new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

EL4NER: Ensemble Learning for Named Entity Recognition via Multiple Small-Parameter Large Language Models

In-Context Learning (ICL) technique based on Large Language Models (LLMs) has gained prominence in Named Entity Recognition (NER) tasks for its lower computing resource consumption, less manual labeling overhead, and stronger generalizability. Nevertheless, most ICL-based NER methods depend on large-parameter LLMs: the open-source models demand substantial computational resources for deployment and inference, while the closed-source ones incur high API costs, raise data-privacy concerns, and hinder community collaboration. To address this question, we propose an Ensemble Learning Method for Named Entity Recognition (EL4NER), which aims at aggregating the ICL outputs of multiple open-source, small-parameter LLMs to enhance overall performance in NER tasks at less deployment and inference cost. Specifically, our method comprises three key components. First, we design a task decomposition-based pipeline that facilitates deep, multi-stage ensemble learning. Second, we introduce a novel span-level sentence similarity algorithm to establish an ICL demonstration retrieval mechanism better suited for NER tasks. Third, we incorporate a self-validation mechanism to mitigate the noise introduced during the ensemble process. We evaluated EL4NER on multiple widely adopted NER datasets from diverse domains. Our experimental results indicate that EL4NER surpasses most closed-source, large-parameter LLM-based methods at a lower parameter cost and even attains state-of-the-art (SOTA) performance among ICL-based methods on certain datasets. These results show the parameter efficiency of EL4NER and underscore the feasibility of employing open-source, small-parameter LLMs within the ICL paradigm for NER tasks.

  • 9 authors
·
May 28

Frequency Dynamic Convolution for Dense Image Prediction

While Dynamic Convolution (DY-Conv) has shown promising performance by enabling adaptive weight selection through multiple parallel weights combined with an attention mechanism, the frequency response of these weights tends to exhibit high similarity, resulting in high parameter costs but limited adaptability. In this work, we introduce Frequency Dynamic Convolution (FDConv), a novel approach that mitigates these limitations by learning a fixed parameter budget in the Fourier domain. FDConv divides this budget into frequency-based groups with disjoint Fourier indices, enabling the construction of frequency-diverse weights without increasing the parameter cost. To further enhance adaptability, we propose Kernel Spatial Modulation (KSM) and Frequency Band Modulation (FBM). KSM dynamically adjusts the frequency response of each filter at the spatial level, while FBM decomposes weights into distinct frequency bands in the frequency domain and modulates them dynamically based on local content. Extensive experiments on object detection, segmentation, and classification validate the effectiveness of FDConv. We demonstrate that when applied to ResNet-50, FDConv achieves superior performance with a modest increase of +3.6M parameters, outperforming previous methods that require substantial increases in parameter budgets (e.g., CondConv +90M, KW +76.5M). Moreover, FDConv seamlessly integrates into a variety of architectures, including ConvNeXt, Swin-Transformer, offering a flexible and efficient solution for modern vision tasks. The code is made publicly available at https://github.com/Linwei-Chen/FDConv.

  • 5 authors
·
Mar 24 2

FGAIF: Aligning Large Vision-Language Models with Fine-grained AI Feedback

Large Vision-Language Models (LVLMs) have demonstrated proficiency in tackling a variety of visual-language tasks. However, current LVLMs suffer from misalignment between text and image modalities which causes three kinds of hallucination problems, i.e., object existence, object attribute, and object relationship. To tackle this issue, existing methods mainly utilize Reinforcement Learning (RL) to align modalities in LVLMs. However, they still suffer from three main limitations: (1) General feedback can not indicate the hallucination type contained in the response; (2) Sparse rewards only give the sequence-level reward for the whole response; and (3)Annotation cost is time-consuming and labor-intensive. To handle these limitations, we propose an innovative method to align modalities in LVLMs through Fine-Grained Artificial Intelligence Feedback (FGAIF), which mainly consists of three steps: AI-based Feedback Collection, Fine-grained Reward Model Training, and Reinforcement Learning with Fine-grained Reward. Specifically, We first utilize AI tools to predict the types of hallucination for each segment in the response and obtain a collection of fine-grained feedback. Then, based on the collected reward data, three specialized reward models are trained to produce dense rewards. Finally, a novel fine-grained feedback module is integrated into the Proximal Policy Optimization (PPO) algorithm. Extensive experiments are conducted on hallucination and general benchmarks, demonstrating the superior performance of our proposed method. Notably, compared with previous models trained with the RL-based aligning method, our proposed method is effective even with fewer parameters.

  • 2 authors
·
Apr 7, 2024

LightM-UNet: Mamba Assists in Lightweight UNet for Medical Image Segmentation

UNet and its variants have been widely used in medical image segmentation. However, these models, especially those based on Transformer architectures, pose challenges due to their large number of parameters and computational loads, making them unsuitable for mobile health applications. Recently, State Space Models (SSMs), exemplified by Mamba, have emerged as competitive alternatives to CNN and Transformer architectures. Building upon this, we employ Mamba as a lightweight substitute for CNN and Transformer within UNet, aiming at tackling challenges stemming from computational resource limitations in real medical settings. To this end, we introduce the Lightweight Mamba UNet (LightM-UNet) that integrates Mamba and UNet in a lightweight framework. Specifically, LightM-UNet leverages the Residual Vision Mamba Layer in a pure Mamba fashion to extract deep semantic features and model long-range spatial dependencies, with linear computational complexity. Extensive experiments conducted on two real-world 2D/3D datasets demonstrate that LightM-UNet surpasses existing state-of-the-art literature. Notably, when compared to the renowned nnU-Net, LightM-UNet achieves superior segmentation performance while drastically reducing parameter and computation costs by 116x and 21x, respectively. This highlights the potential of Mamba in facilitating model lightweighting. Our code implementation is publicly available at https://github.com/MrBlankness/LightM-UNet.

  • 6 authors
·
Mar 8, 2024

P2P: Tuning Pre-trained Image Models for Point Cloud Analysis with Point-to-Pixel Prompting

Nowadays, pre-training big models on large-scale datasets has become a crucial topic in deep learning. The pre-trained models with high representation ability and transferability achieve a great success and dominate many downstream tasks in natural language processing and 2D vision. However, it is non-trivial to promote such a pretraining-tuning paradigm to the 3D vision, given the limited training data that are relatively inconvenient to collect. In this paper, we provide a new perspective of leveraging pre-trained 2D knowledge in 3D domain to tackle this problem, tuning pre-trained image models with the novel Point-to-Pixel prompting for point cloud analysis at a minor parameter cost. Following the principle of prompting engineering, we transform point clouds into colorful images with geometry-preserved projection and geometry-aware coloring to adapt to pre-trained image models, whose weights are kept frozen during the end-to-end optimization of point cloud analysis tasks. We conduct extensive experiments to demonstrate that cooperating with our proposed Point-to-Pixel Prompting, better pre-trained image model will lead to consistently better performance in 3D vision. Enjoying prosperous development from image pre-training field, our method attains 89.3% accuracy on the hardest setting of ScanObjectNN, surpassing conventional point cloud models with much fewer trainable parameters. Our framework also exhibits very competitive performance on ModelNet classification and ShapeNet Part Segmentation. Code is available at https://github.com/wangzy22/P2P.

  • 5 authors
·
Aug 4, 2022

Neural Tangent Kernel: Convergence and Generalization in Neural Networks

At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit, thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: during gradient descent on the parameters of an ANN, the network function f_theta (which maps input vectors to output vectors) follows the kernel gradient of the functional cost (which is convex, in contrast to the parameter cost) w.r.t. a new kernel: the Neural Tangent Kernel (NTK). This kernel is central to describe the generalization features of ANNs. While the NTK is random at initialization and varies during training, in the infinite-width limit it converges to an explicit limiting kernel and it stays constant during training. This makes it possible to study the training of ANNs in function space instead of parameter space. Convergence of the training can then be related to the positive-definiteness of the limiting NTK. We prove the positive-definiteness of the limiting NTK when the data is supported on the sphere and the non-linearity is non-polynomial. We then focus on the setting of least-squares regression and show that in the infinite-width limit, the network function f_theta follows a linear differential equation during training. The convergence is fastest along the largest kernel principal components of the input data with respect to the NTK, hence suggesting a theoretical motivation for early stopping. Finally we study the NTK numerically, observe its behavior for wide networks, and compare it to the infinite-width limit.

