. Our approach reasons over a semantic raster-fused BEV space, enhanced by a map diffusion module that improves both the stability and expressiveness of online HD map representations. We validate our framework on two downstream tasks: trajectory prediction and planning-oriented end-to-end autonomous driving. Experiments on real-world autonomous driving benchmarks, nuScenes and NAVSIM, demonstrate improved performance over several state-of-the-art methods. For the prediction task on nuScenes, we integrate DiffSemanticFusion with the online HD map informed QCNet, achieving a 5.1\% performance improvement. For end-to-end autonomous driving in NAVSIM, DiffSemanticFusion achieves state-of-the-art results, with a 15\% performance gain in NavHard scenarios. In addition, extensive ablation and sensitivity studies show that our map diffusion module can be seamlessly integrated into other vector-based approaches to enhance performance. All artifacts are available at https://github.com/SunZhigang7/DiffSemanticFusion.

  • 16 authors
·
Aug 3, 2025 3

PP-DocLayout: A Unified Document Layout Detection Model to Accelerate Large-Scale Data Construction

Document layout analysis is a critical preprocessing step in document intelligence, enabling the detection and localization of structural elements such as titles, text blocks, tables, and formulas. Despite its importance, existing layout detection models face significant challenges in generalizing across diverse document types, handling complex layouts, and achieving real-time performance for large-scale data processing. To address these limitations, we present PP-DocLayout, which achieves high precision and efficiency in recognizing 23 types of layout regions across diverse document formats. To meet different needs, we offer three models of varying scales. PP-DocLayout-L is a high-precision model based on the RT-DETR-L detector, achieving 90.4% mAP@0.5 and an end-to-end inference time of 13.4 ms per page on a T4 GPU. PP-DocLayout-M is a balanced model, offering 75.2% [email protected] with an inference time of 12.7 ms per page on a T4 GPU. PP-DocLayout-S is a high-efficiency model designed for resource-constrained environments and real-time applications, with an inference time of 8.1 ms per page on a T4 GPU and 14.5 ms on a CPU. This work not only advances the state of the art in document layout analysis but also provides a robust solution for constructing high-quality training data, enabling advancements in document intelligence and multimodal AI systems. Code and models are available at https://github.com/PaddlePaddle/PaddleX .

  • 4 authors
·
Mar 21, 2025

An Improved YOLOv8 Approach for Small Target Detection of Rice Spikelet Flowering in Field Environments

Accurately detecting rice flowering time is crucial for timely pollination in hybrid rice seed production. This not only enhances pollination efficiency but also ensures higher yields. However, due to the complexity of field environments and the characteristics of rice spikelets, such as their small size and short flowering period, automated and precise recognition remains challenging. To address this, this study proposes a rice spikelet flowering recognition method based on an improved YOLOv8 object detection model. First, a Bidirectional Feature Pyramid Network (BiFPN) replaces the original PANet structure to enhance feature fusion and improve multi-scale feature utilization. Second, to boost small object detection, a p2 small-object detection head is added, using finer feature mapping to reduce feature loss commonly seen in detecting small targets. Given the lack of publicly available datasets for rice spikelet flowering in field conditions, a high-resolution RGB camera and data augmentation techniques are used to construct a dedicated dataset, providing reliable support for model training and testing. Experimental results show that the improved YOLOv8s-p2 model achieves an mAP@0.5 of 65.9%, precision of 67.6%, recall of 61.5%, and F1-score of 64.41%, representing improvements of 3.10%, 8.40%, 10.80%, and 9.79%, respectively, over the baseline YOLOv8. The model also runs at 69 f/s on the test set, meeting practical application requirements. Overall, the improved YOLOv8s-p2 offers high accuracy and speed, providing an effective solution for automated monitoring in hybrid rice seed production.

  • 8 authors
·
Jul 28, 2025

FusionVision: A comprehensive approach of 3D object reconstruction and segmentation from RGB-D cameras using YOLO and fast segment anything

In the realm of computer vision, the integration of advanced techniques into the processing of RGB-D camera inputs poses a significant challenge, given the inherent complexities arising from diverse environmental conditions and varying object appearances. Therefore, this paper introduces FusionVision, an exhaustive pipeline adapted for the robust 3D segmentation of objects in RGB-D imagery. Traditional computer vision systems face limitations in simultaneously capturing precise object boundaries and achieving high-precision object detection on depth map as they are mainly proposed for RGB cameras. To address this challenge, FusionVision adopts an integrated approach by merging state-of-the-art object detection techniques, with advanced instance segmentation methods. The integration of these components enables a holistic (unified analysis of information obtained from both color RGB and depth D channels) interpretation of RGB-D data, facilitating the extraction of comprehensive and accurate object information. The proposed FusionVision pipeline employs YOLO for identifying objects within the RGB image domain. Subsequently, FastSAM, an innovative semantic segmentation model, is applied to delineate object boundaries, yielding refined segmentation masks. The synergy between these components and their integration into 3D scene understanding ensures a cohesive fusion of object detection and segmentation, enhancing overall precision in 3D object segmentation. The code and pre-trained models are publicly available at https://github.com/safouaneelg/FusionVision/.

