- Open Universal Arabic ASR Leaderboard In recent years, the enhanced capabilities of ASR models and the emergence of multi-dialect datasets have increasingly pushed Arabic ASR model development toward an all-dialect-in-one direction. This trend highlights the need for benchmarking studies that evaluate model performance on multiple dialects, providing the community with insights into models' generalization capabilities. In this paper, we introduce Open Universal Arabic ASR Leaderboard, a continuous benchmark project for open-source general Arabic ASR models across various multi-dialect datasets. We also provide a comprehensive analysis of the model's robustness, speaker adaptation, inference efficiency, and memory consumption. This work aims to offer the Arabic ASR community a reference for models' general performance and also establish a common evaluation framework for multi-dialectal Arabic ASR models. 3 authors · Dec 18, 2024
3 Overcoming Data Scarcity in Multi-Dialectal Arabic ASR via Whisper Fine-Tuning Although commercial Arabic automatic speech recognition (ASR) systems support Modern Standard Arabic (MSA), they struggle with dialectal speech. We investigate the effect of fine-tuning OpenAI's Whisper on five major Arabic dialects (Gulf, Levantine, Iraqi, Egyptian, Maghrebi) using Mozilla Common Voice for MSA and the MASC dataset for dialectal speech. We evaluate MSA training size effects, benefits of pre-training on MSA data, and dialect-specific versus dialect-pooled models. We find that small amounts of MSA fine-tuning data yield substantial improvements for smaller models, matching larger non-fine-tuned models. While MSA pre-training shows minimal benefit, suggesting limited shared features between MSA and dialects, our dialect-pooled models perform comparably to dialect-specific ones. This indicates that pooling dialectal data, when properly balanced, can help address data scarcity in low-resource ASR without significant performance loss. 3 authors · Jun 3, 2025 1
- To Distill or Not to Distill? On the Robustness of Robust Knowledge Distillation Arabic is known to present unique challenges for Automatic Speech Recognition (ASR). On one hand, its rich linguistic diversity and wide range of dialects complicate the development of robust, inclusive models. On the other, current multilingual ASR models are compute-intensive and lack proper comprehensive evaluations. In light of these challenges, we distill knowledge from large teacher models into smaller student variants that are more efficient. We also introduce a novel human-annotated dataset covering five under-represented Arabic dialects for evaluation. We further evaluate both our models and existing SoTA multilingual models on both standard available benchmarks and our new dialectal data. Our best-distilled model's overall performance (45.0\% WER) surpasses that of a SoTA model twice its size (SeamlessM4T-large-v2, WER=47.0\%) and its teacher model (Whisper-large-v2, WER=55.1\%), and its average performance on our new dialectal data (56.9\% WER) outperforms all other models. To gain more insight into the poor performance of these models on dialectal data, we conduct an error analysis and report the main types of errors the different models tend to make. The GitHub repository for the project is available at https://github.com/UBC-NLP/distill-whisper-ar. 3 authors · Jun 6, 2024
- ELYADATA & LIA at NADI 2025: ASR and ADI Subtasks This paper describes Elyadata \& LIA's joint submission to the NADI multi-dialectal Arabic Speech Processing 2025. We participated in the Spoken Arabic Dialect Identification (ADI) and multi-dialectal Arabic ASR subtasks. Our submission ranked first for the ADI subtask and second for the multi-dialectal Arabic ASR subtask among all participants. Our ADI system is a fine-tuned Whisper-large-v3 encoder with data augmentation. This system obtained the highest ADI accuracy score of 79.83\% on the official test set. For multi-dialectal Arabic ASR, we fine-tuned SeamlessM4T-v2 Large (Egyptian variant) separately for each of the eight considered dialects. Overall, we obtained an average WER and CER of 38.54\% and 14.53\%, respectively, on the test set. Our results demonstrate the effectiveness of large pre-trained speech models with targeted fine-tuning for Arabic speech processing. 5 authors · Nov 13, 2025
- QASR: QCRI Aljazeera Speech Resource -- A Large Scale Annotated Arabic Speech Corpus We introduce the largest transcribed Arabic speech corpus, QASR, collected from the broadcast domain. This multi-dialect speech dataset contains 2,000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QASR contains linguistically motivated segmentation, punctuation, speaker information among others. QASR is suitable for training and evaluating speech recognition systems, acoustics- and/or linguistics- based Arabic dialect identification, punctuation restoration, speaker identification, speaker linking, and potentially other NLP modules for spoken data. In addition to QASR transcription, we release a dataset of 130M words to aid in designing and training a better language model. We show that end-to-end automatic speech recognition trained on QASR reports a competitive word error rate compared to the previous MGB-2 corpus. We report baseline results for downstream natural language processing tasks such as named entity recognition using speech transcript. We also report the first baseline for Arabic punctuation restoration. We make the corpus available for the research community. 4 authors · Jun 24, 2021
1 Leveraging Data Collection and Unsupervised Learning for Code-switched Tunisian Arabic Automatic Speech Recognition Crafting an effective Automatic Speech Recognition (ASR) solution for dialects demands innovative approaches that not only address the data scarcity issue but also navigate the intricacies of linguistic diversity. In this paper, we address the aforementioned ASR challenge, focusing on the Tunisian dialect. First, textual and audio data is collected and in some cases annotated. Second, we explore self-supervision, semi-supervision and few-shot code-switching approaches to push the state-of-the-art on different Tunisian test sets; covering different acoustic, linguistic and prosodic conditions. Finally, and given the absence of conventional spelling, we produce a human evaluation of our transcripts to avoid the noise coming from spelling inadequacies in our testing references. Our models, allowing to transcribe audio samples in a linguistic mix involving Tunisian Arabic, English and French, and all the data used during training and testing are released for public use and further improvements. 4 authors · Sep 20, 2023
2 Dialectal Coverage And Generalization in Arabic Speech Recognition Developing robust automatic speech recognition (ASR) systems for Arabic, a language characterized by its rich dialectal diversity and often considered a low-resource language in speech technology, demands effective strategies to manage its complexity. This study explores three critical factors influencing ASR performance: the role of dialectal coverage in pre-training, the effectiveness of dialect-specific fine-tuning compared to a multi-dialectal approach, and the ability to generalize to unseen dialects. Through extensive experiments across different dialect combinations, our findings offer key insights towards advancing the development of ASR systems for pluricentric languages like Arabic. 5 authors · Nov 7, 2024
- Beyond Orthography: Automatic Recovery of Short Vowels and Dialectal Sounds in Arabic This paper presents a novel Dialectal Sound and Vowelization Recovery framework, designed to recognize borrowed and dialectal sounds within phonologically diverse and dialect-rich languages, that extends beyond its standard orthographic sound sets. The proposed framework utilized a quantized sequence of input with(out) continuous pretrained self-supervised representation. We show the efficacy of the pipeline using limited data for Arabic, a dialect-rich language containing more than 22 major dialects. Phonetically correct transcribed speech resources for dialectal Arabic are scarce. Therefore, we introduce ArabVoice15, a first-of-its-kind, curated test set featuring 5 hours of dialectal speech across 15 Arab countries, with phonetically accurate transcriptions, including borrowed and dialect-specific sounds. We described in detail the annotation guideline along with the analysis of the dialectal confusion pairs. Our extensive evaluation includes both subjective -- human perception tests and objective measures. Our empirical results, reported with three test sets, show that with only one and half hours of training data, our model improve character error rate by ~ 7\% in ArabVoice15 compared to the baseline. 4 authors · Aug 5, 2024
2 Advancing Arabic Speech Recognition Through Large-Scale Weakly Supervised Learning Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like conversational agents, industrial robotics, call center automation, and automated subtitling. However, developing high-performance ASR models remains challenging, particularly for low-resource languages like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and labor-intensive to produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture. Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for costly manual transcriptions. Despite the absence of human-verified labels, our approach achieves state-of-the-art (SOTA) results in Arabic ASR, surpassing both open and closed-source models on standard benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-efficient alternative to traditional supervised approaches, paving the way for improved ASR systems in low resource settings. 6 authors · Apr 16, 2025
- Exploiting Dialect Identification in Automatic Dialectal Text Normalization Dialectal Arabic is the primary spoken language used by native Arabic speakers in daily communication. The rise of social media platforms has notably expanded its use as a written language. However, Arabic dialects do not have standard orthographies. This, combined with the inherent noise in user-generated content on social media, presents a major challenge to NLP applications dealing with Dialectal Arabic. In this paper, we explore and report on the task of CODAfication, which aims to normalize Dialectal Arabic into the Conventional Orthography for Dialectal Arabic (CODA). We work with a unique parallel corpus of multiple Arabic dialects focusing on five major city dialects. We benchmark newly developed pretrained sequence-to-sequence models on the task of CODAfication. We further show that using dialect identification information improves the performance across all dialects. We make our code, data, and pretrained models publicly available. 7 authors · Jul 3, 2024
2 ArTST: Arabic Text and Speech Transformer We present ArTST, a pre-trained Arabic text and speech transformer for supporting open-source speech technologies for the Arabic language. The model architecture follows the unified-modal framework, SpeechT5, that was recently released for English, and is focused on Modern Standard Arabic (MSA), with plans to extend the model for dialectal and code-switched Arabic in future editions. We pre-trained the model from scratch on MSA speech and text data, and fine-tuned it for the following tasks: Automatic Speech Recognition (ASR), Text-To-Speech synthesis (TTS), and spoken dialect identification. In our experiments comparing ArTST with SpeechT5, as well as with previously reported results in these tasks, ArTST performs on a par with or exceeding the current state-of-the-art in all three tasks. Moreover, we find that our pre-training is conducive for generalization, which is particularly evident in the low-resource TTS task. The pre-trained model as well as the fine-tuned ASR and TTS models are released for research use. 4 authors · Oct 25, 2023
- VoxArabica: A Robust Dialect-Aware Arabic Speech Recognition System Arabic is a complex language with many varieties and dialects spoken by over 450 millions all around the world. Due to the linguistic diversity and variations, it is challenging to build a robust and generalized ASR system for Arabic. In this work, we address this gap by developing and demoing a system, dubbed VoxArabica, for dialect identification (DID) as well as automatic speech recognition (ASR) of Arabic. We train a wide range of models such as HuBERT (DID), Whisper, and XLS-R (ASR) in a supervised setting for Arabic DID and ASR tasks. Our DID models are trained to identify 17 different dialects in addition to MSA. We finetune our ASR models on MSA, Egyptian, Moroccan, and mixed data. Additionally, for the remaining dialects in ASR, we provide the option to choose various models such as Whisper and MMS in a zero-shot setting. We integrate these models into a single web interface with diverse features such as audio recording, file upload, model selection, and the option to raise flags for incorrect outputs. Overall, we believe VoxArabica will be useful for a wide range of audiences concerned with Arabic research. Our system is currently running at https://cdce-206-12-100-168.ngrok.io/. 5 authors · Oct 17, 2023
- ARCADE: A City-Scale Corpus for Fine-Grained Arabic Dialect Tagging The Arabic language is characterized by a rich tapestry of regional dialects that differ substantially in phonetics and lexicon, reflecting the geographic and cultural diversity of its speakers. Despite the availability of many multi-dialect datasets, mapping speech to fine-grained dialect sources, such as cities, remains underexplored. We present ARCADE (Arabic Radio Corpus for Audio Dialect Evaluation), the first Arabic speech dataset designed explicitly with city-level dialect granularity. The corpus comprises Arabic radio speech collected from streaming services across the Arab world. Our data pipeline captures 30-second segments from verified radio streams, encompassing both Modern Standard Arabic (MSA) and diverse dialectal speech. To ensure reliability, each clip was annotated by one to three native Arabic reviewers who assigned rich metadata, including emotion, speech type, dialect category, and a validity flag for dialect identification tasks. The resulting corpus comprises 6,907 annotations and 3,790 unique audio segments spanning 58 cities across 19 countries. These fine-grained annotations enable robust multi-task learning, serving as a benchmark for city-level dialect tagging. We detail the data collection methodology, assess audio quality, and provide a comprehensive analysis of label distributions. The dataset is available on: https://huggingface.co/datasets/riotu-lab/ARCADE-full 15 authors · Jan 5
1 LinTO Audio and Textual Datasets to Train and Evaluate Automatic Speech Recognition in Tunisian Arabic Dialect Developing Automatic Speech Recognition (ASR) systems for Tunisian Arabic Dialect is challenging due to the dialect's linguistic complexity and the scarcity of annotated speech datasets. To address these challenges, we propose the LinTO audio and textual datasets -- comprehensive resources that capture phonological and lexical features of Tunisian Arabic Dialect. These datasets include a variety of texts from numerous sources and real-world audio samples featuring diverse speakers and code-switching between Tunisian Arabic Dialect and English or French. By providing high-quality audio paired with precise transcriptions, the LinTO audio and textual datasets aim to provide qualitative material to build and benchmark ASR systems for the Tunisian Arabic Dialect. Keywords -- Tunisian Arabic Dialect, Speech-to-Text, Low-Resource Languages, Audio Data Augmentation 3 authors · Apr 3, 2025
- NADI 2025: The First Multidialectal Arabic Speech Processing Shared Task We present the findings of the sixth Nuanced Arabic Dialect Identification (NADI 2025) Shared Task, which focused on Arabic speech dialect processing across three subtasks: spoken dialect identification (Subtask 1), speech recognition (Subtask 2), and diacritic restoration for spoken dialects (Subtask 3). A total of 44 teams registered, and during the testing phase, 100 valid submissions were received from eight unique teams. The distribution was as follows: 34 submissions for Subtask 1 "five teams{\ae}, 47 submissions for Subtask 2 "six teams", and 19 submissions for Subtask 3 "two teams". The best-performing systems achieved 79.8% accuracy on Subtask 1, 35.68/12.20 WER/CER (overall average) on Subtask 2, and 55/13 WER/CER on Subtask 3. These results highlight the ongoing challenges of Arabic dialect speech processing, particularly in dialect identification, recognition, and diacritic restoration. We also summarize the methods adopted by participating teams and briefly outline directions for future editions of NADI. 12 authors · Sep 2, 2025
- AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs Arabic, with its rich diversity of dialects, remains significantly underrepresented in Large Language Models, particularly in dialectal variations. We address this gap by introducing seven synthetic datasets in dialects alongside Modern Standard Arabic (MSA), created using Machine Translation (MT) combined with human post-editing. We present AraDiCE, a benchmark for Arabic Dialect and Cultural Evaluation. We evaluate LLMs on dialect comprehension and generation, focusing specifically on low-resource Arabic dialects. Additionally, we introduce the first-ever fine-grained benchmark designed to evaluate cultural awareness across the Gulf, Egypt, and Levant regions, providing a novel dimension to LLM evaluation. Our findings demonstrate that while Arabic-specific models like Jais and AceGPT outperform multilingual models on dialectal tasks, significant challenges persist in dialect identification, generation, and translation. This work contributes ~45K post-edited samples, a cultural benchmark, and highlights the importance of tailored training to improve LLM performance in capturing the nuances of diverse Arabic dialects and cultural contexts. We will release the dialectal translation models and benchmarks curated in this study. 9 authors · Sep 17, 2024