  • 3 authors
·
Jun 20, 2018

Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning

The success of convolutional neural networks (CNNs) in various applications is accompanied by a significant increase in computation and parameter storage costs. Recent efforts to reduce these overheads involve pruning and compressing the weights of various layers while at the same time aiming to not sacrifice performance. In this paper, we propose a novel criterion for CNN pruning inspired by neural network interpretability: The most relevant units, i.e. weights or filters, are automatically found using their relevance scores obtained from concepts of explainable AI (XAI). By exploring this idea, we connect the lines of interpretability and model compression research. We show that our proposed method can efficiently prune CNN models in transfer-learning setups in which networks pre-trained on large corpora are adapted to specialized tasks. The method is evaluated on a broad range of computer vision datasets. Notably, our novel criterion is not only competitive or better compared to state-of-the-art pruning criteria when successive retraining is performed, but clearly outperforms these previous criteria in the resource-constrained application scenario in which the data of the task to be transferred to is very scarce and one chooses to refrain from fine-tuning. Our method is able to compress the model iteratively while maintaining or even improving accuracy. At the same time, it has a computational cost in the order of gradient computation and is comparatively simple to apply without the need for tuning hyperparameters for pruning.

  • 7 authors
·
Dec 18, 2019

Training-Free Group Relative Policy Optimization

Recent advances in Large Language Model (LLM) agents have demonstrated their promising general capabilities. However, their performance in specialized real-world domains often degrades due to challenges in effectively integrating external tools and specific prompting strategies. While methods like agentic reinforcement learning have been proposed to address this, they typically rely on costly parameter updates, for example, through a process that uses Supervised Fine-Tuning (SFT) followed by a Reinforcement Learning (RL) phase with Group Relative Policy Optimization (GRPO) to alter the output distribution. However, we argue that LLMs can achieve a similar effect on the output distribution by learning experiential knowledge as a token prior, which is a far more lightweight approach that not only addresses practical data scarcity but also avoids the common issue of overfitting. To this end, we propose Training-Free Group Relative Policy Optimization (Training-Free GRPO), a cost-effective solution that enhances LLM agent performance without any parameter updates. Our method leverages the group relative semantic advantage instead of numerical ones within each group of rollouts, iteratively distilling high-quality experiential knowledge during multi-epoch learning on a minimal ground-truth data. Such knowledge serves as the learned token prior, which is seamlessly integrated during LLM API calls to guide model behavior. Experiments on mathematical reasoning and web searching tasks demonstrate that Training-Free GRPO, when applied to DeepSeek-V3.1-Terminus, significantly improves out-of-domain performance. With just a few dozen training samples, Training-Free GRPO outperforms fine-tuned small LLMs with marginal training data and cost.

tencent Tencent
·
Oct 9 2

Train Small, Infer Large: Memory-Efficient LoRA Training for Large Language Models

Large Language Models (LLMs) have significantly advanced natural language processing with exceptional task generalization capabilities. Low-Rank Adaption (LoRA) offers a cost-effective fine-tuning solution, freezing the original model parameters and training only lightweight, low-rank adapter matrices. However, the memory footprint of LoRA is largely dominated by the original model parameters. To mitigate this, we propose LoRAM, a memory-efficient LoRA training scheme founded on the intuition that many neurons in over-parameterized LLMs have low training utility but are essential for inference. LoRAM presents a unique twist: it trains on a pruned (small) model to obtain pruned low-rank matrices, which are then recovered and utilized with the original (large) model for inference. Additionally, minimal-cost continual pre-training, performed by the model publishers in advance, aligns the knowledge discrepancy between pruned and original models. Our extensive experiments demonstrate the efficacy of LoRAM across various pruning strategies and downstream tasks. For a model with 70 billion parameters, LoRAM enables training on a GPU with only 20G HBM, replacing an A100-80G GPU for LoRA training and 15 GPUs for full fine-tuning. Specifically, QLoRAM implemented by structured pruning combined with 4-bit quantization, for LLaMA-3.1-70B (LLaMA-2-70B), reduces the parameter storage cost that dominates the memory usage in low-rank matrix training by 15.81times (16.95times), while achieving dominant performance gains over both the original LLaMA-3.1-70B (LLaMA-2-70B) and LoRA-trained LLaMA-3.1-8B (LLaMA-2-13B).

  • 9 authors
·
Feb 19 2

Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models

Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.

  • 7 authors
·
Aug 13 2

Knowledge Updating? No More Model Editing! Just Selective Contextual Reasoning

As real-world knowledge evolves, the information embedded within large language models (LLMs) can become outdated, inadequate, or erroneous. Model editing has emerged as a prominent approach for updating LLMs' knowledge with minimal computational costs and parameter changes. This approach typically identifies and adjusts specific model parameters associated with newly acquired knowledge. However, existing methods often underestimate the adverse effects that parameter modifications can have on broadly distributed knowledge. More critically, post-edit LLMs frequently struggle with multi-hop reasoning and continuous knowledge updates. Although various studies have discussed these shortcomings, there is a lack of comprehensive evaluation. In this paper, we provide an evaluation of ten model editing methods along four dimensions: reliability, generalization, locality, and portability. Results confirm that all ten popular model editing methods show significant shortcomings across multiple dimensions, suggesting model editing is less promising. We then propose a straightforward method called Selective Contextual Reasoning (SCR), for knowledge updating. SCR does not modify model parameters but harnesses LLM's inherent contextual reasoning capabilities utilizing the updated knowledge pieces. Under SCR, an LLM first assesses whether an incoming query falls within the scope of an external knowledge base. If it does, the relevant external knowledge texts are contextualized to enhance reasoning; otherwise, the query is answered directly. We evaluate SCR against the ten model editing methods on two counterfactual datasets with three backbone LLMs. Empirical results confirm the effectiveness and efficiency of contextual reasoning for knowledge updating.

  • 3 authors
·
Mar 7

Toward a Deeper Understanding: RetNet Viewed through Convolution

The success of Vision Transformer (ViT) has been widely reported on a wide range of image recognition tasks. ViT can learn global dependencies superior to CNN, yet CNN's inherent locality can substitute for expensive training resources. Recently, the outstanding performance of RetNet in the field of language modeling has garnered attention, surpassing that of the Transformer with explicit local modeling, shifting researchers' focus towards Transformers in the CV field. This paper investigates the effectiveness of RetNet from a CNN perspective and presents a variant of RetNet tailored to the visual domain. Similar to RetNet we improves ViT's local modeling by applying a weight mask on the original self-attention matrix. A straightforward way to locally adapt the self-attention matrix can be realized by an element-wise learnable weight mask (ELM), for which our preliminary results show promising results. However, the element-wise simple learnable weight mask not only induces a non-trivial additional parameter overhead but also increases the optimization complexity. To this end, this work proposes a novel Gaussian mixture mask (GMM) in which one mask only has two learnable parameters and it can be conveniently used in any ViT variants whose attention mechanism allows the use of masks. Experimental results on multiple small datasets demonstrate that the effectiveness of our proposed Gaussian mask for boosting ViTs for free (almost zero additional parameter or computation cost). Our code can be publicly available at https://github.com/CatworldLee/Gaussian-Mixture-Mask-Attention.

  • 2 authors
·
Sep 11, 2023

Pragmatic Heterogeneous Collaborative Perception via Generative Communication Mechanism

Multi-agent collaboration enhances the perception capabilities of individual agents through information sharing. However, in real-world applications, differences in sensors and models across heterogeneous agents inevitably lead to domain gaps during collaboration. Existing approaches based on adaptation and reconstruction fail to support pragmatic heterogeneous collaboration due to two key limitations: (1) Intrusive retraining of the encoder or core modules disrupts the established semantic consistency among agents; and (2) accommodating new agents incurs high computational costs, limiting scalability. To address these challenges, we present a novel Generative Communication mechanism (GenComm) that facilitates seamless perception across heterogeneous multi-agent systems through feature generation, without altering the original network, and employs lightweight numerical alignment of spatial information to efficiently integrate new agents at minimal cost. Specifically, a tailored Deformable Message Extractor is designed to extract spatial message for each collaborator, which is then transmitted in place of intermediate features. The Spatial-Aware Feature Generator, utilizing a conditional diffusion model, generates features aligned with the ego agent's semantic space while preserving the spatial information of the collaborators. These generated features are further refined by a Channel Enhancer before fusion. Experiments conducted on the OPV2V-H, DAIR-V2X and V2X-Real datasets demonstrate that GenComm outperforms existing state-of-the-art methods, achieving an 81% reduction in both computational cost and parameter count when incorporating new agents. Our code is available at https://github.com/jeffreychou777/GenComm.