  • 5 authors
·
Feb 29, 2024

Action Anticipation from SoccerNet Football Video Broadcasts

Artificial intelligence has revolutionized the way we analyze sports videos, whether to understand the actions of games in long untrimmed videos or to anticipate the player's motion in future frames. Despite these efforts, little attention has been given to anticipating game actions before they occur. In this work, we introduce the task of action anticipation for football broadcast videos, which consists in predicting future actions in unobserved future frames, within a five- or ten-second anticipation window. To benchmark this task, we release a new dataset, namely the SoccerNet Ball Action Anticipation dataset, based on SoccerNet Ball Action Spotting. Additionally, we propose a Football Action ANticipation TRAnsformer (FAANTRA), a baseline method that adapts FUTR, a state-of-the-art action anticipation model, to predict ball-related actions. To evaluate action anticipation, we introduce new metrics, including mAP@δ, which evaluates the temporal precision of predicted future actions, as well as mAP@infty, which evaluates their occurrence within the anticipation window. We also conduct extensive ablation studies to examine the impact of various task settings, input configurations, and model architectures. Experimental results highlight both the feasibility and challenges of action anticipation in football videos, providing valuable insights into the design of predictive models for sports analytics. By forecasting actions before they unfold, our work will enable applications in automated broadcasting, tactical analysis, and player decision-making. Our dataset and code are publicly available at https://github.com/MohamadDalal/FAANTRA.

  • 9 authors
·
Apr 16, 2025

Exploiting LLM Quantization

Quantization leverages lower-precision weights to reduce the memory usage of large language models (LLMs) and is a key technique for enabling their deployment on commodity hardware. While LLM quantization's impact on utility has been extensively explored, this work for the first time studies its adverse effects from a security perspective. We reveal that widely used quantization methods can be exploited to produce a harmful quantized LLM, even though the full-precision counterpart appears benign, potentially tricking users into deploying the malicious quantized model. We demonstrate this threat using a three-staged attack framework: (i) first, we obtain a malicious LLM through fine-tuning on an adversarial task; (ii) next, we quantize the malicious model and calculate constraints that characterize all full-precision models that map to the same quantized model; (iii) finally, using projected gradient descent, we tune out the poisoned behavior from the full-precision model while ensuring that its weights satisfy the constraints computed in step (ii). This procedure results in an LLM that exhibits benign behavior in full precision but when quantized, it follows the adversarial behavior injected in step (i). We experimentally demonstrate the feasibility and severity of such an attack across three diverse scenarios: vulnerable code generation, content injection, and over-refusal attack. In practice, the adversary could host the resulting full-precision model on an LLM community hub such as Hugging Face, exposing millions of users to the threat of deploying its malicious quantized version on their devices.

  • 5 authors
·
May 28, 2024

Comprehensive Performance Evaluation of YOLOv12, YOLO11, YOLOv10, YOLOv9 and YOLOv8 on Detecting and Counting Fruitlet in Complex Orchard Environments

This study systematically performed an extensive real-world evaluation of the performances of all configurations of YOLOv8, YOLOv9, YOLOv10, YOLO11( or YOLOv11), and YOLOv12 object detection algorithms in terms of precision, recall, mean Average Precision at 50\% Intersection over Union (mAP@50), and computational speeds including pre-processing, inference, and post-processing times immature green apple (or fruitlet) detection in commercial orchards. Additionally, this research performed and validated in-field counting of the fruitlets using an iPhone and machine vision sensors. Among the configurations, YOLOv12l recorded the highest recall rate at 0.90, compared to all other configurations of YOLO models. Likewise, YOLOv10x achieved the highest precision score of 0.908, while YOLOv9 Gelan-c attained a precision of 0.903. Analysis of [email protected] revealed that YOLOv9 Gelan-base and YOLOv9 Gelan-e reached peak scores of 0.935, with YOLO11s and YOLOv12l following closely at 0.933 and 0.931, respectively. For counting validation using images captured with an iPhone 14 Pro, the YOLO11n configuration demonstrated outstanding accuracy, recording RMSE values of 4.51 for Honeycrisp, 4.59 for Cosmic Crisp, 4.83 for Scilate, and 4.96 for Scifresh; corresponding MAE values were 4.07, 3.98, 7.73, and 3.85. Similar performance trends were observed with RGB-D sensor data. Moreover, sensor-specific training on Intel Realsense data significantly enhanced model performance. YOLOv11n achieved highest inference speed of 2.4 ms, outperforming YOLOv8n (4.1 ms), YOLOv9 Gelan-s (11.5 ms), YOLOv10n (5.5 ms), and YOLOv12n (4.6 ms), underscoring its suitability for real-time object detection applications. (YOLOv12 architecture, YOLOv11 Architecture, YOLOv12 object detection, YOLOv11 object detecion, YOLOv12 segmentation)

