new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 19

Duplex-GS: Proxy-Guided Weighted Blending for Real-Time Order-Independent Gaussian Splatting

Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated remarkable rendering fidelity and efficiency. However, these methods still rely on computationally expensive sequential alpha-blending operations, resulting in significant overhead, particularly on resource-constrained platforms. In this paper, we propose Duplex-GS, a dual-hierarchy framework that integrates proxy Gaussian representations with order-independent rendering techniques to achieve photorealistic results while sustaining real-time performance. To mitigate the overhead caused by view-adaptive radix sort, we introduce cell proxies for local Gaussians management and propose cell search rasterization for further acceleration. By seamlessly combining our framework with Order-Independent Transparency (OIT), we develop a physically inspired weighted sum rendering technique that simultaneously eliminates "popping" and "transparency" artifacts, yielding substantial improvements in both accuracy and efficiency. Extensive experiments on a variety of real-world datasets demonstrate the robustness of our method across diverse scenarios, including multi-scale training views and large-scale environments. Our results validate the advantages of the OIT rendering paradigm in Gaussian Splatting, achieving high-quality rendering with an impressive 1.5 to 4 speedup over existing OIT based Gaussian Splatting approaches and 52.2% to 86.9% reduction of the radix sort overhead without quality degradation.

  • 5 authors
·
Aug 5, 2025

BiBench: Benchmarking and Analyzing Network Binarization

Network binarization emerges as one of the most promising compression approaches offering extraordinary computation and memory savings by minimizing the bit-width. However, recent research has shown that applying existing binarization algorithms to diverse tasks, architectures, and hardware in realistic scenarios is still not straightforward. Common challenges of binarization, such as accuracy degradation and efficiency limitation, suggest that its attributes are not fully understood. To close this gap, we present BiBench, a rigorously designed benchmark with in-depth analysis for network binarization. We first carefully scrutinize the requirements of binarization in the actual production and define evaluation tracks and metrics for a comprehensive and fair investigation. Then, we evaluate and analyze a series of milestone binarization algorithms that function at the operator level and with extensive influence. Our benchmark reveals that 1) the binarized operator has a crucial impact on the performance and deployability of binarized networks; 2) the accuracy of binarization varies significantly across different learning tasks and neural architectures; 3) binarization has demonstrated promising efficiency potential on edge devices despite the limited hardware support. The results and analysis also lead to a promising paradigm for accurate and efficient binarization. We believe that BiBench will contribute to the broader adoption of binarization and serve as a foundation for future research. The code for our BiBench is released https://github.com/htqin/BiBench .

  • 8 authors
·
Jan 26, 2023

Sort & Slice: A Simple and Superior Alternative to Hash-Based Folding for Extended-Connectivity Fingerprints

Extended-connectivity fingerprints (ECFPs) are a ubiquitous tool in current cheminformatics and molecular machine learning, and one of the most prevalent molecular feature extraction techniques used for chemical prediction. Atom features learned by graph neural networks can be aggregated to compound-level representations using a large spectrum of graph pooling methods; in contrast, sets of detected ECFP substructures are by default transformed into bit vectors using only a simple hash-based folding procedure. We introduce a general mathematical framework for the vectorisation of structural fingerprints via a formal operation called substructure pooling that encompasses hash-based folding, algorithmic substructure-selection, and a wide variety of other potential techniques. We go on to describe Sort & Slice, an easy-to-implement and bit-collision-free alternative to hash-based folding for the pooling of ECFP substructures. Sort & Slice first sorts ECFP substructures according to their relative prevalence in a given set of training compounds and then slices away all but the L most frequent substructures which are subsequently used to generate a binary fingerprint of desired length, L. We computationally compare the performance of hash-based folding, Sort & Slice, and two advanced supervised substructure-selection schemes (filtering and mutual-information maximisation) for ECFP-based molecular property prediction. Our results indicate that, despite its technical simplicity, Sort & Slice robustly (and at times substantially) outperforms traditional hash-based folding as well as the other investigated methods across prediction tasks, data splitting techniques, machine-learning models and ECFP hyperparameters. We thus recommend that Sort & Slice canonically replace hash-based folding as the default substructure-pooling technique to vectorise ECFPs for supervised molecular machine learning.

  • 4 authors
·
Mar 10, 2024