  • 6 authors
·
Oct 22

Global Vision Transformer Pruning with Hessian-Aware Saliency

Transformers yield state-of-the-art results across many tasks. However, their heuristically designed architecture impose huge computational costs during inference. This work aims on challenging the common design philosophy of the Vision Transformer (ViT) model with uniform dimension across all the stacked blocks in a model stage, where we redistribute the parameters both across transformer blocks and between different structures within the block via the first systematic attempt on global structural pruning. Dealing with diverse ViT structural components, we derive a novel Hessian-based structural pruning criteria comparable across all layers and structures, with latency-aware regularization for direct latency reduction. Performing iterative pruning on the DeiT-Base model leads to a new architecture family called NViT (Novel ViT), with a novel parameter redistribution that utilizes parameters more efficiently. On ImageNet-1K, NViT-Base achieves a 2.6x FLOPs reduction, 5.1x parameter reduction, and 1.9x run-time speedup over the DeiT-Base model in a near lossless manner. Smaller NViT variants achieve more than 1% accuracy gain at the same throughput of the DeiT Small/Tiny variants, as well as a lossless 3.3x parameter reduction over the SWIN-Small model. These results outperform prior art by a large margin. Further analysis is provided on the parameter redistribution insight of NViT, where we show the high prunability of ViT models, distinct sensitivity within ViT block, and unique parameter distribution trend across stacked ViT blocks. Our insights provide viability for a simple yet effective parameter redistribution rule towards more efficient ViTs for off-the-shelf performance boost.

  • 6 authors
·
Oct 10, 2021

Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes

Pre-trained large language models (LLMs) require fine-tuning to improve their responsiveness to natural language instructions. Federated learning (FL) offers a way to perform fine-tuning using the abundant data on end devices without compromising data privacy. Most existing federated fine-tuning methods for LLMs rely on parameter-efficient fine-tuning techniques, which may not reach the performance heights possible with full-parameter tuning. However, the communication overhead associated with full-parameter tuning is prohibitively high for both servers and clients. This work introduces FedKSeed, a novel approach that employs zeroth-order optimization (ZOO) with a set of random seeds. It enables federated full-parameter tuning of billion-sized LLMs directly on devices. Our method significantly reduces transmission requirements between the server and clients to just a few scalar gradients and random seeds, amounting to only a few thousand bytes. Building on this, we develop a strategy to assess the significance of ZOO perturbations for FL, allowing for probability-differentiated seed sampling. This prioritizes perturbations that have a greater impact on model accuracy. Experiments across six scenarios with different LLMs, datasets and data partitions demonstrate that our approach outperforms existing federated LLM fine-tuning methods in terms of both communication efficiency and new task generalization.

  • 6 authors
·
Dec 11, 2023 1

Relaxed Recursive Transformers: Effective Parameter Sharing with Layer-wise LoRA

Large language models (LLMs) are expensive to deploy. Parameter sharing offers a possible path towards reducing their size and cost, but its effectiveness in modern LLMs remains fairly limited. In this work, we revisit "layer tying" as form of parameter sharing in Transformers, and introduce novel methods for converting existing LLMs into smaller "Recursive Transformers" that share parameters across layers, with minimal loss of performance. Here, our Recursive Transformers are efficiently initialized from standard pretrained Transformers, but only use a single block of unique layers that is then repeated multiple times in a loop. We further improve performance by introducing Relaxed Recursive Transformers that add flexibility to the layer tying constraint via depth-wise low-rank adaptation (LoRA) modules, yet still preserve the compactness of the overall model. We show that our recursive models (e.g., recursive Gemma 1B) outperform both similar-sized vanilla pretrained models (such as TinyLlama 1.1B and Pythia 1B) and knowledge distillation baselines -- and can even recover most of the performance of the original "full-size" model (e.g., Gemma 2B with no shared parameters). Finally, we propose Continuous Depth-wise Batching, a promising new inference paradigm enabled by the Recursive Transformer when paired with early exiting. In a theoretical analysis, we show that this has the potential to lead to significant (2-3x) gains in inference throughput.

  • 6 authors
·
Oct 27, 2024 3

Parameter-Efficient Fine-Tuning for Foundation Models

This survey delves into the realm of Parameter-Efficient Fine-Tuning (PEFT) within the context of Foundation Models (FMs). PEFT, a cost-effective fine-tuning technique, minimizes parameters and computational complexity while striving for optimal downstream task performance. FMs, like ChatGPT, DALL-E, and LLaVA specialize in language understanding, generative tasks, and multimodal tasks, trained on diverse datasets spanning text, images, and videos. The diversity of FMs guides various adaptation strategies for PEFT. Therefore, this survey aims to provide a comprehensive overview of PEFT techniques applied to diverse FMs and address critical gaps in understanding the techniques, trends, and applications. We start by providing a detailed development of FMs and PEFT. Subsequently, we systematically review the key categories and core mechanisms of PEFT across diverse FMs to offer a comprehensive understanding of trends. We also explore the most recent applications across various FMs to demonstrate the versatility of PEFT, shedding light on the integration of systematic PEFT methods with a range of FMs. Furthermore, we identify potential research and development directions for improving PEFTs in the future. This survey provides a valuable resource for both newcomers and experts seeking to understand and use the power of PEFT across FMs. All reviewed papers are listed at https://github.com/THUDM/Awesome-Parameter-Efficient-Fine-Tuning-for-Foundation-Models.

  • 6 authors
·
Jan 23

Point-PEFT: Parameter-Efficient Fine-Tuning for 3D Pre-trained Models

The popularity of pre-trained large models has revolutionized downstream tasks across diverse fields, such as language, vision, and multi-modality. To minimize the adaption cost for downstream tasks, many Parameter-Efficient Fine-Tuning (PEFT) techniques are proposed for language and 2D image pre-trained models. However, the specialized PEFT method for 3D pre-trained models is still under-explored. To this end, we introduce Point-PEFT, a novel framework for adapting point cloud pre-trained models with minimal learnable parameters. Specifically, for a pre-trained 3D model, we freeze most of its parameters, and only tune the newly added PEFT modules on downstream tasks, which consist of a Point-prior Prompt and a Geometry-aware Adapter. The Point-prior Prompt adopts a set of learnable prompt tokens, for which we propose to construct a memory bank with domain-specific knowledge, and utilize a parameter-free attention to enhance the prompt tokens. The Geometry-aware Adapter aims to aggregate point cloud features within spatial neighborhoods to capture fine-grained geometric information through local interactions. Extensive experiments indicate that our Point-PEFT can achieve better performance than the full fine-tuning on various downstream tasks, while using only 5% of the trainable parameters, demonstrating the efficiency and effectiveness of our approach. Code is released at https://github.com/Ivan-Tang-3D/Point-PEFT.

  • 7 authors
·
Oct 4, 2023

Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative Model Inference with Unstructured Sparsity

With the fast growth of parameter size, it becomes increasingly challenging to deploy large generative models as they typically require large GPU memory consumption and massive computation. Unstructured model pruning has been a common approach to reduce both GPU memory footprint and the overall computation while retaining good model accuracy. However, the existing solutions do not provide a highly-efficient support for handling unstructured sparsity on modern GPUs, especially on the highly-structured Tensor Core hardware. Therefore, we propose Flash-LLM for enabling low-cost and highly-efficient large generative model inference with the sophisticated support of unstructured sparsity on high-performance but highly restrictive Tensor Cores. Based on our key observation that the main bottleneck of generative model inference is the several skinny matrix multiplications for which Tensor Cores would be significantly under-utilized due to low computational intensity, we propose a general Load-as-Sparse and Compute-as-Dense methodology for unstructured sparse matrix multiplication. The basic insight is to address the significant memory bandwidth bottleneck while tolerating redundant computations that are not critical for end-to-end performance on Tensor Cores. Based on this, we design an effective software framework for Tensor Core based unstructured SpMM, leveraging on-chip resources for efficient sparse data extraction and computation/memory-access overlapping. At SpMM kernel level, Flash-LLM significantly outperforms the state-of-the-art library, i.e., Sputnik and SparTA by an average of 2.9x and 1.5x, respectively. At end-to-end framework level on OPT-30B/66B/175B models, for tokens per GPU-second, Flash-LLM achieves up to 3.8x and 3.6x improvement over DeepSpeed and FasterTransformer, respectively, with significantly lower inference cost.