  • 6 authors
·
Jul 1, 2024

ViLLA: Fine-Grained Vision-Language Representation Learning from Real-World Data

Vision-language models (VLMs), such as CLIP and ALIGN, are generally trained on datasets consisting of image-caption pairs obtained from the web. However, real-world multimodal datasets, such as healthcare data, are significantly more complex: each image (e.g. X-ray) is often paired with text (e.g. physician report) that describes many distinct attributes occurring in fine-grained regions of the image. We refer to these samples as exhibiting high pairwise complexity, since each image-text pair can be decomposed into a large number of region-attribute pairings. The extent to which VLMs can capture fine-grained relationships between image regions and textual attributes when trained on such data has not been previously evaluated. The first key contribution of this work is to demonstrate through systematic evaluations that as the pairwise complexity of the training dataset increases, standard VLMs struggle to learn region-attribute relationships, exhibiting performance degradations of up to 37% on retrieval tasks. In order to address this issue, we introduce ViLLA as our second key contribution. ViLLA, which is trained to capture fine-grained region-attribute relationships from complex datasets, involves two components: (a) a lightweight, self-supervised mapping model to decompose image-text samples into region-attribute pairs, and (b) a contrastive VLM to learn representations from generated region-attribute pairs. We demonstrate with experiments across four domains (synthetic, product, medical, and natural images) that ViLLA outperforms comparable VLMs on fine-grained reasoning tasks, such as zero-shot object detection (up to 3.6 AP50 points on COCO and 0.6 mAP points on LVIS) and retrieval (up to 14.2 R-Precision points).

  • 5 authors
·
Aug 22, 2023

Scale-aware Adaptive Supervised Network with Limited Medical Annotations

Medical image segmentation faces critical challenges in semi-supervised learning scenarios due to severe annotation scarcity requiring expert radiological knowledge, significant inter-annotator variability across different viewpoints and expertise levels, and inadequate multi-scale feature integration for precise boundary delineation in complex anatomical structures. Existing semi-supervised methods demonstrate substantial performance degradation compared to fully supervised approaches, particularly in small target segmentation and boundary refinement tasks. To address these fundamental challenges, we propose SASNet (Scale-aware Adaptive Supervised Network), a dual-branch architecture that leverages both low-level and high-level feature representations through novel scale-aware adaptive reweight mechanisms. Our approach introduces three key methodological innovations, including the Scale-aware Adaptive Reweight strategy that dynamically weights pixel-wise predictions using temporal confidence accumulation, the View Variance Enhancement mechanism employing 3D Fourier domain transformations to simulate annotation variability, and segmentation-regression consistency learning through signed distance map algorithms for enhanced boundary precision. These innovations collectively address the core limitations of existing semi-supervised approaches by integrating spatial, temporal, and geometric consistency principles within a unified optimization framework. Comprehensive evaluation across LA, Pancreas-CT, and BraTS datasets demonstrates that SASNet achieves superior performance with limited labeled data, surpassing state-of-the-art semi-supervised methods while approaching fully supervised performance levels. The source code for SASNet is available at https://github.com/HUANGLIZI/SASNet.