- Casablanca: Data and Models for Multidialectal Arabic Speech Recognition In spite of the recent progress in speech processing, the majority of world languages and dialects remain uncovered. This situation only furthers an already wide technological divide, thereby hindering technological and socioeconomic inclusion. This challenge is largely due to the absence of datasets that can empower diverse speech systems. In this paper, we seek to mitigate this obstacle for a number of Arabic dialects by presenting Casablanca, a large-scale community-driven effort to collect and transcribe a multi-dialectal Arabic dataset. The dataset covers eight dialects: Algerian, Egyptian, Emirati, Jordanian, Mauritanian, Moroccan, Palestinian, and Yemeni, and includes annotations for transcription, gender, dialect, and code-switching. We also develop a number of strong baselines exploiting Casablanca. The project page for Casablanca is accessible at: www.dlnlp.ai/speech/casablanca. 27 authors · Oct 6, 2024
- Advancing Dialectal Arabic to Modern Standard Arabic Machine Translation Dialectal Arabic (DA) poses a persistent challenge for natural language processing (NLP), as most everyday communication in the Arab world occurs in dialects that diverge significantly from Modern Standard Arabic (MSA). This linguistic divide limits access to digital services and educational resources and impedes progress in Arabic machine translation. This paper presents two core contributions to advancing DA-MSA translation for the Levantine, Egyptian, and Gulf dialects, particularly in low-resource and computationally constrained settings: a comprehensive evaluation of training-free prompting techniques, and the development of a resource-efficient fine-tuning pipeline. Our evaluation of prompting strategies across six large language models (LLMs) found that few-shot prompting consistently outperformed zero-shot, chain-of-thought, and our proposed Ara-TEaR method. GPT-4o achieved the highest performance across all prompting settings. For fine-tuning, a quantized Gemma2-9B model achieved a CHrF++ score of 49.88, outperforming zero-shot GPT-4o (44.58). Joint multi-dialect trained models outperformed single-dialect counterparts by over 10% CHrF++, and 4-bit quantization reduced memory usage by 60% with less than 1% performance loss. The results and insights of our experiments offer a practical blueprint for improving dialectal inclusion in Arabic NLP, showing that high-quality DA-MSA machine translation is achievable even with limited resources and paving the way for more inclusive language technologies. 3 authors · Jul 27, 2025
- Multi-Dialect Arabic BERT for Country-Level Dialect Identification Arabic dialect identification is a complex problem for a number of inherent properties of the language itself. In this paper, we present the experiments conducted, and the models developed by our competing team, Mawdoo3 AI, along the way to achieving our winning solution to subtask 1 of the Nuanced Arabic Dialect Identification (NADI) shared task. The dialect identification subtask provides 21,000 country-level labeled tweets covering all 21 Arab countries. An unlabeled corpus of 10M tweets from the same domain is also presented by the competition organizers for optional use. Our winning solution itself came in the form of an ensemble of different training iterations of our pre-trained BERT model, which achieved a micro-averaged F1-score of 26.78% on the subtask at hand. We publicly release the pre-trained language model component of our winning solution under the name of Multi-dialect-Arabic-BERT model, for any interested researcher out there. 8 authors · Jul 10, 2020
9 Voxlect: A Speech Foundation Model Benchmark for Modeling Dialects and Regional Languages Around the Globe We present Voxlect, a novel benchmark for modeling dialects and regional languages worldwide using speech foundation models. Specifically, we report comprehensive benchmark evaluations on dialects and regional language varieties in English, Arabic, Mandarin and Cantonese, Tibetan, Indic languages, Thai, Spanish, French, German, Brazilian Portuguese, and Italian. Our study used over 2 million training utterances from 30 publicly available speech corpora that are provided with dialectal information. We evaluate the performance of several widely used speech foundation models in classifying speech dialects. We assess the robustness of the dialectal models under noisy conditions and present an error analysis that highlights modeling results aligned with geographic continuity. In addition to benchmarking dialect classification, we demonstrate several downstream applications enabled by Voxlect. Specifically, we show that Voxlect can be applied to augment existing speech recognition datasets with dialect information, enabling a more detailed analysis of ASR performance across dialectal variations. Voxlect is also used as a tool to evaluate the performance of speech generation systems. Voxlect is publicly available with the license of the RAIL family at: https://github.com/tiantiaf0627/voxlect. 9 authors · Aug 3, 2025 2
- Absher: A Benchmark for Evaluating Large Language Models Understanding of Saudi Dialects As large language models (LLMs) become increasingly central to Arabic NLP applications, evaluating their understanding of regional dialects and cultural nuances is essential, particularly in linguistically diverse settings like Saudi Arabia. This paper introduces Absher, a comprehensive benchmark specifically designed to assess LLMs performance across major Saudi dialects. Absher comprises over 18,000 multiple-choice questions spanning six distinct categories: Meaning, True/False, Fill-in-the-Blank, Contextual Usage, Cultural Interpretation, and Location Recognition. These questions are derived from a curated dataset of dialectal words, phrases, and proverbs sourced from various regions of Saudi Arabia. We evaluate several state-of-the-art LLMs, including multilingual and Arabic-specific models. We also provide detailed insights into their capabilities and limitations. Our results reveal notable performance gaps, particularly in tasks requiring cultural inference or contextual understanding. Our findings highlight the urgent need for dialect-aware training and culturally aligned evaluation methodologies to improve LLMs performance in real-world Arabic applications. 4 authors · Jul 14, 2025
- AlcLaM: Arabic Dialectal Language Model Pre-trained Language Models (PLMs) are integral to many modern natural language processing (NLP) systems. Although multilingual models cover a wide range of languages, they often grapple with challenges like high inference costs and a lack of diverse non-English training data. Arabic-specific PLMs are trained predominantly on modern standard Arabic, which compromises their performance on regional dialects. To tackle this, we construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms. We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch. Named AlcLaM, our model was trained using only 13 GB of text, which represents a fraction of the data used by existing models such as CAMeL, MARBERT, and ArBERT, compared to 7.8%, 10.2%, and 21.3%, respectively. Remarkably, AlcLaM demonstrates superior performance on a variety of Arabic NLP tasks despite the limited training data. AlcLaM is available at GitHub https://github.com/amurtadha/Alclam and HuggingFace https://huggingface.co/rahbi. 6 authors · Jul 17, 2024
12 Dallah: A Dialect-Aware Multimodal Large Language Model for Arabic Recent advancements have significantly enhanced the capabilities of Multimodal Large Language Models (MLLMs) in generating and understanding image-to-text content. Despite these successes, progress is predominantly limited to English due to the scarcity of high quality multimodal resources in other languages. This limitation impedes the development of competitive models in languages such as Arabic. To alleviate this situation, we introduce an efficient Arabic multimodal assistant, dubbed Dallah, that utilizes an advanced language model based on LLaMA-2 to facilitate multimodal interactions. Dallah demonstrates state-of-the-art performance in Arabic MLLMs. Through fine-tuning six Arabic dialects, Dallah showcases its capability to handle complex dialectal interactions incorporating both textual and visual elements. The model excels in two benchmark tests: one evaluating its performance on Modern Standard Arabic (MSA) and another specifically designed to assess dialectal responses. Beyond its robust performance in multimodal interaction tasks, Dallah has the potential to pave the way for further development of dialect-aware Arabic MLLMs. 3 authors · Jul 25, 2024 4
- Arabic Multi-Dialect Segmentation: bi-LSTM-CRF vs. SVM Arabic word segmentation is essential for a variety of NLP applications such as machine translation and information retrieval. Segmentation entails breaking words into their constituent stems, affixes and clitics. In this paper, we compare two approaches for segmenting four major Arabic dialects using only several thousand training examples for each dialect. The two approaches involve posing the problem as a ranking problem, where an SVM ranker picks the best segmentation, and as a sequence labeling problem, where a bi-LSTM RNN coupled with CRF determines where best to segment words. We are able to achieve solid segmentation results for all dialects using rather limited training data. We also show that employing Modern Standard Arabic data for domain adaptation and assuming context independence improve overall results. 7 authors · Aug 19, 2017
- ALDi: Quantifying the Arabic Level of Dialectness of Text Transcribed speech and user-generated text in Arabic typically contain a mixture of Modern Standard Arabic (MSA), the standardized language taught in schools, and Dialectal Arabic (DA), used in daily communications. To handle this variation, previous work in Arabic NLP has focused on Dialect Identification (DI) on the sentence or the token level. However, DI treats the task as binary, whereas we argue that Arabic speakers perceive a spectrum of dialectness, which we operationalize at the sentence level as the Arabic Level of Dialectness (ALDi), a continuous linguistic variable. We introduce the AOC-ALDi dataset (derived from the AOC dataset), containing 127,835 sentences (17% from news articles and 83% from user comments on those articles) which are manually labeled with their level of dialectness. We provide a detailed analysis of AOC-ALDi and show that a model trained on it can effectively identify levels of dialectness on a range of other corpora (including dialects and genres not included in AOC-ALDi), providing a more nuanced picture than traditional DI systems. Through case studies, we illustrate how ALDi can reveal Arabic speakers' stylistic choices in different situations, a useful property for sociolinguistic analyses. 3 authors · Oct 20, 2023
- ArFake: A Multi-Dialect Benchmark and Baselines for Arabic Spoof-Speech Detection With the rise of generative text-to-speech models, distinguishing between real and synthetic speech has become challenging, especially for Arabic that have received limited research attention. Most spoof detection efforts have focused on English, leaving a significant gap for Arabic and its many dialects. In this work, we introduce the first multi-dialect Arabic spoofed speech dataset. To evaluate the difficulty of the synthesized audio from each model and determine which produces the most challenging samples, we aimed to guide the construction of our final dataset either by merging audios from multiple models or by selecting the best-performing model, we conducted an evaluation pipeline that included training classifiers using two approaches: modern embedding-based methods combined with classifier heads; classical machine learning algorithms applied to MFCC features; and the RawNet2 architecture. The pipeline further incorporated the calculation of Mean Opinion Score based on human ratings, as well as processing both original and synthesized datasets through an Automatic Speech Recognition model to measure the Word Error Rate. Our results demonstrate that FishSpeech outperforms other TTS models in Arabic voice cloning on the Casablanca corpus, producing more realistic and challenging synthetic speech samples. However, relying on a single TTS for dataset creation may limit generalizability. 5 authors · Sep 26, 2025
2 Palm: A Culturally Inclusive and Linguistically Diverse Dataset for Arabic LLMs As large language models (LLMs) become increasingly integrated into daily life, ensuring their cultural sensitivity and inclusivity is paramount. We introduce our dataset, a year-long community-driven project covering all 22 Arab countries. The dataset includes instructions (input, response pairs) in both Modern Standard Arabic (MSA) and dialectal Arabic (DA), spanning 20 diverse topics. Built by a team of 44 researchers across the Arab world, all of whom are authors of this paper, our dataset offers a broad, inclusive perspective. We use our dataset to evaluate the cultural and dialectal capabilities of several frontier LLMs, revealing notable limitations. For instance, while closed-source LLMs generally exhibit strong performance, they are not without flaws, and smaller open-source models face greater challenges. Moreover, certain countries (e.g., Egypt, the UAE) appear better represented than others (e.g., Iraq, Mauritania, Yemen). Our annotation guidelines, code, and data for reproducibility are publicly available. 44 authors · Feb 28, 2025
- Speech Recognition Challenge in the Wild: Arabic MGB-3 This paper describes the Arabic MGB-3 Challenge - Arabic Speech Recognition in the Wild. Unlike last year's Arabic MGB-2 Challenge, for which the recognition task was based on more than 1,200 hours broadcast TV news recordings from Aljazeera Arabic TV programs, MGB-3 emphasises dialectal Arabic using a multi-genre collection of Egyptian YouTube videos. Seven genres were used for the data collection: comedy, cooking, family/kids, fashion, drama, sports, and science (TEDx). A total of 16 hours of videos, split evenly across the different genres, were divided into adaptation, development and evaluation data sets. The Arabic MGB-Challenge comprised two tasks: A) Speech transcription, evaluated on the MGB-3 test set, along with the 10 hour MGB-2 test set to report progress on the MGB-2 evaluation; B) Arabic dialect identification, introduced this year in order to distinguish between four major Arabic dialects - Egyptian, Levantine, North African, Gulf, as well as Modern Standard Arabic. Two hours of audio per dialect were released for development and a further two hours were used for evaluation. For dialect identification, both lexical features and i-vector bottleneck features were shared with participants in addition to the raw audio recordings. Overall, thirteen teams submitted ten systems to the challenge. We outline the approaches adopted in each system, and summarise the evaluation results. 3 authors · Sep 21, 2017
- ClArTTS: An Open-Source Classical Arabic Text-to-Speech Corpus At present, Text-to-speech (TTS) systems that are trained with high-quality transcribed speech data using end-to-end neural models can generate speech that is intelligible, natural, and closely resembles human speech. These models are trained with relatively large single-speaker professionally recorded audio, typically extracted from audiobooks. Meanwhile, due to the scarcity of freely available speech corpora of this kind, a larger gap exists in Arabic TTS research and development. Most of the existing freely available Arabic speech corpora are not suitable for TTS training as they contain multi-speaker casual speech with variations in recording conditions and quality, whereas the corpus curated for speech synthesis are generally small in size and not suitable for training state-of-the-art end-to-end models. In a move towards filling this gap in resources, we present a speech corpus for Classical Arabic Text-to-Speech (ClArTTS) to support the development of end-to-end TTS systems for Arabic. The speech is extracted from a LibriVox audiobook, which is then processed, segmented, and manually transcribed and annotated. The final ClArTTS corpus contains about 12 hours of speech from a single male speaker sampled at 40100 kHz. In this paper, we describe the process of corpus creation and provide details of corpus statistics and a comparison with existing resources. Furthermore, we develop two TTS systems based on Grad-TTS and Glow-TTS and illustrate the performance of the resulting systems via subjective and objective evaluations. The corpus will be made publicly available at www.clartts.com for research purposes, along with the baseline TTS systems demo. 4 authors · Feb 28, 2023
- Arabic Dialect Classification using RNNs, Transformers, and Large Language Models: A Comparative Analysis The Arabic language is among the most popular languages in the world with a huge variety of dialects spoken in 22 countries. In this study, we address the problem of classifying 18 Arabic dialects of the QADI dataset of Arabic tweets. RNN models, Transformer models, and large language models (LLMs) via prompt engineering are created and tested. Among these, MARBERTv2 performed best with 65% accuracy and 64% F1-score. Through the use of state-of-the-art preprocessing techniques and the latest NLP models, this paper identifies the most significant linguistic issues in Arabic dialect identification. The results corroborate applications like personalized chatbots that respond in users' dialects, social media monitoring, and greater accessibility for Arabic communities. 4 authors · Jun 24, 2025