  • 9 authors
·
Sep 18, 2023

Towards Scalable Exact Machine Unlearning Using Parameter-Efficient Fine-Tuning

Machine unlearning is the process of efficiently removing the influence of a training data instance from a trained machine learning model without retraining it from scratch. A popular subclass of unlearning approaches is exact machine unlearning, which focuses on techniques that explicitly guarantee the removal of the influence of a data instance from a model. Exact unlearning approaches use a machine learning model in which individual components are trained on disjoint subsets of the data. During deletion, exact unlearning approaches only retrain the affected components rather than the entire model. While existing approaches reduce retraining costs, it can still be expensive for an organization to retrain a model component as it requires halting a system in production, which leads to service failure and adversely impacts customers. To address these challenges, we introduce an exact unlearning framework -- Sequence-aware Sharded Sliced Training (S3T), designed to enhance the deletion capabilities of an exact unlearning system while minimizing the impact on model's performance. At the core of S3T, we utilize a lightweight parameter-efficient fine-tuning approach that enables parameter isolation by sequentially training layers with disjoint data slices. This enables efficient unlearning by simply deactivating the layers affected by data deletion. Furthermore, to reduce the retraining cost and improve model performance, we train the model on multiple data sequences, which allows S3T to handle an increased number of deletion requests. Both theoretically and empirically, we demonstrate that S3T attains superior deletion capabilities and enhanced performance compared to baselines across a wide range of settings.

  • 5 authors
·
Jun 23, 2024

Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey

Large models represent a groundbreaking advancement in multiple application fields, enabling remarkable achievements across various tasks. However, their unprecedented scale comes with significant computational costs. These models, often consisting of billions of parameters, require vast amounts of computational resources for execution. Especially, the expansive scale and computational demands pose considerable challenges when customizing them for particular downstream tasks, particularly over the hardware platforms constrained by computational capabilities. Parameter Efficient Fine-Tuning (PEFT) provides a practical solution by efficiently adapt the large models over the various downstream tasks. In particular, PEFT refers to the process of adjusting the parameters of a pre-trained large models to adapt it to a specific task while minimizing the number of additional parameters introduced or computational resources required. This approach is particularly important when dealing with large language models with high parameter counts, as fine-tuning these models from scratch can be computationally expensive and resource-intensive, posing considerable challenges in the supporting system platform design. In this survey, we present comprehensive studies of various PEFT algorithms, examining their performance and computational overhead. Moreover, we provide an overview of applications developed using different PEFT algorithms and discuss common techniques employed to mitigate computation costs for PEFT. In addition to the algorithmic perspective, we overview various real-world system designs to investigate the implementation costs associated with different PEFT algorithms. This survey serves as an indispensable resource for researchers aiming to understand both the PEFT algorithm and its system implementation, offering detailed insights into recent advancements and practical applications.

  • 5 authors
·
Mar 21, 2024 3

Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study

The advent of large language models (LLMs) like GitHub Copilot has significantly enhanced programmers' productivity, particularly in code generation. However, these models often struggle with real-world tasks without fine-tuning. As LLMs grow larger and more performant, fine-tuning for specialized tasks becomes increasingly expensive. Parameter-efficient fine-tuning (PEFT) methods, which fine-tune only a subset of model parameters, offer a promising solution by reducing the computational costs of tuning LLMs while maintaining their performance. Existing studies have explored using PEFT and LLMs for various code-related tasks and found that the effectiveness of PEFT techniques is task-dependent. The application of PEFT techniques in unit test generation remains underexplored. The state-of-the-art is limited to using LLMs with full fine-tuning to generate unit tests. This paper investigates both full fine-tuning and various PEFT methods, including LoRA, (IA)^3, and prompt tuning, across different model architectures and sizes. We use well-established benchmark datasets to evaluate their effectiveness in unit test generation. Our findings show that PEFT methods can deliver performance comparable to full fine-tuning for unit test generation, making specialized fine-tuning more accessible and cost-effective. Notably, prompt tuning is the most effective in terms of cost and resource utilization, while LoRA approaches the effectiveness of full fine-tuning in several cases.

  • 2 authors
·
Nov 4, 2024 3

PINN surrogate of Li-ion battery models for parameter inference. Part II: Regularization and application of the pseudo-2D model

Bayesian parameter inference is useful to improve Li-ion battery diagnostics and can help formulate battery aging models. However, it is computationally intensive and cannot be easily repeated for multiple cycles, multiple operating conditions, or multiple replicate cells. To reduce the computational cost of Bayesian calibration, numerical solvers for physics-based models can be replaced with faster surrogates. A physics-informed neural network (PINN) is developed as a surrogate for the pseudo-2D (P2D) battery model calibration. For the P2D surrogate, additional training regularization was needed as compared to the PINN single-particle model (SPM) developed in Part I. Both the PINN SPM and P2D surrogate models are exercised for parameter inference and compared to data obtained from a direct numerical solution of the governing equations. A parameter inference study highlights the ability to use these PINNs to calibrate scaling parameters for the cathode Li diffusion and the anode exchange current density. By realizing computational speed-ups of 2250x for the P2D model, as compared to using standard integrating methods, the PINN surrogates enable rapid state-of-health diagnostics. In the low-data availability scenario, the testing error was estimated to 2mV for the SPM surrogate and 10mV for the P2D surrogate which could be mitigated with additional data.

  • 9 authors
·
Dec 28, 2023

ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video

Adapting image models to the video domain has emerged as an efficient paradigm for solving video recognition tasks. Due to the huge number of parameters and effective transferability of image models, performing full fine-tuning is less efficient and even unnecessary. Thus, recent research is shifting its focus toward parameter-efficient image-to-video adaptation. However, these adaptation strategies inevitably introduce extra computational costs to deal with the domain gap and temporal modeling in videos. In this paper, we present a new adaptation paradigm (ZeroI2V) to transfer the image transformers to video recognition tasks (i.e., introduce zero extra cost to the original models during inference). To achieve this goal, we present two core designs. First, to capture the dynamics in videos and reduce the difficulty of image-to-video adaptation, we exploit the flexibility of self-attention and introduce spatial-temporal dual-headed attention (STDHA). This approach efficiently endows the image transformers with temporal modeling capability at zero extra parameters and computation. Second, to handle the domain gap between images and videos, we propose a linear adaption strategy that utilizes lightweight densely placed linear adapters to fully transfer the frozen image models to video recognition. Thanks to the customized linear design, all newly added adapters could be easily merged with the original modules through structural reparameterization after training, enabling zero extra cost during inference. Extensive experiments on representative fully-supervised and few-shot video recognition benchmarks showcase that ZeroI2V can match or even outperform previous state-of-the-art methods while enjoying superior parameter and inference efficiency.

  • 3 authors
·
Oct 2, 2023

AutoPEFT: Automatic Configuration Search for Parameter-Efficient Fine-Tuning

Large pretrained language models are widely used in downstream NLP tasks via task-specific fine-tuning, but such procedures can be costly. Recently, Parameter-Efficient Fine-Tuning (PEFT) methods have achieved strong task performance while updating a much smaller number of parameters compared to full model fine-tuning (FFT). However, it is non-trivial to make informed design choices on the PEFT configurations, such as their architecture, the number of tunable parameters, and even the layers in which the PEFT modules are inserted. Consequently, it is highly likely that the current, manually designed configurations are suboptimal in terms of their performance-efficiency trade-off. Inspired by advances in neural architecture search, we propose AutoPEFT for automatic PEFT configuration selection: we first design an expressive configuration search space with multiple representative PEFT modules as building blocks. Using multi-objective Bayesian optimisation in a low-cost setup, we then discover a Pareto-optimal set of configurations with strong performance-cost trade-offs across different numbers of parameters that are also highly transferable across different tasks. Empirically, on GLUE and SuperGLUE tasks, we show that AutoPEFT-discovered configurations significantly outperform existing PEFT methods and are on par or better than FFT, without incurring substantial training efficiency costs.

  • 4 authors
·
Jan 28, 2023

Parameter-Inverted Image Pyramid Networks for Visual Perception and Multimodal Understanding

Image pyramids are widely adopted in top-performing methods to obtain multi-scale features for precise visual perception and understanding. However, current image pyramids use the same large-scale model to process multiple resolutions of images, leading to significant computational cost. To address this challenge, we propose a novel network architecture, called Parameter-Inverted Image Pyramid Networks (PIIP). Specifically, PIIP uses pretrained models (ViTs or CNNs) as branches to process multi-scale images, where images of higher resolutions are processed by smaller network branches to balance computational cost and performance. To integrate information from different spatial scales, we further propose a novel cross-branch feature interaction mechanism. To validate PIIP, we apply it to various perception models and a representative multimodal large language model called LLaVA, and conduct extensive experiments on various tasks such as object detection, segmentation, image classification and multimodal understanding. PIIP achieves superior performance compared to single-branch and existing multi-resolution approaches with lower computational cost. When applied to InternViT-6B, a large-scale vision foundation model, PIIP can improve its performance by 1%-2% on detection and segmentation with only 40%-60% of the original computation, finally achieving 60.0 box AP on MS COCO and 59.7 mIoU on ADE20K. For multimodal understanding, our PIIP-LLaVA achieves 73.0% accuracy on TextVQA and 74.5% on MMBench with only 2.8M training data. Our code is released at https://github.com/OpenGVLab/PIIP.

