- MorphNLI: A Stepwise Approach to Natural Language Inference Using Text Morphing We introduce MorphNLI, a modular step-by-step approach to natural language inference (NLI). When classifying the premise-hypothesis pairs into {entailment, contradiction, neutral}, we use a language model to generate the necessary edits to incrementally transform (i.e., morph) the premise into the hypothesis. Then, using an off-the-shelf NLI model we track how the entailment progresses with these atomic changes, aggregating these intermediate labels into a final output. We demonstrate the advantages of our proposed method particularly in realistic cross-domain settings, where our method always outperforms strong baselines with improvements up to 12.6% (relative). Further, our proposed approach is explainable as the atomic edits can be used to understand the overall NLI label. 5 authors · Feb 13
- ViANLI: Adversarial Natural Language Inference for Vietnamese The development of Natural Language Processing (NLI) datasets and models has been inspired by innovations in annotation design. With the rapid development of machine learning models today, the performance of existing machine learning models has quickly reached state-of-the-art results on a variety of tasks related to natural language processing, including natural language inference tasks. By using a pre-trained model during the annotation process, it is possible to challenge current NLI models by having humans produce premise-hypothesis combinations that the machine model cannot correctly predict. To remain attractive and challenging in the research of natural language inference for Vietnamese, in this paper, we introduce the adversarial NLI dataset to the NLP research community with the name ViANLI. This data set contains more than 10K premise-hypothesis pairs and is built by a continuously adjusting process to obtain the most out of the patterns generated by the annotators. ViANLI dataset has brought many difficulties to many current SOTA models when the accuracy of the most powerful model on the test set only reached 48.4%. Additionally, the experimental results show that the models trained on our dataset have significantly improved the results on other Vietnamese NLI datasets. 3 authors · Jun 25, 2024
- First Train to Generate, then Generate to Train: UnitedSynT5 for Few-Shot NLI Natural Language Inference (NLI) tasks require identifying the relationship between sentence pairs, typically classified as entailment, contradiction, or neutrality. While the current state-of-the-art (SOTA) model, Entailment Few-Shot Learning (EFL), achieves a 93.1% accuracy on the Stanford Natural Language Inference (SNLI) dataset, further advancements are constrained by the dataset's limitations. To address this, we propose a novel approach leveraging synthetic data augmentation to enhance dataset diversity and complexity. We present UnitedSynT5, an advanced extension of EFL that leverages a T5-based generator to synthesize additional premise-hypothesis pairs, which are rigorously cleaned and integrated into the training data. These augmented examples are processed within the EFL framework, embedding labels directly into hypotheses for consistency. We train a GTR-T5-XL model on this expanded dataset, achieving a new benchmark of 94.7% accuracy on the SNLI dataset, 94.01% accuracy on the E-SNLI dataset, and 92.57% accuracy on the MultiNLI dataset, surpassing the previous SOTA models. This research demonstrates the potential of synthetic data augmentation in improving NLI models, offering a path forward for further advancements in natural language understanding tasks. 4 authors · Dec 12, 2024
- Learning to Memorize Entailment and Discourse Relations for Persona-Consistent Dialogues Maintaining engagement and consistency is particularly important in dialogue systems. Existing works have improved the performance of dialogue systems by intentionally learning interlocutor personas with sophisticated network structures. One issue with this approach is that it requires more personal corpora with annotations. Additionally, these models typically perform the next utterance prediction to generate a response but neglect the discourse coherence in the entire conversation. To address these issues, this study proposes a method of learning to memorize entailment and discourse relations for persona-consistent dialogue tasks. Entailment text pairs in natural language inference dataset were applied to learn latent entailment relations as external memories by premise-to-hypothesis generation task. Furthermore, an internal memory with a similar architecture was applied to the discourse information in the dialogue. Placing orthogonality restrictions on these two memory spaces ensures that the latent entailment relations remain dialogue-independent. Both memories collaborate to obtain entailment and discourse representation for the generation, allowing a deeper understanding of both consistency and coherence. Experiments on two large public datasets, PersonaChat and DSTC7-AVSD, demonstrated the effectiveness of the proposed method. Both automatic and human evaluations indicate that the proposed model outperforms several strong baselines in terms of both persona consistency and response coherence. Our source code is available at https://github.com/Chenrj233/LMEDR. 4 authors · Jan 12, 2023 1
- VIOLIN: A Large-Scale Dataset for Video-and-Language Inference We introduce a new task, Video-and-Language Inference, for joint multimodal understanding of video and text. Given a video clip with aligned subtitles as premise, paired with a natural language hypothesis based on the video content, a model needs to infer whether the hypothesis is entailed or contradicted by the given video clip. A new large-scale dataset, named Violin (VIdeO-and-Language INference), is introduced for this task, which consists of 95,322 video-hypothesis pairs from 15,887 video clips, spanning over 582 hours of video. These video clips contain rich content with diverse temporal dynamics, event shifts, and people interactions, collected from two sources: (i) popular TV shows, and (ii) movie clips from YouTube channels. In order to address our new multimodal inference task, a model is required to possess sophisticated reasoning skills, from surface-level grounding (e.g., identifying objects and characters in the video) to in-depth commonsense reasoning (e.g., inferring causal relations of events in the video). We present a detailed analysis of the dataset and an extensive evaluation over many strong baselines, providing valuable insights on the challenges of this new task. 7 authors · Mar 25, 2020
- When Does Meaning Backfire? Investigating the Role of AMRs in NLI Natural Language Inference (NLI) relies heavily on adequately parsing the semantic content of the premise and hypothesis. In this work, we investigate whether adding semantic information in the form of an Abstract Meaning Representation (AMR) helps pretrained language models better generalize in NLI. Our experiments integrating AMR into NLI in both fine-tuning and prompting settings show that the presence of AMR in fine-tuning hinders model generalization while prompting with AMR leads to slight gains in GPT-4o. However, an ablation study reveals that the improvement comes from amplifying surface-level differences rather than aiding semantic reasoning. This amplification can mislead models to predict non-entailment even when the core meaning is preserved. 3 authors · Jun 17