  • 5 authors
·
Jan 2

Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors

Geolocating images of a ground-level scene entails estimating the location on Earth where the picture was taken, in absence of GPS or other location metadata. Typically, methods are evaluated by measuring the Great Circle Distance (GCD) between a predicted location and ground truth. However, this measurement is limited because it only evaluates a single point, not estimates of regions or score heatmaps. This is especially important in applications to rural, wilderness and under-sampled areas, where finding the exact location may not be possible, and when used in aggregate systems that progressively narrow down locations. In this paper, we introduce a novel metric, Recall vs Area (RvA), which measures the accuracy of estimated distributions of locations. RvA treats image geolocation results similarly to document retrieval, measuring recall as a function of area: For a ranked list of (possibly non-contiguous) predicted regions, we measure the accumulated area required for the region to contain the ground truth coordinate. This produces a curve similar to a precision-recall curve, where "precision" is replaced by square kilometers area, allowing evaluation of performance for different downstream search area budgets. Following directly from this view of the problem, we then examine a simple ensembling approach to global-scale image geolocation, which incorporates information from multiple sources to help address domain shift, and can readily incorporate multiple models, attribute predictors, and data sources. We study its effectiveness by combining the geolocation models GeoEstimation and the current SOTA GeoCLIP, with attribute predictors based on ORNL LandScan and ESA-CCI Land Cover. We find significant improvements in image geolocation for areas that are under-represented in the training set, particularly non-urban areas, on both Im2GPS3k and Street View images.

  • 3 authors
·
Jul 18, 2024

Geometry-Aware Learning of Maps for Camera Localization

Maps are a key component in image-based camera localization and visual SLAM systems: they are used to establish geometric constraints between images, correct drift in relative pose estimation, and relocalize cameras after lost tracking. The exact definitions of maps, however, are often application-specific and hand-crafted for different scenarios (e.g. 3D landmarks, lines, planes, bags of visual words). We propose to represent maps as a deep neural net called MapNet, which enables learning a data-driven map representation. Unlike prior work on learning maps, MapNet exploits cheap and ubiquitous sensory inputs like visual odometry and GPS in addition to images and fuses them together for camera localization. Geometric constraints expressed by these inputs, which have traditionally been used in bundle adjustment or pose-graph optimization, are formulated as loss terms in MapNet training and also used during inference. In addition to directly improving localization accuracy, this allows us to update the MapNet (i.e., maps) in a self-supervised manner using additional unlabeled video sequences from the scene. We also propose a novel parameterization for camera rotation which is better suited for deep-learning based camera pose regression. Experimental results on both the indoor 7-Scenes dataset and the outdoor Oxford RobotCar dataset show significant performance improvement over prior work. The MapNet project webpage is https://goo.gl/mRB3Au.

  • 5 authors
·
Dec 9, 2017

FRIEDA: Benchmarking Multi-Step Cartographic Reasoning in Vision-Language Models

Cartographic reasoning is the skill of interpreting geographic relationships by aligning legends, map scales, compass directions, map texts, and geometries across one or more map images. Although essential as a concrete cognitive capability and for critical tasks such as disaster response and urban planning, it remains largely unevaluated. Building on progress in chart and infographic understanding, recent large vision language model studies on map visual question-answering often treat maps as a special case of charts. In contrast, map VQA demands comprehension of layered symbology (e.g., symbols, geometries, and text labels) as well as spatial relations tied to orientation and distance that often span multiple maps and are not captured by chart-style evaluations. To address this gap, we introduce FRIEDA, a benchmark for testing complex open-ended cartographic reasoning in LVLMs. FRIEDA sources real map images from documents and reports in various domains and geographical areas. Following classifications in Geographic Information System (GIS) literature, FRIEDA targets all three categories of spatial relations: topological (border, equal, intersect, within), metric (distance), and directional (orientation). All questions require multi-step inference, and many require cross-map grounding and reasoning. We evaluate eleven state-of-the-art LVLMs under two settings: (1) the direct setting, where we provide the maps relevant to the question, and (2) the contextual setting, where the model may have to identify the maps relevant to the question before reasoning. Even the strongest models, Gemini-2.5-Pro and GPT-5-Think, achieve only 38.20% and 37.20% accuracy, respectively, far below human performance of 84.87%. These results reveal a persistent gap in multi-step cartographic reasoning, positioning FRIEDA as a rigorous benchmark to drive progress on spatial intelligence in LVLMs.

  • 14 authors
·
Dec 8, 2025

An Automatic Approach for Generating Rich, Linked Geo-Metadata from Historical Map Images

Historical maps contain detailed geographic information difficult to find elsewhere covering long-periods of time (e.g., 125 years for the historical topographic maps in the US). However, these maps typically exist as scanned images without searchable metadata. Existing approaches making historical maps searchable rely on tedious manual work (including crowd-sourcing) to generate the metadata (e.g., geolocations and keywords). Optical character recognition (OCR) software could alleviate the required manual work, but the recognition results are individual words instead of location phrases (e.g., "Black" and "Mountain" vs. "Black Mountain"). This paper presents an end-to-end approach to address the real-world problem of finding and indexing historical map images. This approach automatically processes historical map images to extract their text content and generates a set of metadata that is linked to large external geospatial knowledge bases. The linked metadata in the RDF (Resource Description Framework) format support complex queries for finding and indexing historical maps, such as retrieving all historical maps covering mountain peaks higher than 1,000 meters in California. We have implemented the approach in a system called mapKurator. We have evaluated mapKurator using historical maps from several sources with various map styles, scales, and coverage. Our results show significant improvement over the state-of-the-art methods. The code has been made publicly available as modules of the Kartta Labs project at https://github.com/kartta-labs/Project.

