Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOpenIllumination: A Multi-Illumination Dataset for Inverse Rendering Evaluation on Real Objects
We introduce OpenIllumination, a real-world dataset containing over 108K images of 64 objects with diverse materials, captured under 72 camera views and a large number of different illuminations. For each image in the dataset, we provide accurate camera parameters, illumination ground truth, and foreground segmentation masks. Our dataset enables the quantitative evaluation of most inverse rendering and material decomposition methods for real objects. We examine several state-of-the-art inverse rendering methods on our dataset and compare their performances. The dataset and code can be found on the project page: https://oppo-us-research.github.io/OpenIllumination.
Simultaneous Clutter Detection and Semantic Segmentation of Moving Objects for Automotive Radar Data
The unique properties of radar sensors, such as their robustness to adverse weather conditions, make them an important part of the environment perception system of autonomous vehicles. One of the first steps during the processing of radar point clouds is often the detection of clutter, i.e. erroneous points that do not correspond to real objects. Another common objective is the semantic segmentation of moving road users. These two problems are handled strictly separate from each other in literature. The employed neural networks are always focused entirely on only one of the tasks. In contrast to this, we examine ways to solve both tasks at the same time with a single jointly used model. In addition to a new augmented multi-head architecture, we also devise a method to represent a network's predictions for the two tasks with only one output value. This novel approach allows us to solve the tasks simultaneously with the same inference time as a conventional task-specific model. In an extensive evaluation, we show that our setup is highly effective and outperforms every existing network for semantic segmentation on the RadarScenes dataset.
OLATverse: A Large-scale Real-world Object Dataset with Precise Lighting Control
We introduce OLATverse, a large-scale dataset comprising around 9M images of 765 real-world objects, captured from multiple viewpoints under a diverse set of precisely controlled lighting conditions. While recent advances in object-centric inverse rendering, novel view synthesis and relighting have shown promising results, most techniques still heavily rely on the synthetic datasets for training and small-scale real-world datasets for benchmarking, which limits their realism and generalization. To address this gap, OLATverse offers two key advantages over existing datasets: large-scale coverage of real objects and high-fidelity appearance under precisely controlled illuminations. Specifically, OLATverse contains 765 common and uncommon real-world objects, spanning a wide range of material categories. Each object is captured using 35 DSLR cameras and 331 individually controlled light sources, enabling the simulation of diverse illumination conditions. In addition, for each object, we provide well-calibrated camera parameters, accurate object masks, photometric surface normals, and diffuse albedo as auxiliary resources. We also construct an extensive evaluation set, establishing the first comprehensive real-world object-centric benchmark for inverse rendering and normal estimation. We believe that OLATverse represents a pivotal step toward integrating the next generation of inverse rendering and relighting methods with real-world data. The full dataset, along with all post-processing workflows, will be publicly released at https://vcai.mpi-inf.mpg.de/projects/OLATverse/.
PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation
Realistic object interactions are crucial for creating immersive virtual experiences, yet synthesizing realistic 3D object dynamics in response to novel interactions remains a significant challenge. Unlike unconditional or text-conditioned dynamics generation, action-conditioned dynamics requires perceiving the physical material properties of objects and grounding the 3D motion prediction on these properties, such as object stiffness. However, estimating physical material properties is an open problem due to the lack of material ground-truth data, as measuring these properties for real objects is highly difficult. We present PhysDreamer, a physics-based approach that endows static 3D objects with interactive dynamics by leveraging the object dynamics priors learned by video generation models. By distilling these priors, PhysDreamer enables the synthesis of realistic object responses to novel interactions, such as external forces or agent manipulations. We demonstrate our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study. PhysDreamer takes a step towards more engaging and realistic virtual experiences by enabling static 3D objects to dynamically respond to interactive stimuli in a physically plausible manner. See our project page at https://physdreamer.github.io/.
RobustDexGrasp: Robust Dexterous Grasping of General Objects from Single-view Perception
Robust grasping of various objects from single-view perception is fundamental for dexterous robots. Previous works often rely on fully observable objects, expert demonstrations, or static grasping poses, which restrict their generalization ability and adaptability to external disturbances. In this paper, we present a reinforcement-learning-based framework that enables zero-shot dynamic dexterous grasping of a wide range of unseen objects from single-view perception, while performing adaptive motions to external disturbances. We utilize a hand-centric object representation for shape feature extraction that emphasizes interaction-relevant local shapes, enhancing robustness to shape variance and uncertainty. To enable effective hand adaptation to disturbances with limited observations, we propose a mixed curriculum learning strategy, which first utilizes imitation learning to distill a policy trained with privileged real-time visual-tactile feedback, and gradually transfers to reinforcement learning to learn adaptive motions under disturbances caused by observation noises and dynamic randomization. Our experiments demonstrate strong generalization in grasping unseen objects with random poses, achieving success rates of 97.0% across 247,786 simulated objects and 94.6% across 512 real objects. We also demonstrate the robustness of our method to various disturbances, including unobserved object movement and external forces, through both quantitative and qualitative evaluations. Project Page: https://zdchan.github.io/Robust_DexGrasp/
Ambient Adventures: Teaching ChatGPT on Developing Complex Stories
Imaginative play is an area of creativity that could allow robots to engage with the world around them in a much more personified way. Imaginary play can be seen as taking real objects and locations and using them as imaginary objects and locations in virtual scenarios. We adopted the story generation capability of large language models (LLMs) to obtain the stories used for imaginary play with human-written prompts. Those generated stories will be simplified and mapped into action sequences that can guide the agent in imaginary play. To evaluate whether the agent can successfully finish the imaginary play, we also designed a text adventure game to simulate a house as the playground for the agent to interact.
Relighting Scenes with Object Insertions in Neural Radiance Fields
The insertion of objects into a scene and relighting are commonly utilized applications in augmented reality (AR). Previous methods focused on inserting virtual objects using CAD models or real objects from single-view images, resulting in highly limited AR application scenarios. We propose a novel NeRF-based pipeline for inserting object NeRFs into scene NeRFs, enabling novel view synthesis and realistic relighting, supporting physical interactions like casting shadows onto each other, from two sets of images depicting the object and scene. The lighting environment is in a hybrid representation of Spherical Harmonics and Spherical Gaussians, representing both high- and low-frequency lighting components very well, and supporting non-Lambertian surfaces. Specifically, we leverage the benefits of volume rendering and introduce an innovative approach for efficient shadow rendering by comparing the depth maps between the camera view and the light source view and generating vivid soft shadows. The proposed method achieves realistic relighting effects in extensive experimental evaluations.
HOC-Search: Efficient CAD Model and Pose Retrieval from RGB-D Scans
We present an automated and efficient approach for retrieving high-quality CAD models of objects and their poses in a scene captured by a moving RGB-D camera. We first investigate various objective functions to measure similarity between a candidate CAD object model and the available data, and the best objective function appears to be a "render-and-compare" method comparing depth and mask rendering. We thus introduce a fast-search method that approximates an exhaustive search based on this objective function for simultaneously retrieving the object category, a CAD model, and the pose of an object given an approximate 3D bounding box. This method involves a search tree that organizes the CAD models and object properties including object category and pose for fast retrieval and an algorithm inspired by Monte Carlo Tree Search, that efficiently searches this tree. We show that this method retrieves CAD models that fit the real objects very well, with a speed-up factor of 10x to 120x compared to exhaustive search.
Diffusion-based G-buffer generation and rendering
Despite recent advances in text-to-image generation, controlling geometric layout and material properties in synthesized scenes remains challenging. We present a novel pipeline that first produces a G-buffer (albedo, normals, depth, roughness, and metallic) from a text prompt and then renders a final image through a modular neural network. This intermediate representation enables fine-grained editing: users can copy and paste within specific G-buffer channels to insert or reposition objects, or apply masks to the irradiance channel to adjust lighting locally. As a result, real objects can be seamlessly integrated into virtual scenes, and virtual objects can be placed into real environments with high fidelity. By separating scene decomposition from image rendering, our method offers a practical balance between detailed post-generation control and efficient text-driven synthesis. We demonstrate its effectiveness on a variety of examples, showing that G-buffer editing significantly extends the flexibility of text-guided image generation.
Interpreting and Editing Vision-Language Representations to Mitigate Hallucinations
We investigate the internal representations of vision-language models (VLMs) to address hallucinations, a persistent challenge despite advances in model size and training. We project VLMs' internal image representations to their language vocabulary and observe more confident output probabilities on real objects than hallucinated objects. We additionally use these output probabilities to spatially localize real objects. Building on this approach, we introduce a knowledge erasure algorithm that removes hallucinations by linearly orthogonalizing image features with respect to hallucinated object features. We show that targeted edits to a model's latent representations can reduce hallucinations by up to 25.7% on the COCO2014 dataset while preserving performance. Our findings demonstrate how a deeper understanding of VLMs' latent representations can enhance reliability and enable novel capabilities, such as zero-shot segmentation.
CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty counting in images.
MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors
Recent works in inverse rendering have shown promise in using multi-view images of an object to recover shape, albedo, and materials. However, the recovered components often fail to render accurately under new lighting conditions due to the intrinsic challenge of disentangling albedo and material properties from input images. To address this challenge, we introduce MaterialFusion, an enhanced conventional 3D inverse rendering pipeline that incorporates a 2D prior on texture and material properties. We present StableMaterial, a 2D diffusion model prior that refines multi-lit data to estimate the most likely albedo and material from given input appearances. This model is trained on albedo, material, and relit image data derived from a curated dataset of approximately ~12K artist-designed synthetic Blender objects called BlenderVault. we incorporate this diffusion prior with an inverse rendering framework where we use score distillation sampling (SDS) to guide the optimization of the albedo and materials, improving relighting performance in comparison with previous work. We validate MaterialFusion's relighting performance on 4 datasets of synthetic and real objects under diverse illumination conditions, showing our diffusion-aided approach significantly improves the appearance of reconstructed objects under novel lighting conditions. We intend to publicly release our BlenderVault dataset to support further research in this field.
A Large Dataset of Object Scans
We have created a dataset of more than ten thousand 3D scans of real objects. To create the dataset, we recruited 70 operators, equipped them with consumer-grade mobile 3D scanning setups, and paid them to scan objects in their environments. The operators scanned objects of their choosing, outside the laboratory and without direct supervision by computer vision professionals. The result is a large and diverse collection of object scans: from shoes, mugs, and toys to grand pianos, construction vehicles, and large outdoor sculptures. We worked with an attorney to ensure that data acquisition did not violate privacy constraints. The acquired data was irrevocably placed in the public domain and is available freely at http://redwood-data.org/3dscan .
Mesh2Tex: Generating Mesh Textures from Image Queries
Remarkable advances have been achieved recently in learning neural representations that characterize object geometry, while generating textured objects suitable for downstream applications and 3D rendering remains at an early stage. In particular, reconstructing textured geometry from images of real objects is a significant challenge -- reconstructed geometry is often inexact, making realistic texturing a significant challenge. We present Mesh2Tex, which learns a realistic object texture manifold from uncorrelated collections of 3D object geometry and photorealistic RGB images, by leveraging a hybrid mesh-neural-field texture representation. Our texture representation enables compact encoding of high-resolution textures as a neural field in the barycentric coordinate system of the mesh faces. The learned texture manifold enables effective navigation to generate an object texture for a given 3D object geometry that matches to an input RGB image, which maintains robustness even under challenging real-world scenarios where the mesh geometry approximates an inexact match to the underlying geometry in the RGB image. Mesh2Tex can effectively generate realistic object textures for an object mesh to match real images observations towards digitization of real environments, significantly improving over previous state of the art.
LightSwitch: Multi-view Relighting with Material-guided Diffusion
Recent approaches for 3D relighting have shown promise in integrating 2D image relighting generative priors to alter the appearance of a 3D representation while preserving the underlying structure. Nevertheless, generative priors used for 2D relighting that directly relight from an input image do not take advantage of intrinsic properties of the subject that can be inferred or cannot consider multi-view data at scale, leading to subpar relighting. In this paper, we propose Lightswitch, a novel finetuned material-relighting diffusion framework that efficiently relights an arbitrary number of input images to a target lighting condition while incorporating cues from inferred intrinsic properties. By using multi-view and material information cues together with a scalable denoising scheme, our method consistently and efficiently relights dense multi-view data of objects with diverse material compositions. We show that our 2D relighting prediction quality exceeds previous state-of-the-art relighting priors that directly relight from images. We further demonstrate that LightSwitch matches or outperforms state-of-the-art diffusion inverse rendering methods in relighting synthetic and real objects in as little as 2 minutes.
AR2-D2:Training a Robot Without a Robot
Diligently gathered human demonstrations serve as the unsung heroes empowering the progression of robot learning. Today, demonstrations are collected by training people to use specialized controllers, which (tele-)operate robots to manipulate a small number of objects. By contrast, we introduce AR2-D2: a system for collecting demonstrations which (1) does not require people with specialized training, (2) does not require any real robots during data collection, and therefore, (3) enables manipulation of diverse objects with a real robot. AR2-D2 is a framework in the form of an iOS app that people can use to record a video of themselves manipulating any object while simultaneously capturing essential data modalities for training a real robot. We show that data collected via our system enables the training of behavior cloning agents in manipulating real objects. Our experiments further show that training with our AR data is as effective as training with real-world robot demonstrations. Moreover, our user study indicates that users find AR2-D2 intuitive to use and require no training in contrast to four other frequently employed methods for collecting robot demonstrations.
OPD: Single-view 3D Openable Part Detection
We address the task of predicting what parts of an object can open and how they move when they do so. The input is a single image of an object, and as output we detect what parts of the object can open, and the motion parameters describing the articulation of each openable part. To tackle this task, we create two datasets of 3D objects: OPDSynth based on existing synthetic objects, and OPDReal based on RGBD reconstructions of real objects. We then design OPDRCNN, a neural architecture that detects openable parts and predicts their motion parameters. Our experiments show that this is a challenging task especially when considering generalization across object categories, and the limited amount of information in a single image. Our architecture outperforms baselines and prior work especially for RGB image inputs. Short video summary at https://www.youtube.com/watch?v=P85iCaD0rfc
LRM-Zero: Training Large Reconstruction Models with Synthesized Data
We present LRM-Zero, a Large Reconstruction Model (LRM) trained entirely on synthesized 3D data, achieving high-quality sparse-view 3D reconstruction. The core of LRM-Zero is our procedural 3D dataset, Zeroverse, which is automatically synthesized from simple primitive shapes with random texturing and augmentations (e.g., height fields, boolean differences, and wireframes). Unlike previous 3D datasets (e.g., Objaverse) which are often captured or crafted by humans to approximate real 3D data, Zeroverse completely ignores realistic global semantics but is rich in complex geometric and texture details that are locally similar to or even more intricate than real objects. We demonstrate that our LRM-Zero, trained with our fully synthesized Zeroverse, can achieve high visual quality in the reconstruction of real-world objects, competitive with models trained on Objaverse. We also analyze several critical design choices of Zeroverse that contribute to LRM-Zero's capability and training stability. Our work demonstrates that 3D reconstruction, one of the core tasks in 3D vision, can potentially be addressed without the semantics of real-world objects. The Zeroverse's procedural synthesis code and interactive visualization are available at: https://desaixie.github.io/lrm-zero/.
PointVLA: Injecting the 3D World into Vision-Language-Action Models
Vision-Language-Action (VLA) models excel at robotic tasks by leveraging large-scale 2D vision-language pretraining, but their reliance on RGB images limits spatial reasoning critical for real-world interaction. Retraining these models with 3D data is computationally prohibitive, while discarding existing 2D datasets wastes valuable resources. To bridge this gap, we propose PointVLA, a framework that enhances pre-trained VLAs with point cloud inputs without requiring retraining. Our method freezes the vanilla action expert and injects 3D features via a lightweight modular block. To identify the most effective way of integrating point cloud representations, we conduct a skip-block analysis to pinpoint less useful blocks in the vanilla action expert, ensuring that 3D features are injected only into these blocks--minimizing disruption to pre-trained representations. Extensive experiments demonstrate that PointVLA outperforms state-of-the-art 2D imitation learning methods, such as OpenVLA, Diffusion Policy and DexVLA, across both simulated and real-world robotic tasks. Specifically, we highlight several key advantages of PointVLA enabled by point cloud integration: (1) Few-shot multi-tasking, where PointVLA successfully performs four different tasks using only 20 demonstrations each; (2) Real-vs-photo discrimination, where PointVLA distinguishes real objects from their images, leveraging 3D world knowledge to improve safety and reliability; (3) Height adaptability, Unlike conventional 2D imitation learning methods, PointVLA enables robots to adapt to objects at varying table height that unseen in train data. Furthermore, PointVLA achieves strong performance in long-horizon tasks, such as picking and packing objects from a moving conveyor belt, showcasing its ability to generalize across complex, dynamic environments.
XDen-1K: A Density Field Dataset of Real-World Objects
A deep understanding of the physical world is a central goal for embodied AI and realistic simulation. While current models excel at capturing an object's surface geometry and appearance, they largely neglect its internal physical properties. This omission is critical, as properties like volumetric density are fundamental for predicting an object's center of mass, stability, and interaction dynamics in applications ranging from robotic manipulation to physical simulation. The primary bottleneck has been the absence of large-scale, real-world data. To bridge this gap, we introduce XDen-1K, the first large-scale, multi-modal dataset designed for real-world physical property estimation, with a particular focus on volumetric density. The core of this dataset consists of 1,000 real-world objects across 148 categories, for which we provide comprehensive multi-modal data, including a high-resolution 3D geometric model with part-level annotations and a corresponding set of real-world biplanar X-ray scans. Building upon this data, we introduce a novel optimization framework that recovers a high-fidelity volumetric density field of each object from its sparse X-ray views. To demonstrate its practical value, we add X-ray images as a conditioning signal to an existing segmentation network and perform volumetric segmentation. Furthermore, we conduct experiments on downstream robotics tasks. The results show that leveraging the dataset can effectively improve the accuracy of center-of-mass estimation and the success rate of robotic manipulation. We believe XDen-1K will serve as a foundational resource and a challenging new benchmark, catalyzing future research in physically grounded visual inference and embodied AI.