- Whisper Turns Stronger: Augmenting Wav2Vec 2.0 for Superior ASR in Low-Resource Languages Approaching Speech-to-Text and Automatic Speech Recognition problems in low-resource languages is notoriously challenging due to the scarcity of validated datasets and the diversity of dialects. Arabic, Russian, and Portuguese exemplify these difficulties, being low-resource languages due to the many dialects of these languages across different continents worldwide. Moreover, the variety of accents and pronunciations of such languages complicate ASR models' success. With the increasing popularity of Deep Learning and Transformers, acoustic models like the renowned Wav2Vec2 have achieved superior performance in the Speech Recognition field compared to state-of-the-art approaches. However, despite Wav2Vec2's improved efficiency over traditional methods, its performance significantly declines for under-represented languages, even though it requires significantly less labeled data. This paper introduces an end-to-end framework that enhances ASR systems fine-tuned on Wav2Vec2 through data augmentation techniques. To validate our framework's effectiveness, we conducted a detailed experimental evaluation using three datasets from Mozilla's Common Voice project in Arabic, Russian, and Portuguese. Additionally, the framework presented in this paper demonstrates robustness to different diacritics. Ultimately, our approach outperforms two previous baseline models, which are the pre-trained Wav2Vec2 and the well-known Whisper ASR model, resulting in an average relative improvement of 33.9\% in Word Error Rate and a 53.2\% relative improvement in Character Error Rate. 3 authors · Dec 31, 2024
- Pre-Training BERT on Arabic Tweets: Practical Considerations Pretraining Bidirectional Encoder Representations from Transformers (BERT) for downstream NLP tasks is a non-trival task. We pretrained 5 BERT models that differ in the size of their training sets, mixture of formal and informal Arabic, and linguistic preprocessing. All are intended to support Arabic dialects and social media. The experiments highlight the centrality of data diversity and the efficacy of linguistically aware segmentation. They also highlight that more data or more training step do not necessitate better models. Our new models achieve new state-of-the-art results on several downstream tasks. The resulting models are released to the community under the name QARiB. 5 authors · Feb 21, 2021
- Voice Conversion Improves Cross-Domain Robustness for Spoken Arabic Dialect Identification Arabic dialect identification (ADI) systems are essential for large-scale data collection pipelines that enable the development of inclusive speech technologies for Arabic language varieties. However, the reliability of current ADI systems is limited by poor generalization to out-of-domain speech. In this paper, we present an effective approach based on voice conversion for training ADI models that achieves state-of-the-art performance and significantly improves robustness in cross-domain scenarios. Evaluated on a newly collected real-world test set spanning four different domains, our approach yields consistent improvements of up to +34.1% in accuracy across domains. Furthermore, we present an analysis of our approach and demonstrate that voice conversion helps mitigate the speaker bias in the ADI dataset. We release our robust ADI model and cross-domain evaluation dataset to support the development of inclusive speech technologies for Arabic. 4 authors · May 30, 2025
7 Flavors of Moonshine: Tiny Specialized ASR Models for Edge Devices We present the Flavors of Moonshine, a suite of tiny automatic speech recognition (ASR) models specialized for a range of underrepresented languages. Prevailing wisdom suggests that multilingual ASR models outperform monolingual counterparts by exploiting cross-lingual phonetic similarities. We challenge this assumption, showing that for sufficiently small models (27M parameters), training monolingual systems on a carefully balanced mix of high-quality human-labeled, pseudo-labeled, and synthetic data yields substantially superior performance. On average, our models achieve error rates 48% lower than the comparably sized Whisper Tiny model, outperform the 9x larger Whisper Small model, and in most cases match or outperform the 28x larger Whisper Medium model. These results advance the state of the art for models of this size, enabling accurate on-device ASR for languages that previously had limited support. We release Arabic, Chinese, Japanese, Korean, Ukrainian, and Vietnamese Moonshine models under a permissive open-source license. 5 authors · Sep 2, 2025 1
28 Atlas-Chat: Adapting Large Language Models for Low-Resource Moroccan Arabic Dialect We introduce Atlas-Chat, the first-ever collection of large language models specifically developed for dialectal Arabic. Focusing on Moroccan Arabic, also known as Darija, we construct our instruction dataset by consolidating existing Darija language resources, creating novel datasets both manually and synthetically, and translating English instructions with stringent quality control. Atlas-Chat-9B and 2B models, fine-tuned on the dataset, exhibit superior ability in following Darija instructions and performing standard NLP tasks. Notably, our models outperform both state-of-the-art and Arabic-specialized LLMs like LLaMa, Jais, and AceGPT, e.g., achieving a 13% performance boost over a larger 13B model on DarijaMMLU, in our newly introduced evaluation suite for Darija covering both discriminative and generative tasks. Furthermore, we perform an experimental analysis of various fine-tuning strategies and base model choices to determine optimal configurations. All our resources are publicly accessible, and we believe our work offers comprehensive design methodologies of instruction-tuning for low-resource language variants, which are often neglected in favor of data-rich languages by contemporary LLMs. 12 authors · Sep 26, 2024 2
1 Saudi-Dialect-ALLaM: LoRA Fine-Tuning for Dialectal Arabic Generation Large language models (LLMs) for Arabic are still dominated by Modern Standard Arabic (MSA), with limited support for Saudi dialects such as Najdi and Hijazi. This underrepresentation hinders their ability to capture authentic dialectal variation. Using a privately curated Saudi Dialect Instruction dataset (Hijazi and Najdi; 5,466 synthetic instruction-response pairs; 50/50 split), we LoRA-tune ALLaM-7B-Instruct-preview, the first foundation model developed in Saudi Arabia, for Saudi dialect generation. We investigate two variants: (i) Dialect-Token training, which prepends an explicit dialect tag to the instruction, and (ii) No-Token training, which omits the tag at formatting time. Evaluation on a held-out test set combines an external dialect classifier with text fidelity metrics (chrF++ and BERTScore) and diversity measures. The Dialect-Token model achieves the best control, raising the Saudi rate from 47.97% to 84.21% and reducing MSA leakage from 32.63% to 6.21%; fidelity also improves (chrF++ +3.53, BERTScore +0.059). Both LoRA variants outperform strong generic instruction models (Falcon-7B-Instruct, Llama-3.1-8B-Instruct, Qwen-2.5-7B-Instruct, AceGPT-v2-8B-Chat, JAIS-13B-Chat) in dialect control and fidelity, while avoiding metadata-tag echoing that these baselines frequently exhibit. We do not release the dataset or any model weights/adapters; instead, we release training/evaluation/inference code and a detailed datasheet (schema and aggregate statistics) to support independent verification. 1 authors · Aug 19, 2025
- The Arabic Generality Score: Another Dimension of Modeling Arabic Dialectness Arabic dialects form a diverse continuum, yet NLP models often treat them as discrete categories. Recent work addresses this issue by modeling dialectness as a continuous variable, notably through the Arabic Level of Dialectness (ALDi). However, ALDi reduces complex variation to a single dimension. We propose a complementary measure: the Arabic Generality Score (AGS), which quantifies how widely a word is used across dialects. We introduce a pipeline that combines word alignment, etymology-aware edit distance, and smoothing to annotate a parallel corpus with word-level AGS. A regression model is then trained to predict AGS in context. Our approach outperforms strong baselines, including state-of-the-art dialect ID systems, on a multi-dialect benchmark. AGS offers a scalable, linguistically grounded way to model lexical generality, enriching representations of Arabic dialectness. 2 authors · Aug 24, 2025
- Improving Massively Multilingual ASR With Auxiliary CTC Objectives Multilingual Automatic Speech Recognition (ASR) models have extended the usability of speech technologies to a wide variety of languages. With how many languages these models have to handle, however, a key to understanding their imbalanced performance across different languages is to examine if the model actually knows which language it should transcribe. In this paper, we introduce our work on improving performance on FLEURS, a 102-language open ASR benchmark, by conditioning the entire model on language identity (LID). We investigate techniques inspired from recent Connectionist Temporal Classification (CTC) studies to help the model handle the large number of languages, conditioning on the LID predictions of auxiliary tasks. Our experimental results demonstrate the effectiveness of our technique over standard CTC/Attention-based hybrid models. Furthermore, our state-of-the-art systems using self-supervised models with the Conformer architecture improve over the results of prior work on FLEURS by a relative 28.4% CER. Trained models and reproducible recipes are available at https://github.com/espnet/espnet/tree/master/egs2/fleurs/asr1 . 6 authors · Feb 24, 2023
6 ArzEn-LLM: Code-Switched Egyptian Arabic-English Translation and Speech Recognition Using LLMs Motivated by the widespread increase in the phenomenon of code-switching between Egyptian Arabic and English in recent times, this paper explores the intricacies of machine translation (MT) and automatic speech recognition (ASR) systems, focusing on translating code-switched Egyptian Arabic-English to either English or Egyptian Arabic. Our goal is to present the methodologies employed in developing these systems, utilizing large language models such as LLama and Gemma. In the field of ASR, we explore the utilization of the Whisper model for code-switched Egyptian Arabic recognition, detailing our experimental procedures including data preprocessing and training techniques. Through the implementation of a consecutive speech-to-text translation system that integrates ASR with MT, we aim to overcome challenges posed by limited resources and the unique characteristics of the Egyptian Arabic dialect. Evaluation against established metrics showcases promising results, with our methodologies yielding a significant improvement of 56% in English translation over the state-of-the-art and 9.3% in Arabic translation. Since code-switching is deeply inherent in spoken languages, it is crucial that ASR systems can effectively handle this phenomenon. This capability is crucial for enabling seamless interaction in various domains, including business negotiations, cultural exchanges, and academic discourse. Our models and code are available as open-source resources. Code: http://github.com/ahmedheakl/arazn-llm}, Models: http://huggingface.co/collections/ahmedheakl/arazn-llm-662ceaf12777656607b9524e. 5 authors · Jun 26, 2024 5
- Performance Analysis of Speech Encoders for Low-Resource SLU and ASR in Tunisian Dialect Speech encoders pretrained through self-supervised learning (SSL) have demonstrated remarkable performance in various downstream tasks, including Spoken Language Understanding (SLU) and Automatic Speech Recognition (ASR). For instance, fine-tuning SSL models for such tasks has shown significant potential, leading to improvements in the SOTA performance across challenging datasets. In contrast to existing research, this paper contributes by comparing the effectiveness of SSL approaches in the context of (i) the low-resource spoken Tunisian Arabic dialect and (ii) its combination with a low-resource SLU and ASR scenario, where only a few semantic annotations are available for fine-tuning. We conduct experiments using many SSL speech encoders on the TARIC-SLU dataset. We use speech encoders that were pre-trained on either monolingual or multilingual speech data. Some of them have also been refined without in-domain nor Tunisian data through multimodal supervised teacher-student paradigm. This study yields numerous significant findings that we are discussing in this paper. 4 authors · Jul 5, 2024
- ArVoice: A Multi-Speaker Dataset for Arabic Speech Synthesis We introduce ArVoice, a multi-speaker Modern Standard Arabic (MSA) speech corpus with diacritized transcriptions, intended for multi-speaker speech synthesis, and can be useful for other tasks such as speech-based diacritic restoration, voice conversion, and deepfake detection. ArVoice comprises: (1) a new professionally recorded set from six voice talents with diverse demographics, (2) a modified subset of the Arabic Speech Corpus; and (3) high-quality synthetic speech from two commercial systems. The complete corpus consists of a total of 83.52 hours of speech across 11 voices; around 10 hours consist of human voices from 7 speakers. We train three open-source TTS and two voice conversion systems to illustrate the use cases of the dataset. The corpus is available for research use. 5 authors · May 26, 2025
- Arabic TTS with FastPitch: Reproducible Baselines, Adversarial Training, and Oversmoothing Analysis Arabic text-to-speech (TTS) remains challenging due to limited resources and complex phonological patterns. We present reproducible baselines for Arabic TTS built on the FastPitch architecture and introduce cepstral-domain metrics for analyzing oversmoothing in mel-spectrogram prediction. While traditional Lp reconstruction losses yield smooth but over-averaged outputs, the proposed metrics reveal their temporal and spectral effects throughout training. To address this, we incorporate a lightweight adversarial spectrogram loss, which trains stably and substantially reduces oversmoothing. We further explore multi-speaker Arabic TTS by augmenting FastPitch with synthetic voices generated using XTTSv2, resulting in improved prosodic diversity without loss of stability. The code, pretrained models, and training recipes are publicly available at: https://github.com/nipponjo/tts-arabic-pytorch. 1 authors · Nov 30, 2025
- ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic Pre-trained language models (LMs) are currently integral to many natural language processing systems. Although multilingual LMs were also introduced to serve many languages, these have limitations such as being costly at inference time and the size and diversity of non-English data involved in their pre-training. We remedy these issues for a collection of diverse Arabic varieties by introducing two powerful deep bidirectional transformer-based models, ARBERT and MARBERT. To evaluate our models, we also introduce ARLUE, a new benchmark for multi-dialectal Arabic language understanding evaluation. ARLUE is built using 42 datasets targeting six different task clusters, allowing us to offer a series of standardized experiments under rich conditions. When fine-tuned on ARLUE, our models collectively achieve new state-of-the-art results across the majority of tasks (37 out of 48 classification tasks, on the 42 datasets). Our best model acquires the highest ARLUE score (77.40) across all six task clusters, outperforming all other models including XLM-R Large (~ 3.4 x larger size). Our models are publicly available at https://github.com/UBC-NLP/marbert and ARLUE will be released through the same repository. 3 authors · Dec 27, 2020
1 The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks. 5 authors · Mar 11, 2021
7 UI-Level Evaluation of ALLaM 34B: Measuring an Arabic-Centric LLM via HUMAIN Chat Large language models (LLMs) trained primarily on English corpora often struggle to capture the linguistic and cultural nuances of Arabic. To address this gap, the Saudi Data and AI Authority (SDAIA) introduced the ALLaM family of Arabic-focused models. The most capable of these available to the public, ALLaM-34B, was subsequently adopted by HUMAIN, who developed and deployed HUMAIN Chat, a closed conversational web service built on this model. This paper presents an expanded and refined UI-level evaluation of ALLaM-34B. Using a prompt pack spanning modern standard Arabic, five regional dialects, code-switching, factual knowledge, arithmetic and temporal reasoning, creative generation, and adversarial safety, we collected 115 outputs (23 prompts times 5 runs) and scored each with three frontier LLM judges (GPT-5, Gemini 2.5 Pro, Claude Sonnet-4). We compute category-level means with 95\% confidence intervals, analyze score distributions, and visualize dialect-wise metric heat maps. The updated analysis reveals consistently high performance on generation and code-switching tasks (both averaging 4.92/5), alongside strong results in MSA handling (4.74/5), solid reasoning ability (4.64/5), and improved dialect fidelity (4.21/5). Safety-related prompts show stable, reliable performance of (4.54/5). Taken together, these results position ALLaM-34B as a robust and culturally grounded Arabic LLM, demonstrating both technical strength and practical readiness for real-world deployment. 1 authors · Aug 24, 2025 2
- A Study of Multilingual End-to-End Speech Recognition for Kazakh, Russian, and English We study training a single end-to-end (E2E) automatic speech recognition (ASR) model for three languages used in Kazakhstan: Kazakh, Russian, and English. We first describe the development of multilingual E2E ASR based on Transformer networks and then perform an extensive assessment on the aforementioned languages. We also compare two variants of output grapheme set construction: combined and independent. Furthermore, we evaluate the impact of LMs and data augmentation techniques on the recognition performance of the multilingual E2E ASR. In addition, we present several datasets for training and evaluation purposes. Experiment results show that the multilingual models achieve comparable performances to the monolingual baselines with a similar number of parameters. Our best monolingual and multilingual models achieved 20.9% and 20.5% average word error rates on the combined test set, respectively. To ensure the reproducibility of our experiments and results, we share our training recipes, datasets, and pre-trained models. 3 authors · Aug 3, 2021