  • 7 authors
·
Dec 2, 2021

MGMap: Mask-Guided Learning for Online Vectorized HD Map Construction

Currently, high-definition (HD) map construction leans towards a lightweight online generation tendency, which aims to preserve timely and reliable road scene information. However, map elements contain strong shape priors. Subtle and sparse annotations make current detection-based frameworks ambiguous in locating relevant feature scopes and cause the loss of detailed structures in prediction. To alleviate these problems, we propose MGMap, a mask-guided approach that effectively highlights the informative regions and achieves precise map element localization by introducing the learned masks. Specifically, MGMap employs learned masks based on the enhanced multi-scale BEV features from two perspectives. At the instance level, we propose the Mask-activated instance (MAI) decoder, which incorporates global instance and structural information into instance queries by the activation of instance masks. At the point level, a novel position-guided mask patch refinement (PG-MPR) module is designed to refine point locations from a finer-grained perspective, enabling the extraction of point-specific patch information. Compared to the baselines, our proposed MGMap achieves a notable improvement of around 10 mAP for different input modalities. Extensive experiments also demonstrate that our approach showcases strong robustness and generalization capabilities. Our code can be found at https://github.com/xiaolul2/MGMap.

  • 6 authors
·
Mar 31, 2024

Visual Language Maps for Robot Navigation

Grounding language to the visual observations of a navigating agent can be performed using off-the-shelf visual-language models pretrained on Internet-scale data (e.g., image captions). While this is useful for matching images to natural language descriptions of object goals, it remains disjoint from the process of mapping the environment, so that it lacks the spatial precision of classic geometric maps. To address this problem, we propose VLMaps, a spatial map representation that directly fuses pretrained visual-language features with a 3D reconstruction of the physical world. VLMaps can be autonomously built from video feed on robots using standard exploration approaches and enables natural language indexing of the map without additional labeled data. Specifically, when combined with large language models (LLMs), VLMaps can be used to (i) translate natural language commands into a sequence of open-vocabulary navigation goals (which, beyond prior work, can be spatial by construction, e.g., "in between the sofa and TV" or "three meters to the right of the chair") directly localized in the map, and (ii) can be shared among multiple robots with different embodiments to generate new obstacle maps on-the-fly (by using a list of obstacle categories). Extensive experiments carried out in simulated and real world environments show that VLMaps enable navigation according to more complex language instructions than existing methods. Videos are available at https://vlmaps.github.io.

  • 4 authors
·
Oct 11, 2022

Climate Modelling in Low-Precision: Effects of both Deterministic & Stochastic Rounding

Motivated by recent advances in operational weather forecasting, we study the efficacy of low-precision arithmetic for climate simulations. We develop a framework to measure rounding error in a climate model which provides a stress-test for a low-precision version of the model, and we apply our method to a variety of models including the Lorenz system; a shallow water approximation for flow over a ridge; and a coarse resolution global atmospheric model with simplified parameterisations (SPEEDY). Although double precision (52 significant bits) is standard across operational climate models, in our experiments we find that single precision (23 sbits) is more than enough and that as low as half precision (10 sbits) is often sufficient. For example, SPEEDY can be run with 12 sbits across the entire code with negligible rounding error and this can be lowered to 10 sbits if very minor errors are accepted, amounting to less than 0.1 mm/6hr for the average grid-point precipitation, for example. Our test is based on the Wasserstein metric and this provides stringent non-parametric bounds on rounding error accounting for annual means as well as extreme weather events. In addition, by testing models using both round-to-nearest (RN) and stochastic rounding (SR) we find that SR can mitigate rounding error across a range of applications. Thus our results also provide evidence that SR could be relevant to next-generation climate models. While many studies have shown that low-precision arithmetic can be suitable on short-term weather forecasting timescales, our results give the first evidence that a similar low precision level can be suitable for climate.