  • 11 authors
·
Jan 13 2

Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models

Large Language Models (LLMs) possess impressive capabilities to generate meaningful code snippets given natural language intents in zero-shot, i.e., without the need for specific fine-tuning. In the perspective of unleashing their full potential, prior work has demonstrated the benefits of fine-tuning the models to task-specific data. However, fine-tuning process demands heavy computational costs and is intractable when resources are scarce, especially for models with billions of parameters. In light of these challenges, previous studies explored In-Context Learning (ICL) as an effective strategy to generate contextually appropriate code without fine-tuning. However, it operates at inference time and does not involve learning task-specific parameters, potentially limiting the model's performance on downstream tasks. In this context, we foresee that Parameter-Efficient Fine-Tuning (PEFT) techniques carry a high potential for efficiently specializing LLMs to task-specific data. In this paper, we deliver a comprehensive study of LLMs with the impact of PEFT techniques under the automated code generation scenario. Our experimental results reveal the superiority and potential of such techniques over ICL on a wide range of LLMs in reducing the computational burden and improving performance. Therefore, the study opens opportunities for broader applications of PEFT in software engineering scenarios.

  • 5 authors
·
Aug 21, 2023

LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning

Fine-tuning large pre-trained models on downstream tasks has been adopted in a variety of domains recently. However, it is costly to update the entire parameter set of large pre-trained models. Although recently proposed parameter-efficient transfer learning (PETL) techniques allow updating a small subset of parameters (e.g. only using 2% of parameters) inside a pre-trained backbone network for a new task, they only reduce the training memory requirement by up to 30%. This is because the gradient computation for the trainable parameters still requires backpropagation through the large pre-trained backbone model. To address this, we propose Ladder Side-Tuning (LST), a new PETL technique that can reduce training memory requirements by more substantial amounts. Unlike existing parameter-efficient methods that insert additional parameters inside backbone networks, we train a ladder side network, a small and separate network that takes intermediate activations as input via shortcut connections (called ladders) from backbone networks and makes predictions. LST has significantly lower memory requirements than previous methods, because it does not require backpropagation through the backbone network, but instead only through the side network and ladder connections. We evaluate our method with various models (T5 and CLIP-T5) on both NLP (GLUE) and vision-and-language (VQA, GQA, NLVR2 , MSCOCO) tasks. LST saves 69% of the memory costs to fine-tune the whole network, while other methods only save 26% of that in similar parameter usages (hence, 2.7x more memory savings). Moreover, LST achieves higher accuracy than Adapter and LoRA in a low-memory regime. To further show the advantage of this better memory efficiency, we also apply LST to larger T5 models, attaining better GLUE performance than full fine-tuning and other PETL methods. The accuracy-efficiency trade-off also holds on VL tasks.

  • 3 authors
·
Jun 13, 2022

L4Q: Parameter Efficient Quantization-Aware Training on Large Language Models via LoRA-wise LSQ

Post-training quantization (PTQ) and quantization-aware training (QAT) methods are gaining popularity in mitigating the high memory and computational costs associated with Large Language Models (LLMs). In resource-constrained scenarios, PTQ, with its reduced training overhead, is often preferred over QAT, despite the latter's potential for higher accuracy. Meanwhile, parameter-efficient fine-tuning (PEFT) methods like low-rank adaptation (LoRA) have been introduced, and recent efforts have explored quantization-aware PEFT techniques. However, these approaches may lack generality due to their reliance on the pre-quantized model's configuration. Their effectiveness may be compromised by non-linearly quantized or mixed-precision weights, and the retraining of specific quantization parameters might impede optimal performance. To address these challenges, we propose L4Q, an algorithm for parameter-efficient quantization-aware training. L4Q leverages LoRA-wise learned quantization step size for LLMs, aiming to enhance generality. The simultaneous quantization-and-fine-tuning process of L4Q is applicable to high-precision models, yielding linearly quantized weights with superior accuracy. Our experiments, conducted on the LLaMA and LLaMA2 model families using an instructional dataset, showcase L4Q's capabilities in language comprehension and few-shot in-context learning, achieving sub-4-bit precision while maintaining comparable training times to applying PEFT on a quantized model.

  • 3 authors
·
Feb 7, 2024

ISCS: Parameter-Guided Channel Ordering and Grouping for Learned Image Compression

Prior studies in learned image compression (LIC) consistently show that only a small subset of latent channels is critical for reconstruction, while many others carry limited information. Exploiting this imbalance could improve both coding and computational efficiency, yet existing approaches often rely on costly, dataset-specific ablation tests and typically analyze channels in isolation, ignoring their interdependencies. We propose a generalizable, dataset-agnostic method to identify and organize important channels in pretrained VAE-based LIC models. Instead of brute-force empirical evaluations, our approach leverages intrinsic parameter statistics-weight variances, bias magnitudes, and pairwise correlations-to estimate channel importance. This analysis reveals a consistent organizational structure, termed the Invariant Salient Channel Space (ISCS), where Salient-Core channels capture dominant structures and Salient-Auxiliary channels provide complementary details. Building on ISCS, we introduce a deterministic channel ordering and grouping strategy that enables slice-parallel decoding, reduces redundancy, and improves bitrate efficiency. Experiments across multiple LIC architectures demonstrate that our method effectively reduces bitrate and computation while maintaining reconstruction quality, providing a practical and modular enhancement to existing learned compression frameworks.

  • 5 authors
·
Sep 20

Parameter-Inverted Image Pyramid Networks

Image pyramids are commonly used in modern computer vision tasks to obtain multi-scale features for precise understanding of images. However, image pyramids process multiple resolutions of images using the same large-scale model, which requires significant computational cost. To overcome this issue, we propose a novel network architecture known as the Parameter-Inverted Image Pyramid Networks (PIIP). Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid, thereby balancing computational efficiency and performance. Specifically, the input to PIIP is a set of multi-scale images, where higher resolution images are processed by smaller networks. We further propose a feature interaction mechanism to allow features of different resolutions to complement each other and effectively integrate information from different spatial scales. Extensive experiments demonstrate that the PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification, compared to traditional image pyramid methods and single-branch networks, while reducing computational cost. Notably, when applying our method on a large-scale vision foundation model InternViT-6B, we improve its performance by 1%-2% on detection and segmentation with only 40%-60% of the original computation. These results validate the effectiveness of the PIIP approach and provide a new technical direction for future vision computing tasks. Our code and models are available at https://github.com/OpenGVLab/PIIP.

  • 9 authors
·
Jun 6, 2024

ReCIT: Reconstructing Full Private Data from Gradient in Parameter-Efficient Fine-Tuning of Large Language Models

Parameter-efficient fine-tuning (PEFT) has emerged as a practical solution for adapting large language models (LLMs) to custom datasets with significantly reduced computational cost. When carrying out PEFT under collaborative learning scenarios (e.g., federated learning), it is often required to exchange model updates (or gradients) across parties. These gradients, even with limited dimensions, can cause severe breach of data privacy. Recent works have shown that both contextual prefixes and personally identifiable information (PII) can be exposed through gradients. However, simultaneously and accurately recovering both components from the same training instance remains infeasible due to the following challenges: 1) limited number of PEFT parameters; 2) high-dimensional token spaces; and 3) large batch sizes. We propose ReCIT, a novel privacy attack that addresses all challenges, and achieves recovery of full private data from PEFT gradients with high fidelity. Specifically, ReCIT proposes to enhance the memorization capability of the pre-trained model through malicious fine-tuning with Personal Notes; ReCIT also proposes a novel filter-based token extraction technique and a token pairing mechanism, to accurately reconstruct tokens from the training sequences with large batch sizes. Extensive evaluations show that ReCIT consistently outperforms state-of-the-art gradient inversion and memorization-based attacks across different PEFT paradigms. It achieves up to 10times higher PII recovery rates and remains effective across varying batch sizes, especially in settings where prefix reconstruction is intractable for conventional approaches. These findings highlight an urgent need to reassess the privacy guarantees of PEFT, especially in decentralized or shared training environments.

  • 5 authors
·
Apr 29

Parameter-Efficient Checkpoint Merging via Metrics-Weighted Averaging

Checkpoint merging is a technique for combining multiple model snapshots into a single superior model, potentially reducing training time for large language models. This paper explores checkpoint merging in the context of parameter-efficient fine-tuning (PEFT), where only small adapter modules (e.g. LoRA) are trained. We propose Metrics-Weighted Averaging (MWA), a simple yet effective method to merge model checkpoints by weighting their parameters according to performance metrics. In particular, we investigate weighting by training loss and by training steps, under the intuition that lower-loss or later-step checkpoints are more valuable. We introduce a formula with a penalty factor to adjust weight distribution, requiring only one hyperparameter regardless of the number of checkpoints. Experiments on three fine-tuning tasks (mathematical reasoning, preference alignment, and general instruction tuning) show that MWA consistently produces merged models that outperform the naive uniform average of checkpoints. Notably, loss-weighted merging often yields the best results, delivering up to 5% higher task accuracy than the baseline uniform merge and even surpassing the final individual checkpoint's performance. These findings validate checkpoint merging for PEFT and demonstrate that a metric-driven weighting heuristic can efficiently boost model performance with minimal computational overhead.