1 ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic The focus of language model evaluation has transitioned towards reasoning and knowledge-intensive tasks, driven by advancements in pretraining large models. While state-of-the-art models are partially trained on large Arabic texts, evaluating their performance in Arabic remains challenging due to the limited availability of relevant datasets. To bridge this gap, we present ArabicMMLU, the first multi-task language understanding benchmark for Arabic language, sourced from school exams across diverse educational levels in different countries spanning North Africa, the Levant, and the Gulf regions. Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA), and is carefully constructed by collaborating with native speakers in the region. Our comprehensive evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models. Notably, BLOOMZ, mT0, LLama2, and Falcon struggle to achieve a score of 50%, while even the top-performing Arabic-centric model only achieves a score of 62.3%. 13 authors · Feb 20, 2024 1
3 ALLaM: Large Language Models for Arabic and English We present ALLaM: Arabic Large Language Model, a series of large language models to support the ecosystem of Arabic Language Technologies (ALT). ALLaM is carefully trained considering the values of language alignment and knowledge transfer at scale. Our autoregressive decoder-only architecture models demonstrate how second-language acquisition via vocabulary expansion and pretraining on a mixture of Arabic and English text can steer a model towards a new language (Arabic) without any catastrophic forgetting in the original language (English). Furthermore, we highlight the effectiveness of using parallel/translated data to aid the process of knowledge alignment between languages. Finally, we show that extensive alignment with human preferences can significantly enhance the performance of a language model compared to models of a larger scale with lower quality alignment. ALLaM achieves state-of-the-art performance in various Arabic benchmarks, including MMLU Arabic, ACVA, and Arabic Exams. Our aligned models improve both in Arabic and English from their base aligned models. 25 authors · Jul 22, 2024
- Resource-Aware Arabic LLM Creation: Model Adaptation, Integration, and Multi-Domain Testing This paper presents a novel approach to fine-tuning the Qwen2-1.5B model for Arabic language processing using Quantized Low-Rank Adaptation (QLoRA) on a system with only 4GB VRAM. We detail the process of adapting this large language model to the Arabic domain, using diverse datasets including Bactrian, OpenAssistant, and Wikipedia Arabic corpora. Our methodology involves custom data preprocessing, model configuration, and training optimization techniques such as gradient accumulation and mixed-precision training. We address specific challenges in Arabic NLP, including morphological complexity, dialectal variations, and diacritical mark handling. Experimental results over 10,000 training steps show significant performance improvements, with the final loss converging to 0.1083. We provide comprehensive analysis of GPU memory usage, training dynamics, and model evaluation across various Arabic language tasks, including text classification, question answering, and dialect identification. The fine-tuned model demonstrates robustness to input perturbations and improved handling of Arabic-specific linguistic phenomena. This research contributes to multilingual AI by demonstrating a resource-efficient approach for creating specialized language models, potentially democratizing access to advanced NLP technologies for diverse linguistic communities. Our work paves the way for future research in low-resource language adaptation and efficient fine-tuning of large language models. 1 authors · Dec 23, 2024
5 Swan and ArabicMTEB: Dialect-Aware, Arabic-Centric, Cross-Lingual, and Cross-Cultural Embedding Models and Benchmarks We introduce Swan, a family of embedding models centred around the Arabic language, addressing both small-scale and large-scale use cases. Swan includes two variants: Swan-Small, based on ARBERTv2, and Swan-Large, built on ArMistral, a pretrained Arabic large language model. To evaluate these models, we propose ArabicMTEB, a comprehensive benchmark suite that assesses cross-lingual, multi-dialectal, multi-domain, and multi-cultural Arabic text embedding performance, covering eight diverse tasks and spanning 94 datasets. Swan-Large achieves state-of-the-art results, outperforming Multilingual-E5-large in most Arabic tasks, while the Swan-Small consistently surpasses Multilingual-E5 base. Our extensive evaluations demonstrate that Swan models are both dialectally and culturally aware, excelling across various Arabic domains while offering significant monetary efficiency. This work significantly advances the field of Arabic language modelling and provides valuable resources for future research and applications in Arabic natural language processing. Our models and benchmark will be made publicly accessible for research. 5 authors · Nov 2, 2024 7
- Advancing Singlish Understanding: Bridging the Gap with Datasets and Multimodal Models Singlish, a Creole language rooted in English, is a key focus in linguistic research within multilingual and multicultural contexts. However, its spoken form remains underexplored, limiting insights into its linguistic structure and applications. To address this gap, we standardize and annotate the largest spoken Singlish corpus, introducing the Multitask National Speech Corpus (MNSC). These datasets support diverse tasks, including Automatic Speech Recognition (ASR), Spoken Question Answering (SQA), Spoken Dialogue Summarization (SDS), and Paralinguistic Question Answering (PQA). We release standardized splits and a human-verified test set to facilitate further research. Additionally, we propose SingAudioLLM, a multi-task multimodal model leveraging multimodal large language models to handle these tasks concurrently. Experiments reveal our models adaptability to Singlish context, achieving state-of-the-art performance and outperforming prior models by 10-30% in comparison with other AudioLLMs and cascaded solutions. 9 authors · Jan 1, 2025
- MyVoice: Arabic Speech Resource Collaboration Platform We introduce MyVoice, a crowdsourcing platform designed to collect Arabic speech to enhance dialectal speech technologies. This platform offers an opportunity to design large dialectal speech datasets; and makes them publicly available. MyVoice allows contributors to select city/country-level fine-grained dialect and record the displayed utterances. Users can switch roles between contributors and annotators. The platform incorporates a quality assurance system that filters out low-quality and spurious recordings before sending them for validation. During the validation phase, contributors can assess the quality of recordings, annotate them, and provide feedback which is then reviewed by administrators. Furthermore, the platform offers flexibility to admin roles to add new data or tasks beyond dialectal speech and word collection, which are displayed to contributors. Thus, enabling collaborative efforts in gathering diverse and large Arabic speech data. 4 authors · Jul 23, 2023
- MSR-86K: An Evolving, Multilingual Corpus with 86,300 Hours of Transcribed Audio for Speech Recognition Research Recently, multilingual artificial intelligence assistants, exemplified by ChatGPT, have gained immense popularity. As a crucial gateway to human-computer interaction, multilingual automatic speech recognition (ASR) has also garnered significant attention, as evidenced by systems like Whisper. However, the proprietary nature of the training data has impeded researchers' efforts to study multilingual ASR. This paper introduces MSR-86K, an evolving, large-scale multilingual corpus for speech recognition research. The corpus is derived from publicly accessible videos on YouTube, comprising 15 languages and a total of 86,300 hours of transcribed ASR data. We also introduce how to use the MSR-86K corpus and other open-source corpora to train a robust multilingual ASR model that is competitive with Whisper. MSR-86K will be publicly released on HuggingFace, and we believe that such a large corpus will pave new avenues for research in multilingual ASR. 6 authors · Jun 26, 2024
- MediaSpeech: Multilanguage ASR Benchmark and Dataset The performance of automated speech recognition (ASR) systems is well known to differ for varied application domains. At the same time, vendors and research groups typically report ASR quality results either for limited use simplistic domains (audiobooks, TED talks), or proprietary datasets. To fill this gap, we provide an open-source 10-hour ASR system evaluation dataset NTR MediaSpeech for 4 languages: Spanish, French, Turkish and Arabic. The dataset was collected from the official youtube channels of media in the respective languages, and manually transcribed. We estimate that the WER of the dataset is under 5%. We have benchmarked many ASR systems available both commercially and freely, and provide the benchmark results. We also open-source baseline QuartzNet models for each language. 8 authors · Mar 30, 2021
- Revisiting Common Assumptions about Arabic Dialects in NLP Arabic has diverse dialects, where one dialect can be substantially different from the others. In the NLP literature, some assumptions about these dialects are widely adopted (e.g., ``Arabic dialects can be grouped into distinguishable regional dialects") and are manifested in different computational tasks such as Arabic Dialect Identification (ADI). However, these assumptions are not quantitatively verified. We identify four of these assumptions and examine them by extending and analyzing a multi-label dataset, where the validity of each sentence in 11 different country-level dialects is manually assessed by speakers of these dialects. Our analysis indicates that the four assumptions oversimplify reality, and some of them are not always accurate. This in turn might be hindering further progress in different Arabic NLP tasks. 3 authors · May 27, 2025
- Arabic Little STT: Arabic Children Speech Recognition Dataset The performance of Artificial Intelligence (AI) systems fundamentally depends on high-quality training data. However, low-resource languages like Arabic suffer from severe data scarcity. Moreover, the absence of child-specific speech corpora is an essential gap that poses significant challenges. To address this gap, we present our created dataset, Arabic Little STT, a dataset of Levantine Arabic child speech recorded in classrooms, containing 355 utterances from 288 children (ages 6 - 13). We further conduct a systematic assessment of Whisper, a state-of-the-art automatic speech recognition (ASR) model, on this dataset and compare its performance with adult Arabic benchmarks. Our evaluation across eight Whisper variants reveals that even the best-performing model (Large_v3) struggles significantly, achieving a 0.66 word error rate (WER) on child speech, starkly contrasting with its sub 0.20 WER on adult datasets. These results align with other research on English speech. Results highlight the critical need for dedicated child speech benchmarks and inclusive training data in ASR development. Emphasizing that such data must be governed by strict ethical and privacy frameworks to protect sensitive child information. We hope that this study provides an initial step for future work on equitable speech technologies for Arabic-speaking children. We hope that our publicly available dataset enrich the children's demographic representation in ASR datasets. 3 authors · Oct 27, 2025
- Kunnafonidilaw ka Cadeau: an ASR dataset of present-day Bambara We present Kunkado, a 160-hour Bambara ASR dataset compiled from Malian radio archives to capture present-day spontaneous speech across a wide range of topics. It includes code-switching, disfluencies, background noise, and overlapping speakers that practical ASR systems encounter in real-world use. We finetuned Parakeet-based models on a 33.47-hour human-reviewed subset and apply pragmatic transcript normalization to reduce variability in number formatting, tags, and code-switching annotations. Evaluated on two real-world test sets, finetuning with Kunkado reduces WER from 44.47\% to 37.12\% on one and from 36.07\% to 32.33\% on the other. In human evaluation, the resulting model also outperforms a comparable system with the same architecture trained on 98 hours of cleaner, less realistic speech. We release the data and models to support robust ASR for predominantly oral languages. 4 authors · Dec 22, 2025
- Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Understanding There is a growing body of work in recent years to develop pre-trained language models (PLMs) for the Arabic language. This work concerns addressing two major problems in existing Arabic PLMs which constraint progress of the Arabic NLU and NLG fields.First, existing Arabic PLMs are not well-explored and their pre-trainig can be improved significantly using a more methodical approach. Second, there is a lack of systematic and reproducible evaluation of these models in the literature. In this work, we revisit both the pre-training and evaluation of Arabic PLMs. In terms of pre-training, we explore improving Arabic LMs from three perspectives: quality of the pre-training data, size of the model, and incorporating character-level information. As a result, we release three new Arabic BERT-style models ( JABER, Char-JABER, and SABER), and two T5-style models (AT5S and AT5B). In terms of evaluation, we conduct a comprehensive empirical study to systematically evaluate the performance of existing state-of-the-art models on ALUE that is a leaderboard-powered benchmark for Arabic NLU tasks, and on a subset of the ARGEN benchmark for Arabic NLG tasks. We show that our models significantly outperform existing Arabic PLMs and achieve a new state-of-the-art performance on discriminative and generative Arabic NLU and NLG tasks. Our models and source code to reproduce of results will be made available shortly. 14 authors · May 21, 2022
4 From Guidelines to Practice: A New Paradigm for Arabic Language Model Evaluation This paper addresses critical gaps in Arabic language model evaluation by establishing comprehensive theoretical guidelines and introducing a novel evaluation framework. We first analyze existing Arabic evaluation datasets, identifying significant issues in linguistic accuracy, cultural alignment, and methodological rigor. To address these limitations in LLMs, we present the Arabic Depth Mini Dataset (ADMD), a carefully curated collection of 490 challenging questions spanning ten major domains (42 sub-domains, see Figure 1. Using ADMD, we evaluate five leading language models: GPT-4, Claude 3.5 Sonnet, Gemini Flash 1.5, CommandR 100B, and Qwen-Max. Our results reveal significant variations in model performance across different domains, with particular challenges in areas requiring deep cultural understanding and specialized knowledge. Claude 3.5 Sonnet demonstrated the highest overall accuracy at 30\%, showing relative strength in mathematical theory in Arabic, Arabic language, and islamic domains. This work provides both theoretical foundations and practical insights for improving Arabic language model evaluation, emphasizing the importance of cultural competence alongside technical capabilities. 6 authors · Jun 2, 2025 3
9 Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages Automatic speech recognition systems have undoubtedly advanced with the integration of multilingual and multitask models such as Whisper, which have shown a promising ability to understand and process speech across a wide range of languages. Despite their robustness, these models often fall short in handling the linguistic distinctions of minority languages. This study addresses this gap by integrating traditional and novel language models with fine-tuned Whisper models to raise their performance in less commonly studied languages. Through rigorous fine-tuning and evaluation across multiple datasets, we demonstrate substantial improvements in word error rate, particularly in low-resource scenarios. Our approach not only does take advantage of the extensive data Whisper was pre-trained on, but also complements its linguistic adaptability by incorporating language models. We obtained improvements up to 51\% for in-distribution datasets and up to 34\% for out-of-distribution sentences using statistical language models, while large language models provided moderate but consistently robust improvement across diverse linguistic contexts. The findings reveal that, while the integration reliably benefits all model sizes, the extent of improvement varies, highlighting the importance of optimized language model parameters. Finally, we emphasize the importance of selecting appropriate evaluation parameters when reporting the results using transformer-based ASR models. In summary, this research clears the way for more inclusive ASR technologies that perform better across languages by enriching their linguistic knowledge. For further implementation details of this study, the technical documentation and source code are available at http://www.github.com/hitz-zentroa/whisper-lm. HiTZ zentroa · Mar 30, 2025 3
1 SLM: Bridge the thin gap between speech and text foundation models We present a joint Speech and Language Model (SLM), a multitask, multilingual, and dual-modal model that takes advantage of pretrained foundational speech and language models. SLM freezes the pretrained foundation models to maximally preserves their capabilities, and only trains a simple adapter with just 1\% (156M) of the foundation models' parameters. This adaptation not only leads SLM to achieve strong performance on conventional tasks such as speech recognition (ASR) and speech translation (AST), but also introduces the novel capability of zero-shot instruction-following for more diverse tasks: given a speech input and a text instruction, SLM is able to perform unseen generation tasks including contextual biasing ASR using real-time context, dialog generation, speech continuation, and question answering, etc. Our approach demonstrates that the representational gap between pretrained speech and language models might be narrower than one would expect, and can be bridged by a simple adaptation mechanism. As a result, SLM is not only efficient to train, but also inherits strong capabilities already acquired in foundation models of different modalities. 18 authors · Sep 29, 2023