  • 5 authors
·
Apr 30, 2021

MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models

Recent advancements in foundation models have enhanced AI systems' capabilities in autonomous tool usage and reasoning. However, their ability in location or map-based reasoning - which improves daily life by optimizing navigation, facilitating resource discovery, and streamlining logistics - has not been systematically studied. To bridge this gap, we introduce MapEval, a benchmark designed to assess diverse and complex map-based user queries with geo-spatial reasoning. MapEval features three task types (textual, API-based, and visual) that require collecting world information via map tools, processing heterogeneous geo-spatial contexts (e.g., named entities, travel distances, user reviews or ratings, images), and compositional reasoning, which all state-of-the-art foundation models find challenging. Comprising 700 unique multiple-choice questions about locations across 180 cities and 54 countries, MapEval evaluates foundation models' ability to handle spatial relationships, map infographics, travel planning, and navigation challenges. Using MapEval, we conducted a comprehensive evaluation of 28 prominent foundation models. While no single model excelled across all tasks, Claude-3.5-Sonnet, GPT-4o, and Gemini-1.5-Pro achieved competitive performance overall. However, substantial performance gaps emerged, particularly in MapEval, where agents with Claude-3.5-Sonnet outperformed GPT-4o and Gemini-1.5-Pro by 16% and 21%, respectively, and the gaps became even more amplified when compared to open-source LLMs. Our detailed analyses provide insights into the strengths and weaknesses of current models, though all models still fall short of human performance by more than 20% on average, struggling with complex map images and rigorous geo-spatial reasoning. This gap highlights MapEval's critical role in advancing general-purpose foundation models with stronger geo-spatial understanding.

  • 8 authors
·
Dec 31, 2024 2

U-ViLAR: Uncertainty-Aware Visual Localization for Autonomous Driving via Differentiable Association and Registration

Accurate localization using visual information is a critical yet challenging task, especially in urban environments where nearby buildings and construction sites significantly degrade GNSS (Global Navigation Satellite System) signal quality. This issue underscores the importance of visual localization techniques in scenarios where GNSS signals are unreliable. This paper proposes U-ViLAR, a novel uncertainty-aware visual localization framework designed to address these challenges while enabling adaptive localization using high-definition (HD) maps or navigation maps. Specifically, our method first extracts features from the input visual data and maps them into Bird's-Eye-View (BEV) space to enhance spatial consistency with the map input. Subsequently, we introduce: a) Perceptual Uncertainty-guided Association, which mitigates errors caused by perception uncertainty, and b) Localization Uncertainty-guided Registration, which reduces errors introduced by localization uncertainty. By effectively balancing the coarse-grained large-scale localization capability of association with the fine-grained precise localization capability of registration, our approach achieves robust and accurate localization. Experimental results demonstrate that our method achieves state-of-the-art performance across multiple localization tasks. Furthermore, our model has undergone rigorous testing on large-scale autonomous driving fleets and has demonstrated stable performance in various challenging urban scenarios.

  • 14 authors
·
Jul 6, 2025

Enhancing Online Road Network Perception and Reasoning with Standard Definition Maps

Autonomous driving for urban and highway driving applications often requires High Definition (HD) maps to generate a navigation plan. Nevertheless, various challenges arise when generating and maintaining HD maps at scale. While recent online mapping methods have started to emerge, their performance especially for longer ranges is limited by heavy occlusion in dynamic environments. With these considerations in mind, our work focuses on leveraging lightweight and scalable priors-Standard Definition (SD) maps-in the development of online vectorized HD map representations. We first examine the integration of prototypical rasterized SD map representations into various online mapping architectures. Furthermore, to identify lightweight strategies, we extend the OpenLane-V2 dataset with OpenStreetMaps and evaluate the benefits of graphical SD map representations. A key finding from designing SD map integration components is that SD map encoders are model agnostic and can be quickly adapted to new architectures that utilize bird's eye view (BEV) encoders. Our results show that making use of SD maps as priors for the online mapping task can significantly speed up convergence and boost the performance of the online centerline perception task by 30% (mAP). Furthermore, we show that the introduction of the SD maps leads to a reduction of the number of parameters in the perception and reasoning task by leveraging SD map graphs while improving the overall performance. Project Page: https://henryzhangzhy.github.io/sdhdmap/.