  • 2 authors
·
Apr 23

Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning

Recently, leveraging pre-training techniques to enhance point cloud models has become a prominent research topic. However, existing approaches typically require full fine-tuning of pre-trained models to achieve satisfactory performance on downstream tasks, which is storage-intensive and computationally demanding. To address this issue, we propose a novel Parameter-Efficient Fine-Tuning (PEFT) method for point cloud, called PointGST (Point cloud Graph Spectral Tuning). PointGST freezes the pre-trained model and introduces a lightweight, trainable Point Cloud Spectral Adapter (PCSA) for fine-tuning parameters in the spectral domain. The core idea is built on two observations: 1) The inner tokens from frozen models might present confusion in the spatial domain; 2) Task-specific intrinsic information is important for transferring the general knowledge to the downstream task. Specifically, PointGST transfers the point tokens from the spatial domain to the spectral domain, effectively de-correlating confusion among tokens by using orthogonal components for separation. Moreover, the generated spectral basis involves intrinsic information about the downstream point clouds, enabling more targeted tuning. As a result, PointGST facilitates the efficient transfer of general knowledge to downstream tasks while significantly reducing training costs. Extensive experiments on challenging point cloud datasets across various tasks demonstrate that PointGST not only outperforms its fully fine-tuning counterpart but also significantly reduces trainable parameters, making it a promising solution for efficient point cloud learning. The code will be made available at https://github.com/jerryfeng2003/PointGST

  • 6 authors
·
Oct 10, 2024

Step-3 is Large yet Affordable: Model-system Co-design for Cost-effective Decoding

Large language models (LLMs) face low hardware efficiency during decoding, especially for long-context reasoning tasks. This paper introduces Step-3, a 321B-parameter VLM with hardware-aware model-system co-design optimized for minimizing decoding costs. Step-3 innovates in two key dimensions: (1) A novel Multi-Matrix Factorization Attention (MFA) mechanism that significantly reduces both KV cache size and computation while maintaining high attention expressiveness, and (2) Attention-FFN Disaggregation (AFD), a distributed inference system that decouples attention and Feed-Forward Network (FFN) layers into specialized subsystems. This co-design achieves unprecedented cost efficiency: Step-3 significantly reduces theoretical decoding costs compared with models like DeepSeek-V3 and Qwen3 MoE 235B, with the gains widening at longer context. Step-3 achieves low cost while activating 38B parameters per token (more than DeepSeek-V3 and Qwen3 MoE 235B), demonstrating that hardware-aligned attention arithmetic intensity, MoE sparsity, and AFD are critical to cost-effectiveness. We perform a head-to-head comparison with DeepSeek-V3 in its favorable scenarios. Our implementation on Hopper GPUs achieves a decoding throughput of up to 4,039 tokens per second per GPU under 50ms TPOT SLA (4K context, FP8, no MTP). It is higher than DeepSeek-V3's 2,324 in the same setup and sets a new Pareto frontier for LLM decoding.

Precise Parameter Localization for Textual Generation in Diffusion Models

Novel diffusion models can synthesize photo-realistic images with integrated high-quality text. Surprisingly, we demonstrate through attention activation patching that only less than 1% of diffusion models' parameters, all contained in attention layers, influence the generation of textual content within the images. Building on this observation, we improve textual generation efficiency and performance by targeting cross and joint attention layers of diffusion models. We introduce several applications that benefit from localizing the layers responsible for textual content generation. We first show that a LoRA-based fine-tuning solely of the localized layers enhances, even more, the general text-generation capabilities of large diffusion models while preserving the quality and diversity of the diffusion models' generations. Then, we demonstrate how we can use the localized layers to edit textual content in generated images. Finally, we extend this idea to the practical use case of preventing the generation of toxic text in a cost-free manner. In contrast to prior work, our localization approach is broadly applicable across various diffusion model architectures, including U-Net (e.g., LDM and SDXL) and transformer-based (e.g., DeepFloyd IF and Stable Diffusion 3), utilizing diverse text encoders (e.g., from CLIP to the large language models like T5). Project page available at https://t2i-text-loc.github.io/.

  • 5 authors
·
Feb 14 2

Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs

Large Language Models (LLMs) have demonstrated strong reasoning and memorization capabilities via pretraining on massive textual corpora. However, this poses risk of privacy and copyright violations, highlighting the need for efficient machine unlearning methods that remove sensitive data without retraining from scratch. While Gradient Ascent (GA) is commonly used to unlearn by reducing the likelihood of generating unwanted content, it leads to unstable optimization and catastrophic forgetting of retrained knowledge. We find that combining GA with low-rank adaptation results in poor trade-offs between computational cost and generative performance. To address these challenges, we propose Low-rank Knowledge Unlearning (LoKU), a novel framework that enables robust and efficient unlearning for LLMs. First, we introduce Inverted Hinge Loss, which suppresses unwanted tokens while maintaining fluency by boosting the probability of the next most likely token. Second, we develop a data-adaptive initialization for LoRA adapters via low-rank approximation weighted with relative Fisher information, thereby focusing updates on parameters critical for removing targeted knowledge. Experiments on the Training Data Extraction Challenge dataset using GPT-Neo models as well as on the TOFU benchmark with Phi-1.5B and Llama2-7B models demonstrate that our approach effectively removes sensitive information while maintaining reasoning and generative capabilities with minimal impact. Our implementation can be found in https://github.com/csm9493/efficient-llm-unlearning.

  • 4 authors
·
Aug 13, 2024

Automated Federated Pipeline for Parameter-Efficient Fine-Tuning of Large Language Models

Recently, there has been a surge in the development of advanced intelligent generative content (AIGC), especially large language models (LLMs). However, for many downstream tasks, it is necessary to fine-tune LLMs using private data. While federated learning offers a promising privacy-preserving solution to LLM fine-tuning, the substantial size of an LLM, combined with high computational and communication demands, makes it hard to apply to downstream tasks. More importantly, private edge servers often possess varying computing and network resources in real-world scenarios, introducing additional complexities to LLM fine-tuning. To tackle these problems, we design and implement an automated federated pipeline, named FedPipe, to fine-tune LLMs with minimal training cost but without adding any inference latency. FedPipe firstly identifies the weights to be fine-tuned based on their contributions to the LLM training. It then configures a low-rank adapter for each selected weight to train local low-rank adapters on an edge server, and aggregate local adapters of all edge servers to fine-tune the whole LLM. Finally, it appropriately quantizes the parameters of LLM to reduce memory space according to the requirements of edge servers. Extensive experiments demonstrate that FedPipe expedites the model training and achieves higher accuracy than state-of-the-art benchmarks.

  • 6 authors
·
Apr 9, 2024

PDP: Parameter-free Differentiable Pruning is All You Need

DNN pruning is a popular way to reduce the size of a model, improve the inference latency, and minimize the power consumption on DNN accelerators. However, existing approaches might be too complex, expensive or ineffective to apply to a variety of vision/language tasks, DNN architectures and to honor structured pruning constraints. In this paper, we propose an efficient yet effective train-time pruning scheme, Parameter-free Differentiable Pruning (PDP), which offers state-of-the-art qualities in model size, accuracy, and training cost. PDP uses a dynamic function of weights during training to generate soft pruning masks for the weights in a parameter-free manner for a given pruning target. While differentiable, the simplicity and efficiency of PDP make it universal enough to deliver state-of-the-art random/structured/channel pruning results on various vision and natural language tasks. For example, for MobileNet-v1, PDP can achieve 68.2% top-1 ImageNet1k accuracy at 86.6% sparsity, which is 1.7% higher accuracy than those from the state-of-the-art algorithms. Also, PDP yields over 83.1% accuracy on Multi-Genre Natural Language Inference with 90% sparsity for BERT, while the next best from the existing techniques shows 81.5% accuracy. In addition, PDP can be applied to structured pruning, such as N:M pruning and channel pruning. For 1:4 structured pruning of ResNet18, PDP improved the top-1 ImageNet1k accuracy by over 3.6% over the state-of-the-art. For channel pruning of ResNet50, PDP reduced the top-1 ImageNet1k accuracy by 0.6% from the state-of-the-art.