- DialUp! Modeling the Language Continuum by Adapting Models to Dialects and Dialects to Models Most of the world's languages and dialects are low-resource, and lack support in mainstream machine translation (MT) models. However, many of them have a closely-related high-resource language (HRL) neighbor, and differ in linguistically regular ways from it. This underscores the importance of model robustness to dialectal variation and cross-lingual generalization to the HRL dialect continuum. We present DialUp, consisting of a training-time technique for adapting a pretrained model to dialectal data (M->D), and an inference-time intervention adapting dialectal data to the model expertise (D->M). M->D induces model robustness to potentially unseen and unknown dialects by exposure to synthetic data exemplifying linguistic mechanisms of dialectal variation, whereas D->M treats dialectal divergence for known target dialects. These methods show considerable performance gains for several dialects from four language families, and modest gains for two other language families. We also conduct feature and error analyses, which show that language varieties with low baseline MT performance are more likely to benefit from these approaches. 7 authors · Jan 27, 2025
2 SHAMI-MT: A Syrian Arabic Dialect to Modern Standard Arabic Bidirectional Machine Translation System The rich linguistic landscape of the Arab world is characterized by a significant gap between Modern Standard Arabic (MSA), the language of formal communication, and the diverse regional dialects used in everyday life. This diglossia presents a formidable challenge for natural language processing, particularly machine translation. This paper introduces SHAMI-MT, a bidirectional machine translation system specifically engineered to bridge the communication gap between MSA and the Syrian dialect. We present two specialized models, one for MSA-to-Shami and another for Shami-to-MSA translation, both built upon the state-of-the-art AraT5v2-base-1024 architecture. The models were fine-tuned on the comprehensive Nabra dataset and rigorously evaluated on unseen data from the MADAR corpus. Our MSA-to-Shami model achieved an outstanding average quality score of 4.01 out of 5.0 when judged by OPENAI model GPT-4.1, demonstrating its ability to produce translations that are not only accurate but also dialectally authentic. This work provides a crucial, high-fidelity tool for a previously underserved language pair, advancing the field of dialectal Arabic translation and offering significant applications in content localization, cultural heritage, and intercultural communication. 5 authors · Aug 4, 2025 2
- LAHAJA: A Robust Multi-accent Benchmark for Evaluating Hindi ASR Systems Hindi, one of the most spoken language of India, exhibits a diverse array of accents due to its usage among individuals from diverse linguistic origins. To enable a robust evaluation of Hindi ASR systems on multiple accents, we create a benchmark, LAHAJA, which contains read and extempore speech on a diverse set of topics and use cases, with a total of 12.5 hours of Hindi audio, sourced from 132 speakers spanning 83 districts of India. We evaluate existing open-source and commercial models on LAHAJA and find their performance to be poor. We then train models using different datasets and find that our model trained on multilingual data with good speaker diversity outperforms existing models by a significant margin. We also present a fine-grained analysis which shows that the performance declines for speakers from North-East and South India, especially with content heavy in named entities and specialized terminology. 7 authors · Aug 21, 2024
2 A Multi-Dialectal Dataset for German Dialect ASR and Dialect-to-Standard Speech Translation Although Germany has a diverse landscape of dialects, they are underrepresented in current automatic speech recognition (ASR) research. To enable studies of how robust models are towards dialectal variation, we present Betthupferl, an evaluation dataset containing four hours of read speech in three dialect groups spoken in Southeast Germany (Franconian, Bavarian, Alemannic), and half an hour of Standard German speech. We provide both dialectal and Standard German transcriptions, and analyze the linguistic differences between them. We benchmark several multilingual state-of-the-art ASR models on speech translation into Standard German, and find differences between how much the output resembles the dialectal vs. standardized transcriptions. Qualitative error analyses of the best ASR model reveal that it sometimes normalizes grammatical differences, but often stays closer to the dialectal constructions. 5 authors · Jun 3, 2025 1
1 GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline uses Whisper for initial transcription and TorchAudio for forced alignment, combined with multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thus enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus's high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to the Whisper large-v3 model, with merely 10% model parameters. Furthermore, our ASR models trained on Gigaspeech 2 yield superior performance compared to commercial services. We believe that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area. 16 authors · Jun 17, 2024
1 Command R7B Arabic: A Small, Enterprise Focused, Multilingual, and Culturally Aware Arabic LLM Building high-quality large language models (LLMs) for enterprise Arabic applications remains challenging due to the limited availability of digitized Arabic data. In this work, we present a data synthesis and refinement strategy to help address this problem, namely, by leveraging synthetic data generation and human-in-the-loop annotation to expand our Arabic training corpus. We further present our iterative post training recipe that is essential to achieving state-of-the-art performance in aligning the model with human preferences, a critical aspect to enterprise use cases. The culmination of this effort is the release of a small, 7B, open-weight model that outperforms similarly sized peers in head-to-head comparisons and on Arabic-focused benchmarks covering cultural knowledge, instruction following, RAG, and contextual faithfulness. 12 authors · Mar 18, 2025
- Multi-Dialect Vietnamese: Task, Dataset, Baseline Models and Challenges Vietnamese, a low-resource language, is typically categorized into three primary dialect groups that belong to Northern, Central, and Southern Vietnam. However, each province within these regions exhibits its own distinct pronunciation variations. Despite the existence of various speech recognition datasets, none of them has provided a fine-grained classification of the 63 dialects specific to individual provinces of Vietnam. To address this gap, we introduce Vietnamese Multi-Dialect (ViMD) dataset, a novel comprehensive dataset capturing the rich diversity of 63 provincial dialects spoken across Vietnam. Our dataset comprises 102.56 hours of audio, consisting of approximately 19,000 utterances, and the associated transcripts contain over 1.2 million words. To provide benchmarks and simultaneously demonstrate the challenges of our dataset, we fine-tune state-of-the-art pre-trained models for two downstream tasks: (1) Dialect identification and (2) Speech recognition. The empirical results suggest two implications including the influence of geographical factors on dialects, and the constraints of current approaches in speech recognition tasks involving multi-dialect speech data. Our dataset is available for research purposes. 4 authors · Oct 4, 2024
- JABER and SABER: Junior and Senior Arabic BERt Language-specific pre-trained models have proven to be more accurate than multilingual ones in a monolingual evaluation setting, Arabic is no exception. However, we found that previously released Arabic BERT models were significantly under-trained. In this technical report, we present JABER and SABER, Junior and Senior Arabic BERt respectively, our pre-trained language model prototypes dedicated for Arabic. We conduct an empirical study to systematically evaluate the performance of models across a diverse set of existing Arabic NLU tasks. Experimental results show that JABER and SABER achieve state-of-the-art performances on ALUE, a new benchmark for Arabic Language Understanding Evaluation, as well as on a well-established NER benchmark. 13 authors · Dec 8, 2021
- Are LLMs Good Text Diacritizers? An Arabic and Yorùbá Case Study We investigate the effectiveness of large language models (LLMs) for text diacritization in two typologically distinct languages: Arabic and Yoruba. To enable a rigorous evaluation, we introduce a novel multilingual dataset MultiDiac, with diverse samples that capture a range of diacritic ambiguities. We evaluate 14 LLMs varying in size, accessibility, and language coverage, and benchmark them against 6 specialized diacritization models. Additionally, we fine-tune four small open-source models using LoRA for Yoruba. Our results show that many off-the-shelf LLMs outperform specialized diacritization models for both Arabic and Yoruba, but smaller models suffer from hallucinations. Fine-tuning on a small dataset can help improve diacritization performance and reduce hallucination rates. 3 authors · Jun 13, 2025
3 ArabianGPT: Native Arabic GPT-based Large Language Model The predominance of English and Latin-based large language models (LLMs) has led to a notable deficit in native Arabic LLMs. This discrepancy is accentuated by the prevalent inclusion of English tokens in existing Arabic models, detracting from their efficacy in processing native Arabic's intricate morphology and syntax. Consequently, there is a theoretical and practical imperative for developing LLMs predominantly focused on Arabic linguistic elements. To address this gap, this paper proposes ArabianGPT, a series of transformer-based models within the ArabianLLM suite designed explicitly for Arabic. These models, including ArabianGPT-0.1B and ArabianGPT-0.3B, vary in size and complexity, aligning with the nuanced linguistic characteristics of Arabic. The AraNizer tokenizer, integral to these models, addresses the unique morphological aspects of Arabic script, ensuring more accurate text processing. Empirical results from fine-tuning the models on tasks like sentiment analysis and summarization demonstrate significant improvements. For sentiment analysis, the fine-tuned ArabianGPT-0.1B model achieved a remarkable accuracy of 95%, a substantial increase from the base model's 56%. Similarly, in summarization tasks, fine-tuned models showed enhanced F1 scores, indicating improved precision and recall in generating concise summaries. Comparative analysis of fine-tuned ArabianGPT models against their base versions across various benchmarks reveals nuanced differences in performance, with fine-tuning positively impacting specific tasks like question answering and summarization. These findings underscore the efficacy of fine-tuning in aligning ArabianGPT models more closely with specific NLP tasks, highlighting the potential of tailored transformer architectures in advancing Arabic NLP. 5 authors · Feb 23, 2024
- On the Robustness of Arabic Speech Dialect Identification Arabic dialect identification (ADI) tools are an important part of the large-scale data collection pipelines necessary for training speech recognition models. As these pipelines require application of ADI tools to potentially out-of-domain data, we aim to investigate how vulnerable the tools may be to this domain shift. With self-supervised learning (SSL) models as a starting point, we evaluate transfer learning and direct classification from SSL features. We undertake our evaluation under rich conditions, with a goal to develop ADI systems from pretrained models and ultimately evaluate performance on newly collected data. In order to understand what factors contribute to model decisions, we carry out a careful human study of a subset of our data. Our analysis confirms that domain shift is a major challenge for ADI models. We also find that while self-training does alleviate this challenges, it may be insufficient for realistic conditions. 3 authors · Jun 1, 2023
- HebDB: a Weakly Supervised Dataset for Hebrew Speech Processing We present HebDB, a weakly supervised dataset for spoken language processing in the Hebrew language. HebDB offers roughly 2500 hours of natural and spontaneous speech recordings in the Hebrew language, consisting of a large variety of speakers and topics. We provide raw recordings together with a pre-processed, weakly supervised, and filtered version. The goal of HebDB is to further enhance research and development of spoken language processing tools for the Hebrew language. Hence, we additionally provide two baseline systems for Automatic Speech Recognition (ASR): (i) a self-supervised model; and (ii) a fully supervised model. We present the performance of these two methods optimized on HebDB and compare them to current multi-lingual ASR alternatives. Results suggest the proposed method reaches better results than the evaluated baselines considering similar model sizes. Dataset, code, and models are publicly available under https://pages.cs.huji.ac.il/adiyoss-lab/HebDB/. 12 authors · Jul 10, 2024
- Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning Assessing spoken language is challenging, and quantifying pronunciation metrics for machine learning models is even harder. However, for the Holy Quran, this task is simplified by the rigorous recitation rules (tajweed) established by Muslim scholars, enabling highly effective assessment. Despite this advantage, the scarcity of high-quality annotated data remains a significant barrier. In this work, we bridge these gaps by introducing: (1) A 98% automated pipeline to produce high-quality Quranic datasets -- encompassing: Collection of recitations from expert reciters, Segmentation at pause points (waqf) using our fine-tuned wav2vec2-BERT model, Transcription of segments, Transcript verification via our novel Tasmeea algorithm; (2) 850+ hours of audio (~300K annotated utterances); (3) A novel ASR-based approach for pronunciation error detection, utilizing our custom Quran Phonetic Script (QPS) to encode Tajweed rules (unlike the IPA standard for Modern Standard Arabic). QPS uses a two-level script: (Phoneme level): Encodes Arabic letters with short/long vowels. (Sifa level): Encodes articulation characteristics of every phoneme. We further include comprehensive modeling with our novel multi-level CTC Model which achieved 0.16% average Phoneme Error Rate (PER) on the testset. We release all code, data, and models as open-source: https://obadx.github.io/prepare-quran-dataset/ 3 authors · Aug 27, 2025
- Fleurs-SLU: A Massively Multilingual Benchmark for Spoken Language Understanding While recent multilingual automatic speech recognition models claim to support thousands of languages, ASR for low-resource languages remains highly unreliable due to limited bimodal speech and text training data. Better multilingual spoken language understanding (SLU) can strengthen massively the robustness of multilingual ASR by levering language semantics to compensate for scarce training data, such as disambiguating utterances via context or exploiting semantic similarities across languages. Even more so, SLU is indispensable for inclusive speech technology in roughly half of all living languages that lack a formal writing system. However, the evaluation of multilingual SLU remains limited to shallower tasks such as intent classification or language identification. To address this, we present Fleurs-SLU, a multilingual SLU benchmark that encompasses topical speech classification in 102 languages and multiple-choice question answering through listening comprehension in 92 languages. We extensively evaluate both end-to-end speech classification models and cascaded systems that combine speech-to-text transcription with subsequent classification by large language models on Fleurs-SLU. Our results show that cascaded systems exhibit greater robustness in multilingual SLU tasks, though speech encoders can achieve competitive performance in topical speech classification when appropriately pre-trained. We further find a strong correlation between robust multilingual ASR, effective speech-to-text translation, and strong multilingual SLU, highlighting the mutual benefits between acoustic and semantic speech representations. 4 authors · Jan 10, 2025
- Towards Building ASR Systems for the Next Billion Users Recent methods in speech and language technology pretrain very LARGE models which are fine-tuned for specific tasks. However, the benefits of such LARGE models are often limited to a few resource rich languages of the world. In this work, we make multiple contributions towards building ASR systems for low resource languages from the Indian subcontinent. First, we curate 17,000 hours of raw speech data for 40 Indian languages from a wide variety of domains including education, news, technology, and finance. Second, using this raw speech data we pretrain several variants of wav2vec style models for 40 Indian languages. Third, we analyze the pretrained models to find key features: codebook vectors of similar sounding phonemes are shared across languages, representations across layers are discriminative of the language family, and attention heads often pay attention within small local windows. Fourth, we fine-tune this model for downstream ASR for 9 languages and obtain state-of-the-art results on 3 public datasets, including on very low-resource languages such as Sinhala and Nepali. Our work establishes that multilingual pretraining is an effective strategy for building ASR systems for the linguistically diverse speakers of the Indian subcontinent. Our code, data and models are available publicly at https://indicnlp.ai4bharat.org/indicwav2vec/ and we hope they will help advance research in ASR for Indic languages. 8 authors · Nov 6, 2021