  • 8 authors
·
Aug 1, 2024

ALICE-LRI: A General Method for Lossless Range Image Generation for Spinning LiDAR Sensors without Calibration Metadata

3D LiDAR sensors are essential for autonomous navigation, environmental monitoring, and precision mapping in remote sensing applications. To efficiently process the massive point clouds generated by these sensors, LiDAR data is often projected into 2D range images that organize points by their angular positions and distances. While these range image representations enable efficient processing, conventional projection methods suffer from fundamental geometric inconsistencies that cause irreversible information loss, compromising high-fidelity applications. We present ALICE-LRI (Automatic LiDAR Intrinsic Calibration Estimation for Lossless Range Images), the first general, sensor-agnostic method that achieves lossless range image generation from spinning LiDAR point clouds without requiring manufacturer metadata or calibration files. Our algorithm automatically reverse-engineers the intrinsic geometry of any spinning LiDAR sensor by inferring critical parameters including laser beam configuration, angular distributions, and per-beam calibration corrections, enabling lossless projection and complete point cloud reconstruction with zero point loss. Comprehensive evaluation across the complete KITTI and DurLAR datasets demonstrates that ALICE-LRI achieves perfect point preservation, with zero points lost across all point clouds. Geometric accuracy is maintained well within sensor precision limits, establishing geometric losslessness with real-time performance. We also present a compression case study that validates substantial downstream benefits, demonstrating significant quality improvements in practical applications. This paradigm shift from approximate to lossless LiDAR projections opens new possibilities for high-precision remote sensing applications requiring complete geometric preservation.

  • 6 authors
·
Oct 23, 2025 1

Control Map Distribution using Map Query Bank for Online Map Generation

Reliable autonomous driving systems require high-definition (HD) map that contains detailed map information for planning and navigation. However, pre-build HD map requires a large cost. Visual-based Online Map Generation (OMG) has become an alternative low-cost solution to build a local HD map. Query-based BEV Transformer has been a base model for this task. This model learns HD map predictions from an initial map queries distribution which is obtained by offline optimization on training set. Besides the quality of BEV feature, the performance of this model also highly relies on the capacity of initial map query distribution. However, this distribution is limited because the limited query number. To make map predictions optimal on each test sample, it is essential to generate a suitable initial distribution for each specific scenario. This paper proposes to decompose the whole HD map distribution into a set of point representations, namely map query bank (MQBank). To build specific map query initial distributions of different scenarios, low-cost standard definition map (SD map) data is introduced as a kind of prior knowledge. Moreover, each layer of map decoder network learns instance-level map query features, which will lose detailed information of each point. However, BEV feature map is a point-level dense feature. It is important to keep point-level information in map queries when interacting with BEV feature map. This can also be solved with map query bank method. Final experiments show a new insight on SD map prior and a new record on OpenLaneV2 benchmark with 40.5%, 45.7% mAP on vehicle lane and pedestrian area.

  • 7 authors
·
Apr 4, 2025

Evaluating Large-Vocabulary Object Detectors: The Devil is in the Details

By design, average precision (AP) for object detection aims to treat all classes independently: AP is computed independently per category and averaged. On one hand, this is desirable as it treats all classes equally. On the other hand, it ignores cross-category confidence calibration, a key property in real-world use cases. Unfortunately, under important conditions (i.e., large vocabulary, high instance counts) the default implementation of AP is neither category independent, nor does it directly reward properly calibrated detectors. In fact, we show that on LVIS the default implementation produces a gameable metric, where a simple, un-intuitive re-ranking policy can improve AP by a large margin. To address these limitations, we introduce two complementary metrics. First, we present a simple fix to the default AP implementation, ensuring that it is independent across categories as originally intended. We benchmark recent LVIS detection advances and find that many reported gains do not translate to improvements under our new evaluation, suggesting recent improvements may arise from difficult to interpret changes to cross-category rankings. Given the importance of reliably benchmarking cross-category rankings, we consider a pooled version of AP (AP-Pool) that rewards properly calibrated detectors by directly comparing cross-category rankings. Finally, we revisit classical approaches for calibration and find that explicitly calibrating detectors improves state-of-the-art on AP-Pool by 1.7 points

  • 5 authors
·
Feb 1, 2021

PEACE: Empowering Geologic Map Holistic Understanding with MLLMs

Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface. These maps are indispensable in various fields, including disaster detection, resource exploration, and civil engineering. Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding. This gap is primarily due to the challenging nature of cartographic generalization, which involves handling high-resolution map, managing multiple associated components, and requiring domain-specific knowledge. To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding, which assesses the full-scale abilities in extracting, referring, grounding, reasoning, and analyzing. To bridge this gap, we introduce GeoMap-Agent, the inaugural agent designed for geologic map understanding, which features three modules: Hierarchical Information Extraction (HIE), Domain Knowledge Injection (DKI), and Prompt-enhanced Question Answering (PEQA). Inspired by the interdisciplinary collaboration among human scientists, an AI expert group acts as consultants, utilizing a diverse tool pool to comprehensively analyze questions. Through comprehensive experiments, GeoMap-Agent achieves an overall score of 0.811 on GeoMap-Bench, significantly outperforming 0.369 of GPT-4o. Our work, emPowering gEologic mAp holistiC undErstanding (PEACE) with MLLMs, paves the way for advanced AI applications in geology, enhancing the efficiency and accuracy of geological investigations.