HANDAL: A Dataset of Real-World Manipulable Object Categories with Pose Annotations, Affordances, and Reconstructions
We present the HANDAL dataset for category-level object pose estimation and affordance prediction. Unlike previous datasets, ours is focused on robotics-ready manipulable objects that are of the proper size and shape for functional grasping by robot manipulators, such as pliers, utensils, and screwdrivers. Our annotation process is streamlined, requiring only a single off-the-shelf camera and semi-automated processing, allowing us to produce high-quality 3D annotations without crowd-sourcing. The dataset consists of 308k annotated image frames from 2.2k videos of 212 real-world objects in 17 categories. We focus on hardware and kitchen tool objects to facilitate research in practical scenarios in which a robot manipulator needs to interact with the environment beyond simple pushing or indiscriminate grasping. We outline the usefulness of our dataset for 6-DoF category-level pose+scale estimation and related tasks. We also provide 3D reconstructed meshes of all objects, and we outline some of the bottlenecks to be addressed for democratizing the collection of datasets like this one.
SCoDA: Domain Adaptive Shape Completion for Real Scans
3D shape completion from point clouds is a challenging task, especially from scans of real-world objects. Considering the paucity of 3D shape ground truths for real scans, existing works mainly focus on benchmarking this task on synthetic data, e.g. 3D computer-aided design models. However, the domain gap between synthetic and real data limits the generalizability of these methods. Thus, we propose a new task, SCoDA, for the domain adaptation of real scan shape completion from synthetic data. A new dataset, ScanSalon, is contributed with a bunch of elaborate 3D models created by skillful artists according to scans. To address this new task, we propose a novel cross-domain feature fusion method for knowledge transfer and a novel volume-consistent self-training framework for robust learning from real data. Extensive experiments prove our method is effective to bring an improvement of 6%~7% mIoU.
CORN: Contact-based Object Representation for Nonprehensile Manipulation of General Unseen Objects
Nonprehensile manipulation is essential for manipulating objects that are too thin, large, or otherwise ungraspable in the wild. To sidestep the difficulty of contact modeling in conventional modeling-based approaches, reinforcement learning (RL) has recently emerged as a promising alternative. However, previous RL approaches either lack the ability to generalize over diverse object shapes, or use simple action primitives that limit the diversity of robot motions. Furthermore, using RL over diverse object geometry is challenging due to the high cost of training a policy that takes in high-dimensional sensory inputs. We propose a novel contact-based object representation and pretraining pipeline to tackle this. To enable massively parallel training, we leverage a lightweight patch-based transformer architecture for our encoder that processes point clouds, thus scaling our training across thousands of environments. Compared to learning from scratch, or other shape representation baselines, our representation facilitates both time- and data-efficient learning. We validate the efficacy of our overall system by zero-shot transferring the trained policy to novel real-world objects. Code and videos are available at https://sites.google.com/view/contact-non-prehensile.
ABO: Dataset and Benchmarks for Real-World 3D Object Understanding
We introduce Amazon Berkeley Objects (ABO), a new large-scale dataset designed to help bridge the gap between real and virtual 3D worlds. ABO contains product catalog images, metadata, and artist-created 3D models with complex geometries and physically-based materials that correspond to real, household objects. We derive challenging benchmarks that exploit the unique properties of ABO and measure the current limits of the state-of-the-art on three open problems for real-world 3D object understanding: single-view 3D reconstruction, material estimation, and cross-domain multi-view object retrieval.
PARTONOMY: Large Multimodal Models with Part-Level Visual Understanding
Real-world objects are composed of distinctive, object-specific parts. Identifying these parts is key to performing fine-grained, compositional reasoning-yet, large multimodal models (LMMs) struggle to perform this seemingly straightforward task. In this work, we introduce PARTONOMY, an LMM benchmark designed for pixel-level part grounding. We construct PARTONOMY from existing part datasets and our own rigorously annotated set of images, encompassing 862 part labels and 534 object labels for evaluation. Unlike existing datasets that simply ask models to identify generic parts, PARTONOMY uses specialized concepts (e.g., agricultural airplane), and challenges models to compare objects' parts, consider part-whole relationships, and justify textual predictions with visual segmentations. Our experiments demonstrate significant limitations in state-of-the-art LMMs (e.g., LISA-13B achieves only 5.9% gIoU), highlighting a critical gap in their part grounding abilities. We note that existing segmentation-enabled LMMs (segmenting LMMs) have two key architectural shortcomings: they use special [SEG] tokens not seen during pretraining which induce distribution shift, and they discard predicted segmentations instead of using past predictions to guide future ones. To address these deficiencies, we train several part-centric LMMs and propose PLUM, a novel segmenting LMM that uses span tagging instead of segmentation tokens and that conditions on prior predictions in a feedback loop. We find that pretrained PLUM outperforms existing segmenting LMMs on reasoning segmentation, VQA, and visual hallucination benchmarks. In addition, PLUM finetuned on our proposed Explanatory Part Segmentation task is competitive with segmenting LMMs trained on significantly more segmentation data. Our work opens up new avenues towards enabling fine-grained, grounded visual understanding in LMMs.
FewSOL: A Dataset for Few-Shot Object Learning in Robotic Environments
We introduce the Few-Shot Object Learning (FewSOL) dataset for object recognition with a few images per object. We captured 336 real-world objects with 9 RGB-D images per object from different views. Object segmentation masks, object poses and object attributes are provided. In addition, synthetic images generated using 330 3D object models are used to augment the dataset. We investigated (i) few-shot object classification and (ii) joint object segmentation and few-shot classification with the state-of-the-art methods for few-shot learning and meta-learning using our dataset. The evaluation results show that there is still a large margin to be improved for few-shot object classification in robotic environments. Our dataset can be used to study a set of few-shot object recognition problems such as classification, detection and segmentation, shape reconstruction, pose estimation, keypoint correspondences and attribute recognition. The dataset and code are available at https://irvlutd.github.io/FewSOL.
HRScene: How Far Are VLMs from Effective High-Resolution Image Understanding?
High-resolution image (HRI) understanding aims to process images with a large number of pixels, such as pathological images and agricultural aerial images, both of which can exceed 1 million pixels. Vision Large Language Models (VLMs) can allegedly handle HRIs, however, there is a lack of a comprehensive benchmark for VLMs to evaluate HRI understanding. To address this gap, we introduce HRScene, a novel unified benchmark for HRI understanding with rich scenes. HRScene incorporates 25 real-world datasets and 2 synthetic diagnostic datasets with resolutions ranging from 1,024 times 1,024 to 35,503 times 26,627. HRScene is collected and re-annotated by 10 graduate-level annotators, covering 25 scenarios, ranging from microscopic to radiology images, street views, long-range pictures, and telescope images. It includes HRIs of real-world objects, scanned documents, and composite multi-image. The two diagnostic evaluation datasets are synthesized by combining the target image with the gold answer and distracting images in different orders, assessing how well models utilize regions in HRI. We conduct extensive experiments involving 28 VLMs, including Gemini 2.0 Flash and GPT-4o. Experiments on HRScene show that current VLMs achieve an average accuracy of around 50% on real-world tasks, revealing significant gaps in HRI understanding. Results on synthetic datasets reveal that VLMs struggle to effectively utilize HRI regions, showing significant Regional Divergence and lost-in-middle, shedding light on future research.
Material Transforms from Disentangled NeRF Representations
In this paper, we first propose a novel method for transferring material transformations across different scenes. Building on disentangled Neural Radiance Field (NeRF) representations, our approach learns to map Bidirectional Reflectance Distribution Functions (BRDF) from pairs of scenes observed in varying conditions, such as dry and wet. The learned transformations can then be applied to unseen scenes with similar materials, therefore effectively rendering the transformation learned with an arbitrary level of intensity. Extensive experiments on synthetic scenes and real-world objects validate the effectiveness of our approach, showing that it can learn various transformations such as wetness, painting, coating, etc. Our results highlight not only the versatility of our method but also its potential for practical applications in computer graphics. We publish our method implementation, along with our synthetic/real datasets on https://github.com/astra-vision/BRDFTransform
Generalizable Articulated Object Reconstruction from Casually Captured RGBD Videos
Articulated objects are prevalent in daily life. Understanding their kinematic structure and reconstructing them have numerous applications in embodied AI and robotics. However, current methods require carefully captured data for training or inference, preventing practical, scalable, and generalizable reconstruction of articulated objects. We focus on reconstruction of an articulated object from a casually captured RGBD video shot with a hand-held camera. A casually captured video of an interaction with an articulated object is easy to acquire at scale using smartphones. However, this setting is quite challenging, as the object and camera move simultaneously and there are significant occlusions as the person interacts with the object. To tackle these challenges, we introduce a coarse-to-fine framework that infers joint parameters and segments movable parts of the object from a dynamic RGBD video. To evaluate our method under this new setting, we build a 20times larger synthetic dataset of 784 videos containing 284 objects across 11 categories. We compare our approach with existing methods that also take video as input. Experiments show that our method can reconstruct synthetic and real articulated objects across different categories from dynamic RGBD videos, outperforming existing methods significantly.
RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning
Recent text-to-image generative models, e.g., Stable Diffusion V3 and Flux, have achieved notable progress. However, these models are strongly restricted to their limited knowledge, a.k.a., their own fixed parameters, that are trained with closed datasets. This leads to significant hallucinations or distortions when facing fine-grained and unseen novel real-world objects, e.g., the appearance of the Tesla Cybertruck. To this end, we present the first real-object-based retrieval-augmented generation framework (RealRAG), which augments fine-grained and unseen novel object generation by learning and retrieving real-world images to overcome the knowledge gaps of generative models. Specifically, to integrate missing memory for unseen novel object generation, we train a reflective retriever by self-reflective contrastive learning, which injects the generator's knowledge into the sef-reflective negatives, ensuring that the retrieved augmented images compensate for the model's missing knowledge. Furthermore, the real-object-based framework integrates fine-grained visual knowledge for the generative models, tackling the distortion problem and improving the realism for fine-grained object generation. Our Real-RAG is superior in its modular application to all types of state-of-the-art text-to-image generative models and also delivers remarkable performance boosts with all of them, such as a gain of 16.18% FID score with the auto-regressive model on the Stanford Car benchmark.
Vi-TacMan: Articulated Object Manipulation via Vision and Touch
Autonomous manipulation of articulated objects remains a fundamental challenge for robots in human environments. Vision-based methods can infer hidden kinematics but can yield imprecise estimates on unfamiliar objects. Tactile approaches achieve robust control through contact feedback but require accurate initialization. This suggests a natural synergy: vision for global guidance, touch for local precision. Yet no framework systematically exploits this complementarity for generalized articulated manipulation. Here we present Vi-TacMan, which uses vision to propose grasps and coarse directions that seed a tactile controller for precise execution. By incorporating surface normals as geometric priors and modeling directions via von Mises-Fisher distributions, our approach achieves significant gains over baselines (all p<0.0001). Critically, manipulation succeeds without explicit kinematic models -- the tactile controller refines coarse visual estimates through real-time contact regulation. Tests on more than 50,000 simulated and diverse real-world objects confirm robust cross-category generalization. This work establishes that coarse visual cues suffice for reliable manipulation when coupled with tactile feedback, offering a scalable paradigm for autonomous systems in unstructured environments.
OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic Perception, Reconstruction and Generation
Recent advances in modeling 3D objects mostly rely on synthetic datasets due to the lack of large-scale realscanned 3D databases. To facilitate the development of 3D perception, reconstruction, and generation in the real world, we propose OmniObject3D, a large vocabulary 3D object dataset with massive high-quality real-scanned 3D objects. OmniObject3D has several appealing properties: 1) Large Vocabulary: It comprises 6,000 scanned objects in 190 daily categories, sharing common classes with popular 2D datasets (e.g., ImageNet and LVIS), benefiting the pursuit of generalizable 3D representations. 2) Rich Annotations: Each 3D object is captured with both 2D and 3D sensors, providing textured meshes, point clouds, multiview rendered images, and multiple real-captured videos. 3) Realistic Scans: The professional scanners support highquality object scans with precise shapes and realistic appearances. With the vast exploration space offered by OmniObject3D, we carefully set up four evaluation tracks: a) robust 3D perception, b) novel-view synthesis, c) neural surface reconstruction, and d) 3D object generation. Extensive studies are performed on these four benchmarks, revealing new observations, challenges, and opportunities for future research in realistic 3D vision.
Duoduo CLIP: Efficient 3D Understanding with Multi-View Images
We introduce Duoduo CLIP, a model for 3D representation learning that learns shape encodings from multi-view images instead of point-clouds. The choice of multi-view images allows us to leverage 2D priors from off-the-shelf CLIP models to facilitate fine-tuning with 3D data. Our approach not only shows better generalization compared to existing point cloud methods, but also reduces GPU requirements and training time. In addition, we modify the model with cross-view attention to leverage information across multiple frames of the object which further boosts performance. Compared to the current SOTA point cloud method that requires 480 A100 hours to train 1 billion model parameters we only require 57 A5000 hours and 87 million parameters. Multi-view images also provide more flexibility in use cases compared to point clouds. This includes being able to encode objects with a variable number of images, with better performance when more views are used. This is in contrast to point cloud based methods, where an entire scan or model of an object is required. We showcase this flexibility with object retrieval from images of real-world objects. Our model also achieves better performance in more fine-grained text to shape retrieval, demonstrating better text-and-shape alignment than point cloud based models.
Habitat Synthetic Scenes Dataset (HSSD-200): An Analysis of 3D Scene Scale and Realism Tradeoffs for ObjectGoal Navigation
We contribute the Habitat Synthetic Scene Dataset, a dataset of 211 high-quality 3D scenes, and use it to test navigation agent generalization to realistic 3D environments. Our dataset represents real interiors and contains a diverse set of 18,656 models of real-world objects. We investigate the impact of synthetic 3D scene dataset scale and realism on the task of training embodied agents to find and navigate to objects (ObjectGoal navigation). By comparing to synthetic 3D scene datasets from prior work, we find that scale helps in generalization, but the benefits quickly saturate, making visual fidelity and correlation to real-world scenes more important. Our experiments show that agents trained on our smaller-scale dataset can match or outperform agents trained on much larger datasets. Surprisingly, we observe that agents trained on just 122 scenes from our dataset outperform agents trained on 10,000 scenes from the ProcTHOR-10K dataset in terms of zero-shot generalization in real-world scanned environments.
DreamHOI: Subject-Driven Generation of 3D Human-Object Interactions with Diffusion Priors
We present DreamHOI, a novel method for zero-shot synthesis of human-object interactions (HOIs), enabling a 3D human model to realistically interact with any given object based on a textual description. This task is complicated by the varying categories and geometries of real-world objects and the scarcity of datasets encompassing diverse HOIs. To circumvent the need for extensive data, we leverage text-to-image diffusion models trained on billions of image-caption pairs. We optimize the articulation of a skinned human mesh using Score Distillation Sampling (SDS) gradients obtained from these models, which predict image-space edits. However, directly backpropagating image-space gradients into complex articulation parameters is ineffective due to the local nature of such gradients. To overcome this, we introduce a dual implicit-explicit representation of a skinned mesh, combining (implicit) neural radiance fields (NeRFs) with (explicit) skeleton-driven mesh articulation. During optimization, we transition between implicit and explicit forms, grounding the NeRF generation while refining the mesh articulation. We validate our approach through extensive experiments, demonstrating its effectiveness in generating realistic HOIs.
CustomNet: Zero-shot Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models
Incorporating a customized object into image generation presents an attractive feature in text-to-image generation. However, existing optimization-based and encoder-based methods are hindered by drawbacks such as time-consuming optimization, insufficient identity preservation, and a prevalent copy-pasting effect. To overcome these limitations, we introduce CustomNet, a novel object customization approach that explicitly incorporates 3D novel view synthesis capabilities into the object customization process. This integration facilitates the adjustment of spatial position relationships and viewpoints, yielding diverse outputs while effectively preserving object identity. Moreover, we introduce delicate designs to enable location control and flexible background control through textual descriptions or specific user-defined images, overcoming the limitations of existing 3D novel view synthesis methods. We further leverage a dataset construction pipeline that can better handle real-world objects and complex backgrounds. Equipped with these designs, our method facilitates zero-shot object customization without test-time optimization, offering simultaneous control over the viewpoints, location, and background. As a result, our CustomNet ensures enhanced identity preservation and generates diverse, harmonious outputs.
Learning to Grasp Anything by Playing with Random Toys
Robotic manipulation policies often struggle to generalize to novel objects, limiting their real-world utility. In contrast, cognitive science suggests that children develop generalizable dexterous manipulation skills by mastering a small set of simple toys and then applying that knowledge to more complex items. Inspired by this, we study if similar generalization capabilities can also be achieved by robots. Our results indicate robots can learn generalizable grasping using randomly assembled objects that are composed from just four shape primitives: spheres, cuboids, cylinders, and rings. We show that training on these "toys" enables robust generalization to real-world objects, yielding strong zero-shot performance. Crucially, we find the key to this generalization is an object-centric visual representation induced by our proposed detection pooling mechanism. Evaluated in both simulation and on physical robots, our model achieves a 67% real-world grasping success rate on the YCB dataset, outperforming state-of-the-art approaches that rely on substantially more in-domain data. We further study how zero-shot generalization performance scales by varying the number and diversity of training toys and the demonstrations per toy. We believe this work offers a promising path to scalable and generalizable learning in robotic manipulation. Demonstration videos, code, checkpoints and our dataset are available on our project page: https://lego-grasp.github.io/ .
Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion
In recent years, there has been rapid development in 3D generation models, opening up new possibilities for applications such as simulating the dynamic movements of 3D objects and customizing their behaviors. However, current 3D generative models tend to focus only on surface features such as color and shape, neglecting the inherent physical properties that govern the behavior of objects in the real world. To accurately simulate physics-aligned dynamics, it is essential to predict the physical properties of materials and incorporate them into the behavior prediction process. Nonetheless, predicting the diverse materials of real-world objects is still challenging due to the complex nature of their physical attributes. In this paper, we propose Physics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model. Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model, which enables us to simulate a wide range of materials with high-fidelity capabilities. Moreover, we distill the physical priors from a video diffusion model that contains more understanding of realistic object materials. Extensive experiments demonstrate the effectiveness of our method with both elastic and plastic materials. Physics3D shows great potential for bridging the gap between the physical world and virtual neural space, providing a better integration and application of realistic physical principles in virtual environments. Project page: https://liuff19.github.io/Physics3D.