  • 3 authors
·
May 18, 2023

LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model

How to efficiently transform large language models (LLMs) into instruction followers is recently a popular research direction, while training LLM for multi-modal reasoning remains less explored. Although the recent LLaMA-Adapter demonstrates the potential to handle visual inputs with LLMs, it still cannot generalize well to open-ended visual instructions and lags behind GPT-4. In this paper, we present LLaMA-Adapter V2, a parameter-efficient visual instruction model. Specifically, we first augment LLaMA-Adapter by unlocking more learnable parameters (e.g., norm, bias and scale), which distribute the instruction-following ability across the entire LLaMA model besides adapters. Secondly, we propose an early fusion strategy to feed visual tokens only into the early LLM layers, contributing to better visual knowledge incorporation. Thirdly, a joint training paradigm of image-text pairs and instruction-following data is introduced by optimizing disjoint groups of learnable parameters. This strategy effectively alleviates the interference between the two tasks of image-text alignment and instruction following and achieves strong multi-modal reasoning with only a small-scale image-text and instruction dataset. During inference, we incorporate additional expert models (e.g. captioning/OCR systems) into LLaMA-Adapter to further enhance its image understanding capability without incurring training costs. Compared to the original LLaMA-Adapter, our LLaMA-Adapter V2 can perform open-ended multi-modal instructions by merely introducing 14M parameters over LLaMA. The newly designed framework also exhibits stronger language-only instruction-following capabilities and even excels in chat interactions. Our code and models are available at https://github.com/ZrrSkywalker/LLaMA-Adapter.

  • 12 authors
·
Apr 28, 2023

ConPET: Continual Parameter-Efficient Tuning for Large Language Models

Continual learning necessitates the continual adaptation of models to newly emerging tasks while minimizing the catastrophic forgetting of old ones. This is extremely challenging for large language models (LLMs) with vanilla full-parameter tuning due to high computation costs, memory consumption, and forgetting issue. Inspired by the success of parameter-efficient tuning (PET), we propose Continual Parameter-Efficient Tuning (ConPET), a generalizable paradigm for continual task adaptation of LLMs with task-number-independent training complexity. ConPET includes two versions with different application scenarios. First, Static ConPET can adapt former continual learning methods originally designed for relatively smaller models to LLMs through PET and a dynamic replay strategy, which largely reduces the tuning costs and alleviates the over-fitting and forgetting issue. Furthermore, to maintain scalability, Dynamic ConPET adopts separate PET modules for different tasks and a PET module selector for dynamic optimal selection. In our extensive experiments, the adaptation of Static ConPET helps multiple former methods reduce the scale of tunable parameters by over 3,000 times and surpass the PET-only baseline by at least 5 points on five smaller benchmarks, while Dynamic ConPET gains its advantage on the largest dataset. The codes and datasets are available at https://github.com/Raincleared-Song/ConPET.

  • 8 authors
·
Sep 26, 2023

DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning

Prompt tuning (PT), where a small amount of trainable soft (continuous) prompt vectors is affixed to the input of language models (LM), has shown promising results across various tasks and models for parameter-efficient fine-tuning (PEFT). PT stands out from other PEFT approaches because it maintains competitive performance with fewer trainable parameters and does not drastically scale up its parameters as the model size expands. However, PT introduces additional soft prompt tokens, leading to longer input sequences, which significantly impacts training and inference time and memory usage due to the Transformer's quadratic complexity. Particularly concerning for Large Language Models (LLMs) that face heavy daily querying. To address this issue, we propose Decomposed Prompt Tuning (DePT), which decomposes the soft prompt into a shorter soft prompt and a pair of low-rank matrices that are then optimised with two different learning rates. This allows DePT to achieve better performance while saving over 20% memory and time costs compared to vanilla PT and its variants, without changing trainable parameter sizes. Through extensive experiments on 23 natural language processing (NLP) and vision-language (VL) tasks, we demonstrate that DePT outperforms state-of-the-art PEFT approaches, including the full fine-tuning baseline in some scenarios. Additionally, we empirically show that DEPT grows more efficient as the model size increases. Our further study reveals that DePT integrates seamlessly with parameter-efficient transfer learning in the few-shot learning setting and highlights its adaptability to various model architectures and sizes.

  • 2 authors
·
Sep 10, 2023 1

Multimodal Parameter-Efficient Few-Shot Class Incremental Learning

Few-Shot Class Incremental Learning (FSCIL) is a challenging continual learning task, where limited training examples are available during several learning sessions. To succeed in this task, it is necessary to avoid over-fitting new classes caused by biased distributions in the few-shot training sets. The general approach to address this issue involves enhancing the representational capability of a pre-defined backbone architecture by adding special modules for backward compatibility with older classes. However, this approach has not yet solved the dilemma of ensuring high classification accuracy over time while reducing the gap between the performance obtained on larger training sets and the smaller ones. In this work, we propose an alternative approach called Continual Parameter-Efficient CLIP (CPE-CLIP) to reduce the loss of information between different learning sessions. Instead of adapting additional modules to address information loss, we leverage the vast knowledge acquired by CLIP in large-scale pre-training and its effectiveness in generalizing to new concepts. Our approach is multimodal and parameter-efficient, relying on learnable prompts for both the language and vision encoders to enable transfer learning across sessions. We also introduce prompt regularization to improve performance and prevent forgetting. Our experimental results demonstrate that CPE-CLIP significantly improves FSCIL performance compared to state-of-the-art proposals while also drastically reducing the number of learnable parameters and training costs.

  • 4 authors
·
Mar 8, 2023

SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining

Large language models (LLMs) have shown impressive capabilities across various tasks. However, training LLMs from scratch requires significant computational power and extensive memory capacity. Recent studies have explored low-rank structures on weights for efficient fine-tuning in terms of parameters and memory, either through low-rank adaptation or factorization. While effective for fine-tuning, low-rank structures are generally less suitable for pretraining because they restrict parameters to a low-dimensional subspace. In this work, we propose to parameterize the weights as a sum of low-rank and sparse matrices for pretraining, which we call SLTrain. The low-rank component is learned via matrix factorization, while for the sparse component, we employ a simple strategy of uniformly selecting the sparsity support at random and learning only the non-zero entries with the fixed support. While being simple, the random fixed-support sparse learning strategy significantly enhances pretraining when combined with low-rank learning. Our results show that SLTrain adds minimal extra parameters and memory costs compared to pretraining with low-rank parameterization, yet achieves substantially better performance, which is comparable to full-rank training. Remarkably, when combined with quantization and per-layer updates, SLTrain can reduce memory requirements by up to 73% when pretraining the LLaMA 7B model.

  • 7 authors
·
Jun 4, 2024 2

DiffFit: Unlocking Transferability of Large Diffusion Models via Simple Parameter-Efficient Fine-Tuning

Diffusion models have proven to be highly effective in generating high-quality images. However, adapting large pre-trained diffusion models to new domains remains an open challenge, which is critical for real-world applications. This paper proposes DiffFit, a parameter-efficient strategy to fine-tune large pre-trained diffusion models that enable fast adaptation to new domains. DiffFit is embarrassingly simple that only fine-tunes the bias term and newly-added scaling factors in specific layers, yet resulting in significant training speed-up and reduced model storage costs. Compared with full fine-tuning, DiffFit achieves 2times training speed-up and only needs to store approximately 0.12\% of the total model parameters. Intuitive theoretical analysis has been provided to justify the efficacy of scaling factors on fast adaptation. On 8 downstream datasets, DiffFit achieves superior or competitive performances compared to the full fine-tuning while being more efficient. Remarkably, we show that DiffFit can adapt a pre-trained low-resolution generative model to a high-resolution one by adding minimal cost. Among diffusion-based methods, DiffFit sets a new state-of-the-art FID of 3.02 on ImageNet 512times512 benchmark by fine-tuning only 25 epochs from a public pre-trained ImageNet 256times256 checkpoint while being 30times more training efficient than the closest competitor.

  • 8 authors
·
Apr 13, 2023

QMoE: Practical Sub-1-Bit Compression of Trillion-Parameter Models

Mixture-of-Experts (MoE) architectures offer a general solution to the high inference costs of large language models (LLMs) via sparse routing, bringing faster and more accurate models, at the cost of massive parameter counts. For example, the SwitchTransformer-c2048 model has 1.6 trillion parameters, requiring 3.2TB of accelerator memory to run efficiently, which makes practical deployment challenging and expensive. In this paper, we present a solution to this memory problem, in form of a new compression and execution framework called QMoE. Specifically, QMoE consists of a scalable algorithm which accurately compresses trillion-parameter MoEs to less than 1 bit per parameter, in a custom format co-designed with bespoke GPU decoding kernels to facilitate efficient end-to-end compressed inference, with minor runtime overheads relative to uncompressed execution. Concretely, QMoE can compress the 1.6 trillion parameter SwitchTransformer-c2048 model to less than 160GB (20x compression, 0.8 bits per parameter) at only minor accuracy loss, in less than a day on a single GPU. This enables, for the first time, the execution of a trillion-parameter model on affordable commodity hardware, like a single server with 4x NVIDIA A6000 or 8x NVIDIA 3090 GPUs, at less than 5% runtime overhead relative to ideal uncompressed inference. The source code and compressed models are available at github.com/IST-DASLab/qmoe.