- Analyzing Multilingual Competency of LLMs in Multi-Turn Instruction Following: A Case Study of Arabic While significant progress has been made in benchmarking Large Language Models (LLMs) across various tasks, there is a lack of comprehensive evaluation of their abilities in responding to multi-turn instructions in less-commonly tested languages like Arabic. Our paper offers a detailed examination of the proficiency of open LLMs in such scenarios in Arabic. Utilizing a customized Arabic translation of the MT-Bench benchmark suite, we employ GPT-4 as a uniform evaluator for both English and Arabic queries to assess and compare the performance of the LLMs on various open-ended tasks. Our findings reveal variations in model responses on different task categories, e.g., logic vs. literacy, when instructed in English or Arabic. We find that fine-tuned base models using multilingual and multi-turn datasets could be competitive to models trained from scratch on multilingual data. Finally, we hypothesize that an ensemble of small, open LLMs could perform competitively to proprietary LLMs on the benchmark. 2 authors · Oct 23, 2023
21 Nile-Chat: Egyptian Language Models for Arabic and Latin Scripts We introduce Nile-Chat-4B, 3x4B-A6B, and 12B, a collection of LLMs for Egyptian dialect, uniquely designed to understand and generate texts written in both Arabic and Latin scripts. Specifically, with Nile-Chat-3x4B-A6B, we introduce a novel language adaptation approach by leveraging the Branch-Train-MiX strategy to merge script-specialized experts, into a single MoE model. Our Nile-Chat models significantly outperform leading multilingual and Arabic LLMs, such as LLaMa, Jais, and ALLaM, on our newly introduced Egyptian evaluation benchmarks, which span both understanding and generative tasks. Notably, our 12B model yields a 14.4% performance gain over Qwen2.5-14B-Instruct on Latin-script benchmarks. All our resources are publicly available. We believe this work presents a comprehensive methodology for adapting LLMs to dual-script languages, addressing an often overlooked aspect in modern LLM development. 10 authors · Jul 6, 2025 1
- SaudiBERT: A Large Language Model Pretrained on Saudi Dialect Corpora In this paper, we introduce SaudiBERT, a monodialect Arabic language model pretrained exclusively on Saudi dialectal text. To demonstrate the model's effectiveness, we compared SaudiBERT with six different multidialect Arabic language models across 11 evaluation datasets, which are divided into two groups: sentiment analysis and text classification. SaudiBERT achieved average F1-scores of 86.15\% and 87.86\% in these groups respectively, significantly outperforming all other comparative models. Additionally, we present two novel Saudi dialectal corpora: the Saudi Tweets Mega Corpus (STMC), which contains over 141 million tweets in Saudi dialect, and the Saudi Forums Corpus (SFC), which includes 15.2 GB of text collected from five Saudi online forums. Both corpora are used in pretraining the proposed model, and they are the largest Saudi dialectal corpora ever reported in the literature. The results confirm the effectiveness of SaudiBERT in understanding and analyzing Arabic text expressed in Saudi dialect, achieving state-of-the-art results in most tasks and surpassing other language models included in the study. SaudiBERT model is publicly available on https://huggingface.co/faisalq/SaudiBERT. 1 authors · May 10, 2024
- MLMA: Towards Multilingual with Mamba Based Architectures Multilingual automatic speech recognition (ASR) remains a challenging task, especially when balancing performance across high- and low-resource languages. Recent advances in sequence modeling suggest that architectures beyond Transformers may offer better scalability and efficiency. In this work, we introduce MLMA (Multilingual Language Modeling with Mamba for ASR), a new approach that leverages the Mamba architecture -- an efficient state-space model optimized for long-context sequence processing -- for multilingual ASR. Using Mamba, MLMA implicitly incorporates language-aware conditioning and shared representations to support robust recognition across diverse languages. Experiments on standard multilingual benchmarks show that MLMA achieves competitive performance compared to Transformer-based architectures. These results highlight Mamba's potential as a strong backbone for scalable, efficient, and accurate multilingual speech recognition. 3 authors · Oct 21, 2025
- Reduce and Reconstruct: ASR for Low-Resource Phonetic Languages This work presents a seemingly simple but effective technique to improve low-resource ASR systems for phonetic languages. By identifying sets of acoustically similar graphemes in these languages, we first reduce the output alphabet of the ASR system using linguistically meaningful reductions and then reconstruct the original alphabet using a standalone module. We demonstrate that this lessens the burden and improves the performance of low-resource end-to-end ASR systems (because only reduced-alphabet predictions are needed) and that it is possible to design a very simple but effective reconstruction module that recovers sequences in the original alphabet from sequences in the reduced alphabet. We present a finite state transducer-based reconstruction module that operates on the 1-best ASR hypothesis in the reduced alphabet. We demonstrate the efficacy of our proposed technique using ASR systems for two Indian languages, Gujarati and Telugu. With access to only 10 hrs of speech data, we obtain relative WER reductions of up to 7% compared to systems that do not use any reduction. 2 authors · Oct 19, 2020
2 NileChat: Towards Linguistically Diverse and Culturally Aware LLMs for Local Communities Enhancing the linguistic capabilities of Large Language Models (LLMs) to include low-resource languages is a critical research area. Current research directions predominantly rely on synthetic data generated by translating English corpora, which, while demonstrating promising linguistic understanding and translation abilities, often results in models aligned with source language culture. These models frequently fail to represent the cultural heritage and values of local communities. This work proposes a methodology to create both synthetic and retrieval-based pre-training data tailored to a specific community, considering its (i) language, (ii) cultural heritage, and (iii) cultural values. We demonstrate our methodology using Egyptian and Moroccan dialects as testbeds, chosen for their linguistic and cultural richness and current underrepresentation in LLMs. As a proof-of-concept, we develop NileChat, a 3B parameter LLM adapted for Egyptian and Moroccan communities, incorporating their language, cultural heritage, and values. Our results on various understanding, translation, and cultural and values alignment benchmarks show that NileChat outperforms existing Arabic-aware LLMs of similar size and performs on par with larger models. We share our methods, data, and models with the community to promote the inclusion and coverage of more diverse communities in LLM development. 5 authors · May 23, 2025 2
- Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages We introduce the Universal Speech Model (USM), a single large model that performs automatic speech recognition (ASR) across 100+ languages. This is achieved by pre-training the encoder of the model on a large unlabeled multilingual dataset of 12 million (M) hours spanning over 300 languages, and fine-tuning on a smaller labeled dataset. We use multilingual pre-training with random-projection quantization and speech-text modality matching to achieve state-of-the-art performance on downstream multilingual ASR and speech-to-text translation tasks. We also demonstrate that despite using a labeled training set 1/7-th the size of that used for the Whisper model, our model exhibits comparable or better performance on both in-domain and out-of-domain speech recognition tasks across many languages. 27 authors · Mar 2, 2023
- SD-QA: Spoken Dialectal Question Answering for the Real World Question answering (QA) systems are now available through numerous commercial applications for a wide variety of domains, serving millions of users that interact with them via speech interfaces. However, current benchmarks in QA research do not account for the errors that speech recognition models might introduce, nor do they consider the language variations (dialects) of the users. To address this gap, we augment an existing QA dataset to construct a multi-dialect, spoken QA benchmark on five languages (Arabic, Bengali, English, Kiswahili, Korean) with more than 68k audio prompts in 24 dialects from 255 speakers. We provide baseline results showcasing the real-world performance of QA systems and analyze the effect of language variety and other sensitive speaker attributes on downstream performance. Last, we study the fairness of the ASR and QA models with respect to the underlying user populations. The dataset, model outputs, and code for reproducing all our experiments are available: https://github.com/ffaisal93/SD-QA. 4 authors · Sep 24, 2021
3 A Survey on Non-Intrusive ASR Refinement: From Output-Level Correction to Full-Model Distillation Automatic Speech Recognition (ASR) has become an integral component of modern technology, powering applications such as voice-activated assistants, transcription services, and accessibility tools. Yet ASR systems continue to struggle with the inherent variability of human speech, such as accents, dialects, and speaking styles, as well as environmental interference, including background noise. Moreover, domain-specific conversations often employ specialized terminology, which can exacerbate transcription errors. These shortcomings not only degrade raw ASR accuracy but also propagate mistakes through subsequent natural language processing pipelines. Because redesigning an ASR model is costly and time-consuming, non-intrusive refinement techniques that leave the model's architecture unchanged have become increasingly popular. In this survey, we systematically review current non-intrusive refinement approaches and group them into five classes: fusion, re-scoring, correction, distillation, and training adjustment. For each class, we outline the main methods, advantages, drawbacks, and ideal application scenarios. Beyond method classification, this work surveys adaptation techniques aimed at refining ASR in domain-specific contexts, reviews commonly used evaluation datasets along with their construction processes, and proposes a standardized set of metrics to facilitate fair comparisons. Finally, we identify open research gaps and suggest promising directions for future work. By providing this structured overview, we aim to equip researchers and practitioners with a clear foundation for developing more robust, accurate ASR refinement pipelines. 6 authors · Aug 10, 2025
- Sagalee: an Open Source Automatic Speech Recognition Dataset for Oromo Language We present a novel Automatic Speech Recognition (ASR) dataset for the Oromo language, a widely spoken language in Ethiopia and neighboring regions. The dataset was collected through a crowd-sourcing initiative, encompassing a diverse range of speakers and phonetic variations. It consists of 100 hours of real-world audio recordings paired with transcriptions, covering read speech in both clean and noisy environments. This dataset addresses the critical need for ASR resources for the Oromo language which is underrepresented. To show its applicability for the ASR task, we conducted experiments using the Conformer model, achieving a Word Error Rate (WER) of 15.32% with hybrid CTC and AED loss and WER of 18.74% with pure CTC loss. Additionally, fine-tuning the Whisper model resulted in a significantly improved WER of 10.82%. These results establish baselines for Oromo ASR, highlighting both the challenges and the potential for improving ASR performance in Oromo. The dataset is publicly available at https://github.com/turinaf/sagalee and we encourage its use for further research and development in Oromo speech processing. 4 authors · Feb 1, 2025
- LoRA-Whisper: Parameter-Efficient and Extensible Multilingual ASR Recent years have witnessed significant progress in multilingual automatic speech recognition (ASR), driven by the emergence of end-to-end (E2E) models and the scaling of multilingual datasets. Despite that, two main challenges persist in multilingual ASR: language interference and the incorporation of new languages without degrading the performance of the existing ones. This paper proposes LoRA-Whisper, which incorporates LoRA matrix into Whisper for multilingual ASR, effectively mitigating language interference. Furthermore, by leveraging LoRA and the similarities between languages, we can achieve better performance on new languages while upholding consistent performance on original ones. Experiments on a real-world task across eight languages demonstrate that our proposed LoRA-Whisper yields a relative gain of 18.5% and 23.0% over the baseline system for multilingual ASR and language expansion respectively. 6 authors · Jun 7, 2024
1 Boosting Norwegian Automatic Speech Recognition In this paper, we present several baselines for automatic speech recognition (ASR) models for the two official written languages in Norway: Bokm{\aa}l and Nynorsk. We compare the performance of models of varying sizes and pre-training approaches on multiple Norwegian speech datasets. Additionally, we measure the performance of these models against previous state-of-the-art ASR models, as well as on out-of-domain datasets. We improve the state of the art on the Norwegian Parliamentary Speech Corpus (NPSC) from a word error rate (WER) of 17.10\% to 7.60\%, with models achieving 5.81\% for Bokm{\aa}l and 11.54\% for Nynorsk. We also discuss the challenges and potential solutions for further improving ASR models for Norwegian. 5 authors · Jul 4, 2023
- Octopus: A Multitask Model and Toolkit for Arabic Natural Language Generation Understanding Arabic text and generating human-like responses is a challenging endeavor. While many researchers have proposed models and solutions for individual problems, there is an acute shortage of a comprehensive Arabic natural language generation toolkit that is capable of handling a wide range of tasks. In this work, we present a novel Arabic text-to-text Transformer model, namely AraT5v2. Our new model is methodically trained on extensive and diverse data, utilizing an extended sequence length of 2,048 tokens. We explore various pretraining strategies including unsupervised, supervised, and joint pertaining, under both single and multitask settings. Our models outperform competitive baselines with large margins. We take our work one step further by developing and publicly releasing Octopus, a Python-based package and command-line toolkit tailored for eight Arabic generation tasks all exploiting a single model. We release the models and the toolkit on our public repository. 3 authors · Oct 24, 2023
- Multilingual and code-switching ASR challenges for low resource Indian languages Recently, there is increasing interest in multilingual automatic speech recognition (ASR) where a speech recognition system caters to multiple low resource languages by taking advantage of low amounts of labeled corpora in multiple languages. With multilingualism becoming common in today's world, there has been increasing interest in code-switching ASR as well. In code-switching, multiple languages are freely interchanged within a single sentence or between sentences. The success of low-resource multilingual and code-switching ASR often depends on the variety of languages in terms of their acoustics, linguistic characteristics as well as the amount of data available and how these are carefully considered in building the ASR system. In this challenge, we would like to focus on building multilingual and code-switching ASR systems through two different subtasks related to a total of seven Indian languages, namely Hindi, Marathi, Odia, Tamil, Telugu, Gujarati and Bengali. For this purpose, we provide a total of ~600 hours of transcribed speech data, comprising train and test sets, in these languages including two code-switched language pairs, Hindi-English and Bengali-English. We also provide a baseline recipe for both the tasks with a WER of 30.73% and 32.45% on the test sets of multilingual and code-switching subtasks, respectively. 22 authors · Mar 31, 2021
28 Jais and Jais-chat: Arabic-Centric Foundation and Instruction-Tuned Open Generative Large Language Models We introduce Jais and Jais-chat, new state-of-the-art Arabic-centric foundation and instruction-tuned open generative large language models (LLMs). The models are based on the GPT-3 decoder-only architecture and are pretrained on a mixture of Arabic and English texts, including source code in various programming languages. With 13 billion parameters, they demonstrate better knowledge and reasoning capabilities in Arabic than any existing open Arabic and multilingual models by a sizable margin, based on extensive evaluation. Moreover, the models are competitive in English compared to English-centric open models of similar size, despite being trained on much less English data. We provide a detailed description of the training, the tuning, the safety alignment, and the evaluation of the models. We release two open versions of the model -- the foundation Jais model, and an instruction-tuned Jais-chat variant -- with the aim of promoting research on Arabic LLMs. Available at https://huggingface.co/inception-mbzuai/jais-13b-chat 22 authors · Aug 30, 2023 6
- EgyBERT: A Large Language Model Pretrained on Egyptian Dialect Corpora This study presents EgyBERT, an Arabic language model pretrained on 10.4 GB of Egyptian dialectal texts. We evaluated EgyBERT's performance by comparing it with five other multidialect Arabic language models across 10 evaluation datasets. EgyBERT achieved the highest average F1-score of 84.25% and an accuracy of 87.33%, significantly outperforming all other comparative models, with MARBERTv2 as the second best model achieving an F1-score 83.68% and an accuracy 87.19%. Additionally, we introduce two novel Egyptian dialectal corpora: the Egyptian Tweets Corpus (ETC), containing over 34.33 million tweets (24.89 million sentences) amounting to 2.5 GB of text, and the Egyptian Forums Corpus (EFC), comprising over 44.42 million sentences (7.9 GB of text) collected from various Egyptian online forums. Both corpora are used in pretraining the new model, and they are the largest Egyptian dialectal corpora to date reported in the literature. Furthermore, this is the first study to evaluate the performance of various language models on Egyptian dialect datasets, revealing significant differences in performance that highlight the need for more dialect-specific models. The results confirm the effectiveness of EgyBERT model in processing and analyzing Arabic text expressed in Egyptian dialect, surpassing other language models included in the study. EgyBERT model is publicly available on https://huggingface.co/faisalq/EgyBERT. 1 authors · Aug 6, 2024