From an Image to a Scene: Learning to Imagine the World from a Million 360 Videos
Three-dimensional (3D) understanding of objects and scenes play a key role in humans' ability to interact with the world and has been an active area of research in computer vision, graphics, and robotics. Large scale synthetic and object-centric 3D datasets have shown to be effective in training models that have 3D understanding of objects. However, applying a similar approach to real-world objects and scenes is difficult due to a lack of large-scale data. Videos are a potential source for real-world 3D data, but finding diverse yet corresponding views of the same content has shown to be difficult at scale. Furthermore, standard videos come with fixed viewpoints, determined at the time of capture. This restricts the ability to access scenes from a variety of more diverse and potentially useful perspectives. We argue that large scale 360 videos can address these limitations to provide: scalable corresponding frames from diverse views. In this paper, we introduce 360-1M, a 360 video dataset, and a process for efficiently finding corresponding frames from diverse viewpoints at scale. We train our diffusion-based model, Odin, on 360-1M. Empowered by the largest real-world, multi-view dataset to date, Odin is able to freely generate novel views of real-world scenes. Unlike previous methods, Odin can move the camera through the environment, enabling the model to infer the geometry and layout of the scene. Additionally, we show improved performance on standard novel view synthesis and 3D reconstruction benchmarks.
SPIDeRS: Structured Polarization for Invisible Depth and Reflectance Sensing
Can we capture shape and reflectance in stealth? Such capability would be valuable for many application domains in vision, xR, robotics, and HCI. We introduce Structured Polarization, the first depth and reflectance sensing method using patterns of polarized light (SPIDeRS). The key idea is to modulate the angle of linear polarization (AoLP) of projected light at each pixel. The use of polarization makes it invisible and lets us recover not only depth but also directly surface normals and even reflectance. We implement SPIDeRS with a liquid crystal spatial light modulator (SLM) and a polarimetric camera. We derive a novel method for robustly extracting the projected structured polarization pattern from the polarimetric object appearance. We evaluate the effectiveness of SPIDeRS by applying it to a number of real-world objects. The results show that our method successfully reconstructs object shapes of various materials and is robust to diffuse reflection and ambient light. We also demonstrate relighting using recovered surface normals and reflectance. We believe SPIDeRS opens a new avenue of polarization use in visual sensing.
Sparse3D: Distilling Multiview-Consistent Diffusion for Object Reconstruction from Sparse Views
Reconstructing 3D objects from extremely sparse views is a long-standing and challenging problem. While recent techniques employ image diffusion models for generating plausible images at novel viewpoints or for distilling pre-trained diffusion priors into 3D representations using score distillation sampling (SDS), these methods often struggle to simultaneously achieve high-quality, consistent, and detailed results for both novel-view synthesis (NVS) and geometry. In this work, we present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs. Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field. Specifically, we employ a controller that harnesses epipolar features from input views, guiding a pre-trained diffusion model, such as Stable Diffusion, to produce novel-view images that maintain 3D consistency with the input. By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results, even when faced with open-world objects. To address the blurriness introduced by conventional SDS, we introduce the category-score distillation sampling (C-SDS) to enhance detail. We conduct experiments on CO3DV2 which is a multi-view dataset of real-world objects. Both quantitative and qualitative evaluations demonstrate that our approach outperforms previous state-of-the-art works on the metrics regarding NVS and geometry reconstruction.
NeuSurfEmb: A Complete Pipeline for Dense Correspondence-based 6D Object Pose Estimation without CAD Models
State-of-the-art approaches for 6D object pose estimation assume the availability of CAD models and require the user to manually set up physically-based rendering (PBR) pipelines for synthetic training data generation. Both factors limit the application of these methods in real-world scenarios. In this work, we present a pipeline that does not require CAD models and allows training a state-of-the-art pose estimator requiring only a small set of real images as input. Our method is based on a NeuS2 object representation, that we learn through a semi-automated procedure based on Structure-from-Motion (SfM) and object-agnostic segmentation. We exploit the novel-view synthesis ability of NeuS2 and simple cut-and-paste augmentation to automatically generate photorealistic object renderings, which we use to train the correspondence-based SurfEmb pose estimator. We evaluate our method on the LINEMOD-Occlusion dataset, extensively studying the impact of its individual components and showing competitive performance with respect to approaches based on CAD models and PBR data. We additionally demonstrate the ease of use and effectiveness of our pipeline on self-collected real-world objects, showing that our method outperforms state-of-the-art CAD-model-free approaches, with better accuracy and robustness to mild occlusions. To allow the robotics community to benefit from this system, we will publicly release it at https://www.github.com/ethz-asl/neusurfemb.
HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces
Neural radiance fields provide state-of-the-art view synthesis quality but tend to be slow to render. One reason is that they make use of volume rendering, thus requiring many samples (and model queries) per ray at render time. Although this representation is flexible and easy to optimize, most real-world objects can be modeled more efficiently with surfaces instead of volumes, requiring far fewer samples per ray. This observation has spurred considerable progress in surface representations such as signed distance functions, but these may struggle to model semi-opaque and thin structures. We propose a method, HybridNeRF, that leverages the strengths of both representations by rendering most objects as surfaces while modeling the (typically) small fraction of challenging regions volumetrically. We evaluate HybridNeRF against the challenging Eyeful Tower dataset along with other commonly used view synthesis datasets. When comparing to state-of-the-art baselines, including recent rasterization-based approaches, we improve error rates by 15-30% while achieving real-time framerates (at least 36 FPS) for virtual-reality resolutions (2Kx2K).
Ponder & Press: Advancing Visual GUI Agent towards General Computer Control
Most existing GUI agents typically depend on non-vision inputs like HTML source code or accessibility trees, limiting their flexibility across diverse software environments and platforms. Current multimodal large language models (MLLMs), which excel at using vision to ground real-world objects, offer a potential alternative. However, they often struggle with accurately localizing GUI elements -- a critical requirement for effective GUI automation -- due to the semantic gap between real-world objects and GUI elements. In this work, we introduce Ponder & Press, a divide-and-conquer framework for general computer control using only visual input. Our approach combines an general-purpose MLLM as an 'interpreter', responsible for translating high-level user instructions into detailed action descriptions, with a GUI-specific MLLM as a 'locator' that precisely locates GUI elements for action placement. By leveraging a purely visual input, our agent offers a versatile, human-like interaction paradigm applicable to a wide range of applications. Ponder & Press locator outperforms existing models by +22.5% on the ScreenSpot GUI grounding benchmark. Both offline and interactive agent benchmarks across various GUI environments -- including web pages, desktop software, and mobile UIs -- demonstrate that Ponder & Press framework achieves state-of-the-art performance, highlighting the potential of visual GUI agents. Refer to the project homepage https://invinciblewyq.github.io/ponder-press-page/
DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models
Generating high-quality 3D content requires models capable of learning robust distributions of complex scenes and the real-world objects within them. Recent Gaussian-based 3D reconstruction techniques have achieved impressive results in recovering high-fidelity 3D assets from sparse input images by predicting 3D Gaussians in a feed-forward manner. However, these techniques often lack the extensive priors and expressiveness offered by Diffusion Models. On the other hand, 2D Diffusion Models, which have been successfully applied to denoise multiview images, show potential for generating a wide range of photorealistic 3D outputs but still fall short on explicit 3D priors and consistency. In this work, we aim to bridge these two approaches by introducing DSplats, a novel method that directly denoises multiview images using Gaussian Splat-based Reconstructors to produce a diverse array of realistic 3D assets. To harness the extensive priors of 2D Diffusion Models, we incorporate a pretrained Latent Diffusion Model into the reconstructor backbone to predict a set of 3D Gaussians. Additionally, the explicit 3D representation embedded in the denoising network provides a strong inductive bias, ensuring geometrically consistent novel view generation. Our qualitative and quantitative experiments demonstrate that DSplats not only produces high-quality, spatially consistent outputs, but also sets a new standard in single-image to 3D reconstruction. When evaluated on the Google Scanned Objects dataset, DSplats achieves a PSNR of 20.38, an SSIM of 0.842, and an LPIPS of 0.109.