  • 2 authors
·
Oct 25, 2023 3

Ferret: Federated Full-Parameter Tuning at Scale for Large Language Models

Large Language Models (LLMs) have become indispensable in numerous real-world applications. Unfortunately, fine-tuning these models at scale, especially in federated settings where data privacy and communication efficiency are critical, presents significant challenges. Existing methods often resort to parameter-efficient fine-tuning (PEFT) to mitigate communication overhead, but this typically comes at the cost of model accuracy. To address these limitations, we propose federated full-parameter tuning at scale for LLMs (Ferret), the first first-order method with shared randomness to enable scalable full-parameter tuning of LLMs across decentralized data sources while maintaining competitive model accuracy. Ferret accomplishes this through three aspects: (1) it employs widely applied first-order methods for efficient local updates; (2) it projects these updates into a low-dimensional space to considerably reduce communication overhead; and (3) it reconstructs local updates from this low-dimensional space with shared randomness to facilitate effective full-parameter global aggregation, ensuring fast convergence and competitive final performance. Our rigorous theoretical analyses and insights along with extensive experiments, show that Ferret significantly enhances the scalability of existing federated full-parameter tuning approaches by achieving high computational efficiency, reduced communication overhead, and fast convergence, all while maintaining competitive model accuracy. Our implementation is available at https://github.com/allen4747/Ferret.

  • 5 authors
·
Sep 10, 2024 2

ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning

Recently, advancements in video synthesis have attracted significant attention. Video synthesis models such as AnimateDiff and Stable Video Diffusion have demonstrated the practical applicability of diffusion models in creating dynamic visual content. The emergence of SORA has further spotlighted the potential of video generation technologies. Nonetheless, the extension of video lengths has been constrained by the limitations in computational resources. Most existing video synthesis models can only generate short video clips. In this paper, we propose a novel post-tuning methodology for video synthesis models, called ExVideo. This approach is designed to enhance the capability of current video synthesis models, allowing them to produce content over extended temporal durations while incurring lower training expenditures. In particular, we design extension strategies across common temporal model architectures respectively, including 3D convolution, temporal attention, and positional embedding. To evaluate the efficacy of our proposed post-tuning approach, we conduct extension training on the Stable Video Diffusion model. Our approach augments the model's capacity to generate up to 5times its original number of frames, requiring only 1.5k GPU hours of training on a dataset comprising 40k videos. Importantly, the substantial increase in video length doesn't compromise the model's innate generalization capabilities, and the model showcases its advantages in generating videos of diverse styles and resolutions. We will release the source code and the enhanced model publicly.

  • 5 authors
·
Jun 20, 2024 3

PVP: Pre-trained Visual Parameter-Efficient Tuning

Large-scale pre-trained transformers have demonstrated remarkable success in various computer vision tasks. However, it is still highly challenging to fully fine-tune these models for downstream tasks due to their high computational and storage costs. Recently, Parameter-Efficient Tuning (PETuning) techniques, e.g., Visual Prompt Tuning (VPT) and Low-Rank Adaptation (LoRA), have significantly reduced the computation and storage cost by inserting lightweight prompt modules into the pre-trained models and tuning these prompt modules with a small number of trainable parameters, while keeping the transformer backbone frozen. Although only a few parameters need to be adjusted, most PETuning methods still require a significant amount of downstream task training data to achieve good results. The performance is inadequate on low-data regimes, especially when there are only one or two examples per class. To this end, we first empirically identify the poor performance is mainly due to the inappropriate way of initializing prompt modules, which has also been verified in the pre-trained language models. Next, we propose a Pre-trained Visual Parameter-efficient (PVP) Tuning framework, which pre-trains the parameter-efficient tuning modules first and then leverages the pre-trained modules along with the pre-trained transformer backbone to perform parameter-efficient tuning on downstream tasks. Experiment results on five Fine-Grained Visual Classification (FGVC) and VTAB-1k datasets demonstrate that our proposed method significantly outperforms state-of-the-art PETuning methods.

  • 6 authors
·
Apr 26, 2023

MoS: Unleashing Parameter Efficiency of Low-Rank Adaptation with Mixture of Shards

The rapid scaling of large language models necessitates more lightweight finetuning methods to reduce the explosive GPU memory overhead when numerous customized models are served simultaneously. Targeting more parameter-efficient low-rank adaptation (LoRA), parameter sharing presents a promising solution. Empirically, our research into high-level sharing principles highlights the indispensable role of differentiation in reversing the detrimental effects of pure sharing. Guided by this finding, we propose Mixture of Shards (MoS), incorporating both inter-layer and intra-layer sharing schemes, and integrating four nearly cost-free differentiation strategies, namely subset selection, pair dissociation, vector sharding, and shard privatization. Briefly, it selects a designated number of shards from global pools with a Mixture-of-Experts (MoE)-like routing mechanism before sequentially concatenating them to low-rank matrices. Hence, it retains all the advantages of LoRA while offering enhanced parameter efficiency, and effectively circumvents the drawbacks of peer parameter-sharing methods. Our empirical experiments demonstrate approximately 8x parameter savings in a standard LoRA setting. The ablation study confirms the significance of each component. Our insights into parameter sharing and MoS method may illuminate future developments of more parameter-efficient finetuning methods.

  • 8 authors
·
Oct 1, 2024

ScaLearn: Simple and Highly Parameter-Efficient Task Transfer by Learning to Scale

Multi-task learning (MTL) has shown considerable practical benefits, particularly when using pre-trained language models (PLMs). While this is commonly achieved by simultaneously learning n tasks under a joint optimization procedure, recent methods such as AdapterFusion structure the problem into two distinct stages: (i) task learning, where knowledge specific to a task is encapsulated within sets of parameters (\eg adapters), and (ii) transfer, where this already learned knowledge is leveraged for a target task. This separation of concerns provides numerous benefits, such as promoting reusability, and addressing cases involving data privacy and societal concerns; on the flip side, current two-stage MTL methods come with the cost of introducing a substantial number of additional parameters. In this work, we address this issue by leveraging the usefulness of linearly scaling the output representations of source adapters for transfer learning. We introduce ScaLearn, a simple and highly parameter-efficient two-stage MTL method that capitalizes on the knowledge of the source tasks by learning a minimal set of scaling parameters that enable effective knowledge transfer to a target task. Our experiments on three benchmarks (GLUE, SuperGLUE, and HumSet) show that our ScaLearn, in addition to facilitating the benefits of two-stage MTL, consistently outperforms strong baselines with only a small number of transfer parameters - roughly 0.35% of those of AdapterFusion. Remarkably, we observe that ScaLearn maintains its strong abilities even when further reducing parameters through uniform scaling and layer-sharing, achieving similarly competitive results with only 8 transfer parameters for each target task. Our proposed approach thus demonstrates the power of simple scaling as a promise for more efficient task transfer.

  • 5 authors
·
Oct 2, 2023

IncreLoRA: Incremental Parameter Allocation Method for Parameter-Efficient Fine-tuning

With the increasing size of pre-trained language models (PLMs), fine-tuning all the parameters in the model is not efficient, especially when there are a large number of downstream tasks, which incur significant training and storage costs. Many parameter-efficient fine-tuning (PEFT) approaches have been proposed, among which, Low-Rank Adaptation (LoRA) is a representative approach that injects trainable rank decomposition matrices into every target module. Yet LoRA ignores the importance of parameters in different modules. To address this problem, many works have been proposed to prune the parameters of LoRA. However, under limited training conditions, the upper bound of the rank of the pruned parameter matrix is still affected by the preset values. We, therefore, propose IncreLoRA, an incremental parameter allocation method that adaptively adds trainable parameters during training based on the importance scores of each module. This approach is different from the pruning method as it is not limited by the initial number of training parameters, and each parameter matrix has a higher rank upper bound for the same training overhead. We conduct extensive experiments on GLUE to demonstrate the effectiveness of IncreLoRA. The results show that our method owns higher parameter efficiency, especially when under the low-resource settings where our method significantly outperforms the baselines. Our code is publicly available.

  • 6 authors
·
Aug 23, 2023