2 Synthetic Voice Data for Automatic Speech Recognition in African Languages Speech technology remains out of reach for most of the over 2300 languages in Africa. We present the first systematic assessment of large-scale synthetic voice corpora for African ASR. We apply a three-step process: LLM-driven text creation, TTS voice synthesis, and ASR fine-tuning. Eight out of ten languages for which we create synthetic text achieved readability scores above 5 out of 7. We evaluated ASR improvement for three (Hausa, Dholuo, Chichewa) and created more than 2,500 hours of synthetic voice data at below 1% of the cost of real data. Fine-tuned Wav2Vec-BERT-2.0 models trained on 250h real and 250h synthetic Hausa matched a 500h real-data-only baseline, while 579h real and 450h to 993h synthetic data created the best performance. We also present gender-disaggregated ASR performance evaluation. For very low-resource languages, gains varied: Chichewa WER improved about 6.5% relative with a 1:2 real-to-synthetic ratio; a 1:1 ratio for Dholuo showed similar improvements on some evaluation data, but not on others. Investigating intercoder reliability, ASR errors and evaluation datasets revealed the need for more robust reviewer protocols and more accurate evaluation data. All data and models are publicly released to invite further work to improve synthetic data for African languages. 4 authors · Jul 23, 2025
1 CantoASR: Prosody-Aware ASR-LALM Collaboration for Low-Resource Cantonese Automatic speech recognition (ASR) is critical for language accessibility, yet low-resource Cantonese remains challenging due to limited annotated data, six lexical tones, tone sandhi, and accent variation. Existing ASR models, such as Whisper, often suffer from high word error rates. Large audio-language models (LALMs), in contrast, can leverage broader contextual reasoning but still require explicit tonal and prosodic acoustic cues. We introduce CantoASR, a collaborative ASR-LALM error correction framework that integrates forced alignment for acoustic feature extraction, a LoRA-finetuned Whisper for improved tone discrimination, and an instruction-tuned Qwen-Audio for prosody-aware correction. Evaluations on spontaneous Cantonese data show substantial CER gains over Whisper-Large-V3. These findings suggest that integrating acoustic cues with LALM reasoning provides a scalable strategy for low-resource tonal and dialectal ASR. 8 authors · Nov 6, 2025
- TunBERT: Pretrained Contextualized Text Representation for Tunisian Dialect Pretrained contextualized text representation models learn an effective representation of a natural language to make it machine understandable. After the breakthrough of the attention mechanism, a new generation of pretrained models have been proposed achieving good performances since the introduction of the Transformer. Bidirectional Encoder Representations from Transformers (BERT) has become the state-of-the-art model for language understanding. Despite their success, most of the available models have been trained on Indo-European languages however similar research for under-represented languages and dialects remains sparse. In this paper, we investigate the feasibility of training monolingual Transformer-based language models for under represented languages, with a specific focus on the Tunisian dialect. We evaluate our language model on sentiment analysis task, dialect identification task and reading comprehension question-answering task. We show that the use of noisy web crawled data instead of structured data (Wikipedia, articles, etc.) is more convenient for such non-standardized language. Moreover, results indicate that a relatively small web crawled dataset leads to performances that are as good as those obtained using larger datasets. Finally, our best performing TunBERT model reaches or improves the state-of-the-art in all three downstream tasks. We release the TunBERT pretrained model and the datasets used for fine-tuning. 9 authors · Nov 25, 2021
- When Alignment Hurts: Decoupling Representational Spaces in Multilingual Models Alignment with high-resource standard languages is often assumed to aid the modeling of related low-resource varieties. We challenge this assumption by demonstrating that excessive representational entanglement with a dominant variety, such as Modern Standard Arabic (MSA) in relation to Arabic dialects, can actively hinder generative modeling. We present the first comprehensive causal study of this phenomenon by analyzing and directly intervening in the internal representation geometry of large language models (LLMs). Our key contribution is an online variational probing framework that continuously estimates the subspace of the standard variety during fine-tuning, enabling projection-based decoupling from this space. While our study uses Arabic as a case due to its unusually rich parallel resources across 25 dialects, the broader motivation is methodological: dialectal MT serves as a controlled proxy for generative tasks where comparable multi-variety corpora are unavailable. Across 25 dialects, our intervention improves generation quality by up to +4.9 chrF++ and +2.0 on average compared to standard fine-tuning, despite a measured tradeoff in standard-language performance. These results provide causal evidence that subspace dominance by high-resource varieties can restrict generative capacity for related varieties. More generally, we unify geometric and information-theoretic probing with subspace-level causal interventions, offering practical tools for improving generative modeling in closely related language families and, more broadly, for controlling representational allocation in multilingual and multi-domain LLMs. Code will be released. 7 authors · Aug 18, 2025
1 Omnilingual ASR: Open-Source Multilingual Speech Recognition for 1600+ Languages Automatic speech recognition (ASR) has advanced in high-resource languages, but most of the world's 7,000+ languages remain unsupported, leaving thousands of long-tail languages behind. Expanding ASR coverage has been costly and limited by architectures that restrict language support, making extension inaccessible to most--all while entangled with ethical concerns when pursued without community collaboration. To transcend these limitations, we introduce Omnilingual ASR, the first large-scale ASR system designed for extensibility. Omnilingual ASR enables communities to introduce unserved languages with only a handful of data samples. It scales self-supervised pre-training to 7B parameters to learn robust speech representations and introduces an encoder-decoder architecture designed for zero-shot generalization, leveraging a LLM-inspired decoder. This capability is grounded in a massive and diverse training corpus; by combining breadth of coverage with linguistic variety, the model learns representations robust enough to adapt to unseen languages. Incorporating public resources with community-sourced recordings gathered through compensated local partnerships, Omnilingual ASR expands coverage to over 1,600 languages, the largest such effort to date--including over 500 never before served by ASR. Automatic evaluations show substantial gains over prior systems, especially in low-resource conditions, and strong generalization. We release Omnilingual ASR as a family of models, from 300M variants for low-power devices to 7B for maximum accuracy. We reflect on the ethical considerations shaping this design and conclude by discussing its societal impact. In particular, we highlight how open-sourcing models and tools can lower barriers for researchers and communities, inviting new forms of participation. Open-source artifacts are available at https://github.com/facebookresearch/omnilingual-asr. 33 authors · Nov 12, 2025
- AraT5: Text-to-Text Transformers for Arabic Language Generation Transfer learning with a unified Transformer framework (T5) that converts all language problems into a text-to-text format was recently proposed as a simple and effective transfer learning approach. Although a multilingual version of the T5 model (mT5) was also introduced, it is not clear how well it can fare on non-English tasks involving diverse data. To investigate this question, we apply mT5 on a language with a wide variety of dialects--Arabic. For evaluation, we introduce a novel benchmark for ARabic language GENeration (ARGEN), covering seven important tasks. For model comparison, we pre-train three powerful Arabic T5-style models and evaluate them on ARGEN. Although pre-trained with ~49 less data, our new models perform significantly better than mT5 on all ARGEN tasks (in 52 out of 59 test sets) and set several new SOTAs. Our models also establish new SOTA on the recently-proposed, large Arabic language understanding evaluation benchmark ARLUE (Abdul-Mageed et al., 2021). Our new models are publicly available. We also link to ARGEN datasets through our repository: https://github.com/UBC-NLP/araT5. 3 authors · Aug 30, 2021
- Efficient Adapter Finetuning for Tail Languages in Streaming Multilingual ASR The end-to-end ASR model is often desired in the streaming multilingual scenario since it is easier to deploy and can benefit from pre-trained speech models such as powerful foundation models. Meanwhile, the heterogeneous nature and imbalanced data abundance of different languages may cause performance degradation, leading to asynchronous peak performance for different languages during training, especially on tail ones. Sometimes even the data itself may become unavailable as a result of the enhanced privacy protection. Existing work tend to significantly increase the model size or learn language-specific decoders to accommodate each language separately. In this study, we explore simple yet effective Language-Dependent Adapter (LDA) finetuning under a cascaded Conformer transducer framework enhanced by teacher pseudo-labeling for tail languages in the streaming multilingual ASR. The adapter only accounts for 0.4% of the full model per language. It is plugged into the frozen foundation model and is the only trainable module during the finetuning process with noisy student training. The final model merges the adapter parameters from different checkpoints for different languages. The model performance is validated on a challenging multilingual dictation dataset, which includes 39 tail languages across Latin, Greek, Arabic, etc. Our proposed method brings 12.2% word error rate reduction on average and up to 37.5% on a single locale. Furthermore, we show that our parameter-efficient LDA can match the quality of the full model finetuning, thus greatly alleviating the asynchronous peak performance issue. 5 authors · Jan 17, 2024
- Hearing voices at the National Library -- a speech corpus and acoustic model for the Swedish language This paper explains our work in developing new acoustic models for automated speech recognition (ASR) at KBLab, the infrastructure for data-driven research at the National Library of Sweden (KB). We evaluate different approaches for a viable speech-to-text pipeline for audiovisual resources in Swedish, using the wav2vec 2.0 architecture in combination with speech corpuses created from KB's collections. These approaches include pretraining an acoustic model for Swedish from the ground up, and fine-tuning existing monolingual and multilingual models. The collections-based corpuses we use have been sampled from millions of hours of speech, with a conscious attempt to balance regional dialects to produce a more representative, and thus more democratic, model. The acoustic model this enabled, "VoxRex", outperforms existing models for Swedish ASR. We also evaluate combining this model with various pretrained language models, which further enhanced performance. We conclude by highlighting the potential of such technology for cultural heritage institutions with vast collections of previously unlabelled audiovisual data. Our models are released for further exploration and research here: https://huggingface.co/KBLab. 3 authors · May 6, 2022
- Leveraging Domain Adaptation and Data Augmentation to Improve Qur'anic IR in English and Arabic In this work, we approach the problem of Qur'anic information retrieval (IR) in Arabic and English. Using the latest state-of-the-art methods in neural IR, we research what helps to tackle this task more efficiently. Training retrieval models requires a lot of data, which is difficult to obtain for training in-domain. Therefore, we commence with training on a large amount of general domain data and then continue training on in-domain data. To handle the lack of in-domain data, we employed a data augmentation technique, which considerably improved results in MRR@10 and NDCG@5 metrics, setting the state-of-the-art in Qur'anic IR for both English and Arabic. The absence of an Islamic corpus and domain-specific model for IR task in English motivated us to address this lack of resources and take preliminary steps of the Islamic corpus compilation and domain-specific language model (LM) pre-training, which helped to improve the performance of the retrieval models that use the domain-specific LM as the shared backbone. We examined several language models (LMs) in Arabic to select one that efficiently deals with the Qur'anic IR task. Besides transferring successful experiments from English to Arabic, we conducted additional experiments with retrieval task in Arabic to amortize the scarcity of general domain datasets used to train the retrieval models. Handling Qur'anic IR task combining English and Arabic allowed us to enhance the comparison and share valuable insights across models and languages. 1 authors · Dec 5, 2023
2 Unified model for code-switching speech recognition and language identification based on a concatenated tokenizer Code-Switching (CS) multilingual Automatic Speech Recognition (ASR) models can transcribe speech containing two or more alternating languages during a conversation. This paper proposes (1) a new method for creating code-switching ASR datasets from purely monolingual data sources, and (2) a novel Concatenated Tokenizer that enables ASR models to generate language ID for each emitted text token while reusing existing monolingual tokenizers. The efficacy of these approaches for building CS ASR models is demonstrated for two language pairs, English-Hindi and English-Spanish, where we achieve new state-of-the-art results on the Miami Bangor CS evaluation corpus. In addition to competitive ASR performance, the proposed Concatenated Tokenizer models are highly effective for spoken language identification, achieving 98%+ accuracy on the out-of-distribution FLEURS dataset. 3 authors · Jun 14, 2023
2 DistilWhisper: Efficient Distillation of Multi-task Speech Models via Language-Specific Experts Whisper is a multitask and multilingual speech model covering 99 languages. It yields commendable automatic speech recognition (ASR) results in a subset of its covered languages, but the model still under-performs on a non-negligible number of under-represented languages, a problem exacerbated in smaller model versions. In this work, we propose DistilWhisper, an approach able to bridge the performance gap in ASR for these languages while retaining the advantages of multitask and multilingual capabilities. Our approach involves two key strategies: lightweight modular ASR fine-tuning of whisper-small using language-specific experts, and knowledge distillation from whisper-large-v2. This dual approach allows us to effectively boost ASR performance while keeping the robustness inherited from the multitask and multilingual pre-training. Results demonstrate that our approach is more effective than standard fine-tuning or LoRA adapters, boosting performance in the targeted languages for both in- and out-of-domain test sets, while introducing only a negligible parameter overhead at inference. 4 authors · Nov 2, 2023
- Nabra: Syrian Arabic Dialects with Morphological Annotations This paper presents Nabra, a corpora of Syrian Arabic dialects with morphological annotations. A team of Syrian natives collected more than 6K sentences containing about 60K words from several sources including social media posts, scripts of movies and series, lyrics of songs and local proverbs to build Nabra. Nabra covers several local Syrian dialects including those of Aleppo, Damascus, Deir-ezzur, Hama, Homs, Huran, Latakia, Mardin, Raqqah, and Suwayda. A team of nine annotators annotated the 60K tokens with full morphological annotations across sentence contexts. We trained the annotators to follow methodological annotation guidelines to ensure unique morpheme annotations, and normalized the annotations. F1 and kappa agreement scores ranged between 74% and 98% across features, showing the excellent quality of Nabra annotations. Our corpora are open-source and publicly available as part of the Currasat portal https://sina.birzeit.edu/currasat. 5 authors · Oct 26, 2023
- AfriHuBERT: A self-supervised speech representation model for African languages In this work, we present AfriHuBERT, an extension of mHuBERT-147, a state-of-the-art (SOTA) and compact self-supervised learning (SSL) model, originally pretrained on 147 languages. While mHuBERT-147 was pretrained on 16 African languages, we expand this to cover 39 African languages through continued pretraining on 6,500+ hours of speech data aggregated from diverse sources, including 23 newly added languages. We evaluate AfriHuBERT on two key speech tasks: Language Identification (LID) and Automatic Speech Recognition (ASR) using FLEURS dataset. Our results show a +4% F1 score improvement on average for LID and a -1.2% average Word Error Rate (WER) reduction for ASR. Further analysis shows that ASR models trained on AfriHuBERT exhibit improved cross-corpus generalization. Additionally, the analysis indicates that the FLEURS have data quality limitations that may affect their suitability for evaluating low-resource African languages, suggesting the need for better evaluation benchmarks for these languages. 4 authors · Sep 30, 2024