  • 11 authors
·
Jan 10, 2025

GeoLLM: Extracting Geospatial Knowledge from Large Language Models

The application of machine learning (ML) in a range of geospatial tasks is increasingly common but often relies on globally available covariates such as satellite imagery that can either be expensive or lack predictive power. Here we explore the question of whether the vast amounts of knowledge found in Internet language corpora, now compressed within large language models (LLMs), can be leveraged for geospatial prediction tasks. We first demonstrate that LLMs embed remarkable spatial information about locations, but naively querying LLMs using geographic coordinates alone is ineffective in predicting key indicators like population density. We then present GeoLLM, a novel method that can effectively extract geospatial knowledge from LLMs with auxiliary map data from OpenStreetMap. We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods. Across these tasks, our method demonstrates a 70% improvement in performance (measured using Pearson's r^2) relative to baselines that use nearest neighbors or use information directly from the prompt, and performance equal to or exceeding satellite-based benchmarks in the literature. With GeoLLM, we observe that GPT-3.5 outperforms Llama 2 and RoBERTa by 19% and 51% respectively, suggesting that the performance of our method scales well with the size of the model and its pretraining dataset. Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe. Crucially, GeoLLM shows promise in mitigating the limitations of existing geospatial covariates and complementing them well. Code is available on the project website: https://rohinmanvi.github.io/GeoLLM

  • 6 authors
·
Oct 9, 2023

Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping

High-Definition Maps (HD maps) are essential for the precise navigation and decision-making of autonomous vehicles, yet their creation and upkeep present significant cost and timeliness challenges. The online construction of HD maps using on-board sensors has emerged as a promising solution; however, these methods can be impeded by incomplete data due to occlusions and inclement weather. This paper proposes the PriorDrive framework to addresses these limitations by harnessing the power of prior maps, significantly enhancing the robustness and accuracy of online HD map construction. Our approach integrates a variety of prior maps, such as OpenStreetMap's Standard Definition Maps (SD maps), outdated HD maps from vendors, and locally constructed maps from historical vehicle data. To effectively encode this prior information into online mapping models, we introduce a Hybrid Prior Representation (HPQuery) that standardizes the representation of diverse map elements. At the core of PriorDrive is the Unified Vector Encoder (UVE), which employs hybrid prior embedding and a dual encoding mechanism to process vector data. Furthermore, we propose a segment-level and point-level pre-training strategy that enables the UVE to learn the prior distribution of vector data, thereby improving the encoder's generalizability and performance. Through extensive testing on the nuScenes, Argoverse 2 and OpenLane-V2, we demonstrate that PriorDrive is highly compatible with various online mapping models and substantially improves map prediction capabilities. The integration of prior maps through the PriorDrive framework offers a robust solution to the challenges of single-perception data, paving the way for more reliable autonomous vehicle navigation.

  • 5 authors
·
Sep 9, 2024 1

MapQaTor: A System for Efficient Annotation of Map Query Datasets

Mapping and navigation services like Google Maps, Apple Maps, Openstreet Maps, are essential for accessing various location-based data, yet they often struggle to handle natural language geospatial queries. Recent advancements in Large Language Models (LLMs) show promise in question answering (QA), but creating reliable geospatial QA datasets from map services remains challenging. We introduce MapQaTor, a web application that streamlines the creation of reproducible, traceable map-based QA datasets. With its plug-and-play architecture, MapQaTor enables seamless integration with any maps API, allowing users to gather and visualize data from diverse sources with minimal setup. By caching API responses, the platform ensures consistent ground truth, enhancing the reliability of the data even as real-world information evolves. MapQaTor centralizes data retrieval, annotation, and visualization within a single platform, offering a unique opportunity to evaluate the current state of LLM-based geospatial reasoning while advancing their capabilities for improved geospatial understanding. Evaluation metrics show that, MapQaTor speeds up the annotation process by at least 30 times compared to manual methods, underscoring its potential for developing geospatial resources, such as complex map reasoning datasets. The website is live at: https://mapqator.github.io/ and a demo video is available at: https://youtu.be/7_aV9Wmhs6Q.

  • 3 authors
·
Dec 30, 2024 2