Omni6DPose: A Benchmark and Model for Universal 6D Object Pose Estimation and Tracking
6D Object Pose Estimation is a crucial yet challenging task in computer vision, suffering from a significant lack of large-scale datasets. This scarcity impedes comprehensive evaluation of model performance, limiting research advancements. Furthermore, the restricted number of available instances or categories curtails its applications. To address these issues, this paper introduces Omni6DPose, a substantial dataset characterized by its diversity in object categories, large scale, and variety in object materials. Omni6DPose is divided into three main components: ROPE (Real 6D Object Pose Estimation Dataset), which includes 332K images annotated with over 1.5M annotations across 581 instances in 149 categories; SOPE(Simulated 6D Object Pose Estimation Dataset), consisting of 475K images created in a mixed reality setting with depth simulation, annotated with over 5M annotations across 4162 instances in the same 149 categories; and the manually aligned real scanned objects used in both ROPE and SOPE. Omni6DPose is inherently challenging due to the substantial variations and ambiguities. To address this challenge, we introduce GenPose++, an enhanced version of the SOTA category-level pose estimation framework, incorporating two pivotal improvements: Semantic-aware feature extraction and Clustering-based aggregation. Moreover, we provide a comprehensive benchmarking analysis to evaluate the performance of previous methods on this large-scale dataset in the realms of 6D object pose estimation and pose tracking.
SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving
3D scene understanding plays a vital role in vision-based autonomous driving. While most existing methods focus on 3D object detection, they have difficulty describing real-world objects of arbitrary shapes and infinite classes. Towards a more comprehensive perception of a 3D scene, in this paper, we propose a SurroundOcc method to predict the 3D occupancy with multi-camera images. We first extract multi-scale features for each image and adopt spatial 2D-3D attention to lift them to the 3D volume space. Then we apply 3D convolutions to progressively upsample the volume features and impose supervision on multiple levels. To obtain dense occupancy prediction, we design a pipeline to generate dense occupancy ground truth without expansive occupancy annotations. Specifically, we fuse multi-frame LiDAR scans of dynamic objects and static scenes separately. Then we adopt Poisson Reconstruction to fill the holes and voxelize the mesh to get dense occupancy labels. Extensive experiments on nuScenes and SemanticKITTI datasets demonstrate the superiority of our method. Code and dataset are available at https://github.com/weiyithu/SurroundOcc
Physical world assistive signals for deep neural network classifiers -- neither defense nor attack
Deep Neural Networks lead the state of the art of computer vision tasks. Despite this, Neural Networks are brittle in that small changes in the input can drastically affect their prediction outcome and confidence. Consequently and naturally, research in this area mainly focus on adversarial attacks and defenses. In this paper, we take an alternative stance and introduce the concept of Assistive Signals, which are optimized to improve a model's confidence score regardless if it's under attack or not. We analyse some interesting properties of these assistive perturbations and extend the idea to optimize assistive signals in the 3D space for real-life scenarios simulating different lighting conditions and viewing angles. Experimental evaluations show that the assistive signals generated by our optimization method increase the accuracy and confidence of deep models more than those generated by conventional methods that work in the 2D space. In addition, our Assistive Signals illustrate the intrinsic bias of ML models towards certain patterns in real-life objects. We discuss how we can exploit these insights to re-think, or avoid, some patterns that might contribute to, or degrade, the detectability of objects in the real-world.
SAM 3D: 3Dfy Anything in Images
We present SAM 3D, a generative model for visually grounded 3D object reconstruction, predicting geometry, texture, and layout from a single image. SAM 3D excels in natural images, where occlusion and scene clutter are common and visual recognition cues from context play a larger role. We achieve this with a human- and model-in-the-loop pipeline for annotating object shape, texture, and pose, providing visually grounded 3D reconstruction data at unprecedented scale. We learn from this data in a modern, multi-stage training framework that combines synthetic pretraining with real-world alignment, breaking the 3D "data barrier". We obtain significant gains over recent work, with at least a 5:1 win rate in human preference tests on real-world objects and scenes. We will release our code and model weights, an online demo, and a new challenging benchmark for in-the-wild 3D object reconstruction.
M$^3$-VOS: Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation
Intelligent robots need to interact with diverse objects across various environments. The appearance and state of objects frequently undergo complex transformations depending on the object properties, e.g., phase transitions. However, in the vision community, segmenting dynamic objects with phase transitions is overlooked. In light of this, we introduce the concept of phase in segmentation, which categorizes real-world objects based on their visual characteristics and potential morphological and appearance changes. Then, we present a new benchmark, Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation (M^3-VOS), to verify the ability of models to understand object phases, which consists of 479 high-resolution videos spanning over 10 distinct everyday scenarios. It provides dense instance mask annotations that capture both object phases and their transitions. We evaluate state-of-the-art methods on M^3-VOS, yielding several key insights. Notably, current appearance-based approaches show significant room for improvement when handling objects with phase transitions. The inherent changes in disorder suggest that the predictive performance of the forward entropy-increasing process can be improved through a reverse entropy-reducing process. These findings lead us to propose ReVOS, a new plug-andplay model that improves its performance by reversal refinement. Our data and code will be publicly available at https://zixuan-chen.github.io/M-cube-VOS.github.io/.
RomanTex: Decoupling 3D-aware Rotary Positional Embedded Multi-Attention Network for Texture Synthesis
Painting textures for existing geometries is a critical yet labor-intensive process in 3D asset generation. Recent advancements in text-to-image (T2I) models have led to significant progress in texture generation. Most existing research approaches this task by first generating images in 2D spaces using image diffusion models, followed by a texture baking process to achieve UV texture. However, these methods often struggle to produce high-quality textures due to inconsistencies among the generated multi-view images, resulting in seams and ghosting artifacts. In contrast, 3D-based texture synthesis methods aim to address these inconsistencies, but they often neglect 2D diffusion model priors, making them challenging to apply to real-world objects To overcome these limitations, we propose RomanTex, a multiview-based texture generation framework that integrates a multi-attention network with an underlying 3D representation, facilitated by our novel 3D-aware Rotary Positional Embedding. Additionally, we incorporate a decoupling characteristic in the multi-attention block to enhance the model's robustness in image-to-texture task, enabling semantically-correct back-view synthesis. Furthermore, we introduce a geometry-related Classifier-Free Guidance (CFG) mechanism to further improve the alignment with both geometries and images. Quantitative and qualitative evaluations, along with comprehensive user studies, demonstrate that our method achieves state-of-the-art results in texture quality and consistency.
MVImgNet: A Large-scale Dataset of Multi-view Images
Being data-driven is one of the most iconic properties of deep learning algorithms. The birth of ImageNet drives a remarkable trend of "learning from large-scale data" in computer vision. Pretraining on ImageNet to obtain rich universal representations has been manifested to benefit various 2D visual tasks, and becomes a standard in 2D vision. However, due to the laborious collection of real-world 3D data, there is yet no generic dataset serving as a counterpart of ImageNet in 3D vision, thus how such a dataset can impact the 3D community is unraveled. To remedy this defect, we introduce MVImgNet, a large-scale dataset of multi-view images, which is highly convenient to gain by shooting videos of real-world objects in human daily life. It contains 6.5 million frames from 219,188 videos crossing objects from 238 classes, with rich annotations of object masks, camera parameters, and point clouds. The multi-view attribute endows our dataset with 3D-aware signals, making it a soft bridge between 2D and 3D vision. We conduct pilot studies for probing the potential of MVImgNet on a variety of 3D and 2D visual tasks, including radiance field reconstruction, multi-view stereo, and view-consistent image understanding, where MVImgNet demonstrates promising performance, remaining lots of possibilities for future explorations. Besides, via dense reconstruction on MVImgNet, a 3D object point cloud dataset is derived, called MVPNet, covering 87,200 samples from 150 categories, with the class label on each point cloud. Experiments show that MVPNet can benefit the real-world 3D object classification while posing new challenges to point cloud understanding. MVImgNet and MVPNet will be publicly available, hoping to inspire the broader vision community.
Boundary-Aware Segmentation Network for Mobile and Web Applications
Although deep models have greatly improved the accuracy and robustness of image segmentation, obtaining segmentation results with highly accurate boundaries and fine structures is still a challenging problem. In this paper, we propose a simple yet powerful Boundary-Aware Segmentation Network (BASNet), which comprises a predict-refine architecture and a hybrid loss, for highly accurate image segmentation. The predict-refine architecture consists of a densely supervised encoder-decoder network and a residual refinement module, which are respectively used to predict and refine a segmentation probability map. The hybrid loss is a combination of the binary cross entropy, structural similarity and intersection-over-union losses, which guide the network to learn three-level (ie, pixel-, patch- and map- level) hierarchy representations. We evaluate our BASNet on two reverse tasks including salient object segmentation, camouflaged object segmentation, showing that it achieves very competitive performance with sharp segmentation boundaries. Importantly, BASNet runs at over 70 fps on a single GPU which benefits many potential real applications. Based on BASNet, we further developed two (close to) commercial applications: AR COPY & PASTE, in which BASNet is integrated with augmented reality for "COPYING" and "PASTING" real-world objects, and OBJECT CUT, which is a web-based tool for automatic object background removal. Both applications have already drawn huge amount of attention and have important real-world impacts. The code and two applications will be publicly available at: https://github.com/NathanUA/BASNet.