- Whispering in Amharic: Fine-tuning Whisper for Low-resource Language This work explores fine-tuning OpenAI's Whisper automatic speech recognition (ASR) model for Amharic, a low-resource language, to improve transcription accuracy. While the foundational Whisper model struggles with Amharic due to limited representation in its training data, we fine-tune it using datasets like Mozilla Common Voice, FLEURS, and the BDU-speech dataset. The best-performing model, Whispersmall-am, significantly improves when finetuned on a mix of existing FLEURS data and new, unseen Amharic datasets. Training solely on new data leads to poor performance, but combining it with FLEURS data reinforces the model, enabling better specialization in Amharic. We also demonstrate that normalizing Amharic homophones significantly enhances Word Error Rate (WER) and Bilingual Evaluation Understudy (BLEU) scores. This study underscores the importance of fine-tuning strategies and dataset composition for improving ASR in low-resource languages, providing insights for future Amharic speech recognition research. 14 authors · Mar 24, 2025
- Speech Recognition Rescoring with Large Speech-Text Foundation Models Large language models (LLM) have demonstrated the ability to understand human language by leveraging large amount of text data. Automatic speech recognition (ASR) systems are often limited by available transcribed speech data and benefit from a second pass rescoring using LLM. Recently multi-modal large language models, particularly speech and text foundational models have demonstrated strong spoken language understanding. Speech-Text foundational models leverage large amounts of unlabelled and labelled data both in speech and text modalities to model human language. In this work, we propose novel techniques to use multi-modal LLM for ASR rescoring. We also explore discriminative training to further improve the foundational model rescoring performance. We demonstrate cross-modal knowledge transfer in speech-text LLM can benefit rescoring. Our experiments demonstrate up-to 20% relative improvements over Whisper large ASR and up-to 15% relative improvements over text-only LLM. 7 authors · Sep 25, 2024
31 Wasm: A Pipeline for Constructing Structured Arabic Interleaved Multimodal Corpora The performance of large language models (LLMs) and large multimodal models (LMMs) depends heavily on the quality and scale of their pre-training datasets. Recent research shows that large multimodal models trained on natural documents where images and text are interleaved outperform those trained only on image-text pairs across a wide range of benchmarks, leveraging advanced pre- trained models to enforce semantic alignment, image-sequence consistency, and textual coherence. For Arabic, however, the lack of high-quality multimodal datasets that preserve document structure has limited progress. In this paper, we present our pipeline Wasm for processing the Common Crawl dataset to create a new Arabic multimodal dataset that uniquely provides markdown output. Unlike existing Arabic corpora that focus solely on text extraction, our approach preserves the structural integrity of web content while maintaining flexibility for both text-only and multimodal pre-training scenarios. We provide a comprehensive comparative analysis of our data processing pipeline against those used for major existing datasets, highlighting the convergences in filtering strategies and justifying our specific design choices. To support future research, we publicly release a representative dataset dump along with the multimodal processing pipeline for Arabic. 7 authors · Nov 10, 2025 2
- Fast Streaming Transducer ASR Prototyping via Knowledge Distillation with Whisper The training of automatic speech recognition (ASR) with little to no supervised data remains an open question. In this work, we demonstrate that streaming Transformer-Transducer (TT) models can be trained from scratch in consumer and accessible GPUs in their entirety with pseudo-labeled (PL) speech from foundational speech models (FSM). This allows training a robust ASR model just in one stage and does not require large data and computational budget compared to the two-step scenario with pre-training and fine-tuning. We perform a comprehensive ablation on different aspects of PL-based streaming TT models such as the impact of (1) shallow fusion of n-gram LMs, (2) contextual biasing with named entities, (3) chunk-wise decoding for low-latency streaming applications, and (4) TT overall performance as the function of the FSM size. Our results demonstrate that TT can be trained from scratch without supervised data, even with very noisy PLs. We validate the proposed framework on 6 languages from CommonVoice and propose multiple heuristics to filter out hallucinated PLs. 9 authors · Sep 20, 2024
8 CIDAR: Culturally Relevant Instruction Dataset For Arabic Instruction tuning has emerged as a prominent methodology for teaching Large Language Models (LLMs) to follow instructions. However, current instruction datasets predominantly cater to English or are derived from English-dominated LLMs, resulting in inherent biases toward Western culture. This bias significantly impacts the linguistic structures of non-English languages such as Arabic, which has a distinct grammar reflective of the diverse cultures across the Arab region. This paper addresses this limitation by introducing CIDAR: https://hf.co/datasets/arbml/CIDAR, the first open Arabic instruction-tuning dataset culturally-aligned by human reviewers. CIDAR contains 10,000 instruction and output pairs that represent the Arab region. We discuss the cultural relevance of CIDAR via the analysis and comparison to other models fine-tuned on other datasets. Our experiments show that CIDAR can help enrich research efforts in aligning LLMs with the Arabic culture. All the code is available at https://github.com/ARBML/CIDAR. 12 authors · Feb 5, 2024 1
2 Enhanced Arabic Text Retrieval with Attentive Relevance Scoring Arabic poses a particular challenge for natural language processing (NLP) and information retrieval (IR) due to its complex morphology, optional diacritics and the coexistence of Modern Standard Arabic (MSA) and various dialects. Despite the growing global significance of Arabic, it is still underrepresented in NLP research and benchmark resources. In this paper, we present an enhanced Dense Passage Retrieval (DPR) framework developed specifically for Arabic. At the core of our approach is a novel Attentive Relevance Scoring (ARS) that replaces standard interaction mechanisms with an adaptive scoring function that more effectively models the semantic relevance between questions and passages. Our method integrates pre-trained Arabic language models and architectural refinements to improve retrieval performance and significantly increase ranking accuracy when answering Arabic questions. The code is made publicly available at https://github.com/Bekhouche/APR{GitHub}. 5 authors · Jul 31, 2025 2
2 FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech We introduce FLEURS, the Few-shot Learning Evaluation of Universal Representations of Speech benchmark. FLEURS is an n-way parallel speech dataset in 102 languages built on top of the machine translation FLoRes-101 benchmark, with approximately 12 hours of speech supervision per language. FLEURS can be used for a variety of speech tasks, including Automatic Speech Recognition (ASR), Speech Language Identification (Speech LangID), Translation and Retrieval. In this paper, we provide baselines for the tasks based on multilingual pre-trained models like mSLAM. The goal of FLEURS is to enable speech technology in more languages and catalyze research in low-resource speech understanding. 9 authors · May 24, 2022
1 Peacock: A Family of Arabic Multimodal Large Language Models and Benchmarks Multimodal large language models (MLLMs) have proven effective in a wide range of tasks requiring complex reasoning and linguistic comprehension. However, due to a lack of high-quality multimodal resources in languages other than English, success of MLLMs remains relatively limited to English-based settings. This poses significant challenges in developing comparable models for other languages, including even those with large speaker populations such as Arabic. To alleviate this challenge, we introduce a comprehensive family of Arabic MLLMs, dubbed Peacock, with strong vision and language capabilities. Through comprehensive qualitative and quantitative analysis, we demonstrate the solid performance of our models on various visual reasoning tasks and further show their emerging dialectal potential. Additionally, we introduce ~Henna, a new benchmark specifically designed for assessing MLLMs on aspects related to Arabic culture, setting the first stone for culturally-aware Arabic MLLMs.The GitHub repository for the Peacock project is available at https://github.com/UBC-NLP/peacock. 5 authors · Mar 1, 2024 2
1 Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions Recent advancements in large language models (LLMs) have revolutionized various domains, bringing significant progress and new opportunities. Despite progress in speech-related tasks, LLMs have not been sufficiently explored in multi-talker scenarios. In this work, we present a pioneering effort to investigate the capability of LLMs in transcribing speech in multi-talker environments, following versatile instructions related to multi-talker automatic speech recognition (ASR), target talker ASR, and ASR based on specific talker attributes such as sex, occurrence order, language, and keyword spoken. Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context. These representations are then fed into an LLM fine-tuned using LoRA, enabling the capabilities for speech comprehension and transcription. Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios, highlighting the potential of LLM to handle speech-related tasks based on user instructions in such complex settings. 9 authors · Sep 13, 2024
- OkwuGbé: End-to-End Speech Recognition for Fon and Igbo Language is inherent and compulsory for human communication. Whether expressed in a written or spoken way, it ensures understanding between people of the same and different regions. With the growing awareness and effort to include more low-resourced languages in NLP research, African languages have recently been a major subject of research in machine translation, and other text-based areas of NLP. However, there is still very little comparable research in speech recognition for African languages. Interestingly, some of the unique properties of African languages affecting NLP, like their diacritical and tonal complexities, have a major root in their speech, suggesting that careful speech interpretation could provide more intuition on how to deal with the linguistic complexities of African languages for text-based NLP. OkwuGb\'e is a step towards building speech recognition systems for African low-resourced languages. Using Fon and Igbo as our case study, we conduct a comprehensive linguistic analysis of each language and describe the creation of end-to-end, deep neural network-based speech recognition models for both languages. We present a state-of-art ASR model for Fon, as well as benchmark ASR model results for Igbo. Our linguistic analyses (for Fon and Igbo) provide valuable insights and guidance into the creation of speech recognition models for other African low-resourced languages, as well as guide future NLP research for Fon and Igbo. The Fon and Igbo models source code have been made publicly available. 2 authors · Mar 13, 2021
1 Enhancing Low-Resource Language and Instruction Following Capabilities of Audio Language Models Audio language models can understand audio inputs and perform a range of audio-related tasks based on instructions, such as speech recognition and audio captioning, where the instructions are usually textual prompts. Audio language models are mostly initialized from pre-trained audio encoders and large language models (LLMs). Although these pre-trained components were developed to support multiple languages, audio-language models are trained predominantly on English data, which may limit their usability to only English instructions or English speech inputs. First, this paper examines the performance of existing audio language models in an underserved language using Thai as an example. This paper demonstrates that, despite being built on multilingual backbones, audio language models do not exhibit cross-lingual emergent abilities to low-resource languages. Second, this paper studies data mixture for developing audio language models that are optimized for a target language as well as English. In addition. this paper integrates audio comprehension and speech instruction-following capabilities into a single unified model. Our experiments provide insights into data mixture for enhancing instruction-following capabilities in both a low-resource language and English. Our model, Typhoon-Audio, outperforms existing open-source audio language models by a considerable margin, and it is comparable to state-of-the-art Gemini-1.5-Pro in both English and Thai languages. 5 authors · Sep 17, 2024
- Fine-Tashkeel: Finetuning Byte-Level Models for Accurate Arabic Text Diacritization Most of previous work on learning diacritization of the Arabic language relied on training models from scratch. In this paper, we investigate how to leverage pre-trained language models to learn diacritization. We finetune token-free pre-trained multilingual models (ByT5) to learn to predict and insert missing diacritics in Arabic text, a complex task that requires understanding the sentence semantics and the morphological structure of the tokens. We show that we can achieve state-of-the-art on the diacritization task with minimal amount of training and no feature engineering, reducing WER by 40%. We release our finetuned models for the greater benefit of the researchers in the community. 3 authors · Mar 25, 2023
11 Scaling Speech Technology to 1,000+ Languages Expanding the language coverage of speech technology has the potential to improve access to information for many more people. However, current speech technology is restricted to about one hundred languages which is a small fraction of the over 7,000 languages spoken around the world. The Massively Multilingual Speech (MMS) project increases the number of supported languages by 10-40x, depending on the task. The main ingredients are a new dataset based on readings of publicly available religious texts and effectively leveraging self-supervised learning. We built pre-trained wav2vec 2.0 models covering 1,406 languages, a single multilingual automatic speech recognition model for 1,107 languages, speech synthesis models for the same number of languages, as well as a language identification model for 4,017 languages. Experiments show that our multilingual speech recognition model more than halves the word error rate of Whisper on 54 languages of the FLEURS benchmark while being trained on a small fraction of the labeled data. 16 authors · May 22, 2023 3
2 SpeakerLM: End-to-End Versatile Speaker Diarization and Recognition with Multimodal Large Language Models The Speaker Diarization and Recognition (SDR) task aims to predict "who spoke when and what" within an audio clip, which is a crucial task in various real-world multi-speaker scenarios such as meeting transcription and dialogue systems. Existing SDR systems typically adopt a cascaded framework, combining multiple modules such as speaker diarization (SD) and automatic speech recognition (ASR). The cascaded systems suffer from several limitations, such as error propagation, difficulty in handling overlapping speech, and lack of joint optimization for exploring the synergy between SD and ASR tasks. To address these limitations, we introduce SpeakerLM, a unified multimodal large language model for SDR that jointly performs SD and ASR in an end-to-end manner. Moreover, to facilitate diverse real-world scenarios, we incorporate a flexible speaker registration mechanism into SpeakerLM, enabling SDR under different speaker registration settings. SpeakerLM is progressively developed with a multi-stage training strategy on large-scale real data. Extensive experiments show that SpeakerLM demonstrates strong data scaling capability and generalizability, outperforming state-of-the-art cascaded baselines on both in-domain and out-of-domain public SDR benchmarks. Furthermore, experimental results show that the proposed speaker registration mechanism effectively ensures robust SDR performance of SpeakerLM across diverse speaker registration conditions and varying numbers of registered speakers. 9 authors · Aug 8, 2025
1 Recent Advances in Speech Language Models: A Survey Large Language Models (LLMs) have recently garnered significant attention, primarily for their capabilities in text-based interactions. However, natural human interaction often relies on speech, necessitating a shift towards voice-based models. A straightforward approach to achieve this involves a pipeline of ``Automatic Speech Recognition (ASR) + LLM + Text-to-Speech (TTS)", where input speech is transcribed to text, processed by an LLM, and then converted back to speech. Despite being straightforward, this method suffers from inherent limitations, such as information loss during modality conversion and error accumulation across the three stages. To address these issues, Speech Language Models (SpeechLMs) -- end-to-end models that generate speech without converting from text -- have emerged as a promising alternative. This survey paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs, detailing the key components of their architecture and the various training recipes integral to their development. Additionally, we systematically survey the various capabilities of SpeechLMs, categorize the evaluation metrics for SpeechLMs, and discuss the challenges and future research directions in this rapidly evolving field. 8 authors · Oct 1, 2024