Assembler: Scalable 3D Part Assembly via Anchor Point Diffusion
We present Assembler, a scalable and generalizable framework for 3D part assembly that reconstructs complete objects from input part meshes and a reference image. Unlike prior approaches that mostly rely on deterministic part pose prediction and category-specific training, Assembler is designed to handle diverse, in-the-wild objects with varying part counts, geometries, and structures. It addresses the core challenges of scaling to general 3D part assembly through innovations in task formulation, representation, and data. First, Assembler casts part assembly as a generative problem and employs diffusion models to sample plausible configurations, effectively capturing ambiguities arising from symmetry, repeated parts, and multiple valid assemblies. Second, we introduce a novel shape-centric representation based on sparse anchor point clouds, enabling scalable generation in Euclidean space rather than SE(3) pose prediction. Third, we construct a large-scale dataset of over 320K diverse part-object assemblies using a synthesis and filtering pipeline built on existing 3D shape repositories. Assembler achieves state-of-the-art performance on PartNet and is the first to demonstrate high-quality assembly for complex, real-world objects. Based on Assembler, we further introduce an interesting part-aware 3D modeling system that generates high-resolution, editable objects from images, demonstrating potential for interactive and compositional design. Project page: https://assembler3d.github.io
SonicSense: Object Perception from In-Hand Acoustic Vibration
We introduce SonicSense, a holistic design of hardware and software to enable rich robot object perception through in-hand acoustic vibration sensing. While previous studies have shown promising results with acoustic sensing for object perception, current solutions are constrained to a handful of objects with simple geometries and homogeneous materials, single-finger sensing, and mixing training and testing on the same objects. SonicSense enables container inventory status differentiation, heterogeneous material prediction, 3D shape reconstruction, and object re-identification from a diverse set of 83 real-world objects. Our system employs a simple but effective heuristic exploration policy to interact with the objects as well as end-to-end learning-based algorithms to fuse vibration signals to infer object properties. Our framework underscores the significance of in-hand acoustic vibration sensing in advancing robot tactile perception.
FeelAnyForce: Estimating Contact Force Feedback from Tactile Sensation for Vision-Based Tactile Sensors
In this paper, we tackle the problem of estimating 3D contact forces using vision-based tactile sensors. In particular, our goal is to estimate contact forces over a large range (up to 15 N) on any objects while generalizing across different vision-based tactile sensors. Thus, we collected a dataset of over 200K indentations using a robotic arm that pressed various indenters onto a GelSight Mini sensor mounted on a force sensor and then used the data to train a multi-head transformer for force regression. Strong generalization is achieved via accurate data collection and multi-objective optimization that leverages depth contact images. Despite being trained only on primitive shapes and textures, the regressor achieves a mean absolute error of 4\% on a dataset of unseen real-world objects. We further evaluate our approach's generalization capability to other GelSight mini and DIGIT sensors, and propose a reproducible calibration procedure for adapting the pre-trained model to other vision-based sensors. Furthermore, the method was evaluated on real-world tasks, including weighing objects and controlling the deformation of delicate objects, which relies on accurate force feedback. Project webpage: http://prg.cs.umd.edu/FeelAnyForce
OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction
Recent advances in deep learning such as neural radiance fields and implicit neural representations have significantly propelled the field of 3D reconstruction. However, accurately reconstructing objects with complex optical properties, such as metals and glass, remains a formidable challenge due to their unique specular and light-transmission characteristics. To facilitate the development of solutions to these challenges, we introduce the OpenMaterial dataset, comprising 1001 objects made of 295 distinct materials-including conductors, dielectrics, plastics, and their roughened variants- and captured under 723 diverse lighting conditions. To this end, we utilized physics-based rendering with laboratory-measured Indices of Refraction (IOR) and generated high-fidelity multiview images that closely replicate real-world objects. OpenMaterial provides comprehensive annotations, including 3D shape, material type, camera pose, depth, and object mask. It stands as the first large-scale dataset enabling quantitative evaluations of existing algorithms on objects with diverse and challenging materials, thereby paving the way for the development of 3D reconstruction algorithms capable of handling complex material properties.
Large-Vocabulary 3D Diffusion Model with Transformer
Creating diverse and high-quality 3D assets with an automatic generative model is highly desirable. Despite extensive efforts on 3D generation, most existing works focus on the generation of a single category or a few categories. In this paper, we introduce a diffusion-based feed-forward framework for synthesizing massive categories of real-world 3D objects with a single generative model. Notably, there are three major challenges for this large-vocabulary 3D generation: a) the need for expressive yet efficient 3D representation; b) large diversity in geometry and texture across categories; c) complexity in the appearances of real-world objects. To this end, we propose a novel triplane-based 3D-aware Diffusion model with TransFormer, DiffTF, for handling challenges via three aspects. 1) Considering efficiency and robustness, we adopt a revised triplane representation and improve the fitting speed and accuracy. 2) To handle the drastic variations in geometry and texture, we regard the features of all 3D objects as a combination of generalized 3D knowledge and specialized 3D features. To extract generalized 3D knowledge from diverse categories, we propose a novel 3D-aware transformer with shared cross-plane attention. It learns the cross-plane relations across different planes and aggregates the generalized 3D knowledge with specialized 3D features. 3) In addition, we devise the 3D-aware encoder/decoder to enhance the generalized 3D knowledge in the encoded triplanes for handling categories with complex appearances. Extensive experiments on ShapeNet and OmniObject3D (over 200 diverse real-world categories) convincingly demonstrate that a single DiffTF model achieves state-of-the-art large-vocabulary 3D object generation performance with large diversity, rich semantics, and high quality.
Generative Novel View Synthesis with 3D-Aware Diffusion Models
We present a diffusion-based model for 3D-aware generative novel view synthesis from as few as a single input image. Our model samples from the distribution of possible renderings consistent with the input and, even in the presence of ambiguity, is capable of rendering diverse and plausible novel views. To achieve this, our method makes use of existing 2D diffusion backbones but, crucially, incorporates geometry priors in the form of a 3D feature volume. This latent feature field captures the distribution over possible scene representations and improves our method's ability to generate view-consistent novel renderings. In addition to generating novel views, our method has the ability to autoregressively synthesize 3D-consistent sequences. We demonstrate state-of-the-art results on synthetic renderings and room-scale scenes; we also show compelling results for challenging, real-world objects.
Affordance Diffusion: Synthesizing Hand-Object Interactions
Recent successes in image synthesis are powered by large-scale diffusion models. However, most methods are currently limited to either text- or image-conditioned generation for synthesizing an entire image, texture transfer or inserting objects into a user-specified region. In contrast, in this work we focus on synthesizing complex interactions (ie, an articulated hand) with a given object. Given an RGB image of an object, we aim to hallucinate plausible images of a human hand interacting with it. We propose a two-step generative approach: a LayoutNet that samples an articulation-agnostic hand-object-interaction layout, and a ContentNet that synthesizes images of a hand grasping the object given the predicted layout. Both are built on top of a large-scale pretrained diffusion model to make use of its latent representation. Compared to baselines, the proposed method is shown to generalize better to novel objects and perform surprisingly well on out-of-distribution in-the-wild scenes of portable-sized objects. The resulting system allows us to predict descriptive affordance information, such as hand articulation and approaching orientation. Project page: https://judyye.github.io/affordiffusion-www
PhysX-Anything: Simulation-Ready Physical 3D Assets from Single Image
3D modeling is shifting from static visual representations toward physical, articulated assets that can be directly used in simulation and interaction. However, most existing 3D generation methods overlook key physical and articulation properties, thereby limiting their utility in embodied AI. To bridge this gap, we introduce PhysX-Anything, the first simulation-ready physical 3D generative framework that, given a single in-the-wild image, produces high-quality sim-ready 3D assets with explicit geometry, articulation, and physical attributes. Specifically, we propose the first VLM-based physical 3D generative model, along with a new 3D representation that efficiently tokenizes geometry. It reduces the number of tokens by 193x, enabling explicit geometry learning within standard VLM token budgets without introducing any special tokens during fine-tuning and significantly improving generative quality. In addition, to overcome the limited diversity of existing physical 3D datasets, we construct a new dataset, PhysX-Mobility, which expands the object categories in prior physical 3D datasets by over 2x and includes more than 2K common real-world objects with rich physical annotations. Extensive experiments on PhysX-Mobility and in-the-wild images demonstrate that PhysX-Anything delivers strong generative performance and robust generalization. Furthermore, simulation-based experiments in a MuJoCo-style environment validate that our sim-ready assets can be directly used for contact-rich robotic policy learning. We believe PhysX-Anything can substantially empower a broad range of downstream applications, especially in embodied AI and physics-based simulation.
Differentiable Discrete Elastic Rods for Real-Time Modeling of Deformable Linear Objects
This paper addresses the task of modeling Deformable Linear Objects (DLOs), such as ropes and cables, during dynamic motion over long time horizons. This task presents significant challenges due to the complex dynamics of DLOs. To address these challenges, this paper proposes differentiable Discrete Elastic Rods For deformable linear Objects with Real-time Modeling (DEFORM), a novel framework that combines a differentiable physics-based model with a learning framework to model DLOs accurately and in real-time. The performance of DEFORM is evaluated in an experimental setup involving two industrial robots and a variety of sensors. A comprehensive series of experiments demonstrate the efficacy of DEFORM in terms of accuracy, computational speed, and generalizability when compared to state-of-the-art alternatives. To further demonstrate the utility of DEFORM, this paper integrates it into a perception pipeline and illustrates its superior performance when compared to the state-of-the-art methods while tracking a DLO even in the presence of occlusions. Finally, this paper illustrates the superior performance of DEFORM when compared to state-of-the-art methods when it is applied to perform autonomous planning and control of DLOs. Project page: https://roahmlab.github.io/DEFORM/.
Multi3DRefer: Grounding Text Description to Multiple 3D Objects
We introduce the task of localizing a flexible number of objects in real-world 3D scenes using natural language descriptions. Existing 3D visual grounding tasks focus on localizing a unique object given a text description. However, such a strict setting is unnatural as localizing potentially multiple objects is a common need in real-world scenarios and robotic tasks (e.g., visual navigation and object rearrangement). To address this setting we propose Multi3DRefer, generalizing the ScanRefer dataset and task. Our dataset contains 61926 descriptions of 11609 objects, where zero, single or multiple target objects are referenced by each description. We also introduce a new evaluation metric and benchmark methods from prior work to enable further investigation of multi-modal 3D scene understanding. Furthermore, we develop a better baseline leveraging 2D features from CLIP by rendering object proposals online with contrastive learning, which outperforms the state of the art on the ScanRefer benchmark.
Templates for 3D Object Pose Estimation Revisited: Generalization to New Objects and Robustness to Occlusions
We present a method that can recognize new objects and estimate their 3D pose in RGB images even under partial occlusions. Our method requires neither a training phase on these objects nor real images depicting them, only their CAD models. It relies on a small set of training objects to learn local object representations, which allow us to locally match the input image to a set of "templates", rendered images of the CAD models for the new objects. In contrast with the state-of-the-art methods, the new objects on which our method is applied can be very different from the training objects. As a result, we are the first to show generalization without retraining on the LINEMOD and Occlusion-LINEMOD datasets. Our analysis of the failure modes of previous template-based approaches further confirms the benefits of local features for template matching. We outperform the state-of-the-art template matching methods on the LINEMOD, Occlusion-LINEMOD and T-LESS datasets. Our source code and data are publicly available at https://github.com/nv-nguyen/template-pose
RPMArt: Towards Robust Perception and Manipulation for Articulated Objects
Articulated objects are commonly found in daily life. It is essential that robots can exhibit robust perception and manipulation skills for articulated objects in real-world robotic applications. However, existing methods for articulated objects insufficiently address noise in point clouds and struggle to bridge the gap between simulation and reality, thus limiting the practical deployment in real-world scenarios. To tackle these challenges, we propose a framework towards Robust Perception and Manipulation for Articulated Objects (RPMArt), which learns to estimate the articulation parameters and manipulate the articulation part from the noisy point cloud. Our primary contribution is a Robust Articulation Network (RoArtNet) that is able to predict both joint parameters and affordable points robustly by local feature learning and point tuple voting. Moreover, we introduce an articulation-aware classification scheme to enhance its ability for sim-to-real transfer. Finally, with the estimated affordable point and articulation joint constraint, the robot can generate robust actions to manipulate articulated objects. After learning only from synthetic data, RPMArt is able to transfer zero-shot to real-world articulated objects. Experimental results confirm our approach's effectiveness, with our framework achieving state-of-the-art performance in both noise-added simulation and real-world environments. The code and data will be open-sourced for reproduction. More results are published on the project website at https://r-pmart.github.io .
PhysTwin: Physics-Informed Reconstruction and Simulation of Deformable Objects from Videos
Creating a physical digital twin of a real-world object has immense potential in robotics, content creation, and XR. In this paper, we present PhysTwin, a novel framework that uses sparse videos of dynamic objects under interaction to produce a photo- and physically realistic, real-time interactive virtual replica. Our approach centers on two key components: (1) a physics-informed representation that combines spring-mass models for realistic physical simulation, generative shape models for geometry, and Gaussian splats for rendering; and (2) a novel multi-stage, optimization-based inverse modeling framework that reconstructs complete geometry, infers dense physical properties, and replicates realistic appearance from videos. Our method integrates an inverse physics framework with visual perception cues, enabling high-fidelity reconstruction even from partial, occluded, and limited viewpoints. PhysTwin supports modeling various deformable objects, including ropes, stuffed animals, cloth, and delivery packages. Experiments show that PhysTwin outperforms competing methods in reconstruction, rendering, future prediction, and simulation under novel interactions. We further demonstrate its applications in interactive real-time simulation and model-based robotic motion planning.
Scalable Vision-Language-Action Model Pretraining for Robotic Manipulation with Real-Life Human Activity Videos
This paper presents a novel approach for pretraining robotic manipulation Vision-Language-Action (VLA) models using a large corpus of unscripted real-life video recordings of human hand activities. Treating human hand as dexterous robot end-effector, we show that "in-the-wild" egocentric human videos without any annotations can be transformed into data formats fully aligned with existing robotic V-L-A training data in terms of task granularity and labels. This is achieved by the development of a fully-automated holistic human activity analysis approach for arbitrary human hand videos. This approach can generate atomic-level hand activity segments and their language descriptions, each accompanied with framewise 3D hand motion and camera motion. We process a large volume of egocentric videos and create a hand-VLA training dataset containing 1M episodes and 26M frames. This training data covers a wide range of objects and concepts, dexterous manipulation tasks, and environment variations in real life, vastly exceeding the coverage of existing robot data. We design a dexterous hand VLA model architecture and pretrain the model on this dataset. The model exhibits strong zero-shot capabilities on completely unseen real-world observations. Additionally, fine-tuning it on a small amount of real robot action data significantly improves task success rates and generalization to novel objects in real robotic experiments. We also demonstrate the appealing scaling behavior of the model's task performance with respect to pretraining data scale. We believe this work lays a solid foundation for scalable VLA pretraining, advancing robots toward truly generalizable embodied intelligence.
Promising or Elusive? Unsupervised Object Segmentation from Real-world Single Images
In this paper, we study the problem of unsupervised object segmentation from single images. We do not introduce a new algorithm, but systematically investigate the effectiveness of existing unsupervised models on challenging real-world images. We firstly introduce four complexity factors to quantitatively measure the distributions of object- and scene-level biases in appearance and geometry for datasets with human annotations. With the aid of these factors, we empirically find that, not surprisingly, existing unsupervised models catastrophically fail to segment generic objects in real-world images, although they can easily achieve excellent performance on numerous simple synthetic datasets, due to the vast gap in objectness biases between synthetic and real images. By conducting extensive experiments on multiple groups of ablated real-world datasets, we ultimately find that the key factors underlying the colossal failure of existing unsupervised models on real-world images are the challenging distributions of object- and scene-level biases in appearance and geometry. Because of this, the inductive biases introduced in existing unsupervised models can hardly capture the diverse object distributions. Our research results suggest that future work should exploit more explicit objectness biases in the network design.
Follow Anything: Open-set detection, tracking, and following in real-time
Tracking and following objects of interest is critical to several robotics use cases, ranging from industrial automation to logistics and warehousing, to healthcare and security. In this paper, we present a robotic system to detect, track, and follow any object in real-time. Our approach, dubbed ``follow anything'' (FAn), is an open-vocabulary and multimodal model -- it is not restricted to concepts seen at training time and can be applied to novel classes at inference time using text, images, or click queries. Leveraging rich visual descriptors from large-scale pre-trained models (foundation models), FAn can detect and segment objects by matching multimodal queries (text, images, clicks) against an input image sequence. These detected and segmented objects are tracked across image frames, all while accounting for occlusion and object re-emergence. We demonstrate FAn on a real-world robotic system (a micro aerial vehicle) and report its ability to seamlessly follow the objects of interest in a real-time control loop. FAn can be deployed on a laptop with a lightweight (6-8 GB) graphics card, achieving a throughput of 6-20 frames per second. To enable rapid adoption, deployment, and extensibility, we open-source all our code on our project webpage at https://github.com/alaamaalouf/FollowAnything . We also encourage the reader the watch our 5-minutes explainer video in this https://www.youtube.com/watch?v=6Mgt3EPytrw .
V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results
Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges necessitate the development of public benchmarks and challenges to advance the field of object detection. Inspired by the success of previous COCO and LVIS Challenges, we organize the V3Det Challenge 2024 in conjunction with the 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) at CVPR 2024, Seattle, US. This challenge aims to push the boundaries of object detection research and encourage innovation in this field. The V3Det Challenge 2024 consists of two tracks: 1) Vast Vocabulary Object Detection: This track focuses on detecting objects from a large set of 13204 categories, testing the detection algorithm's ability to recognize and locate diverse objects. 2) Open Vocabulary Object Detection: This track goes a step further, requiring algorithms to detect objects from an open set of categories, including unknown objects. In the following sections, we will provide a comprehensive summary and analysis of the solutions submitted by participants. By analyzing the methods and solutions presented, we aim to inspire future research directions in vast vocabulary and open-vocabulary object detection, driving progress in this field. Challenge homepage: https://v3det.openxlab.org.cn/challenge
EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction on Mobile Devices
Reconstructing real-world 3D objects has numerous applications in computer vision, such as virtual reality, video games, and animations. Ideally, 3D reconstruction methods should generate high-fidelity results with 3D consistency in real-time. Traditional methods match pixels between images using photo-consistency constraints or learned features, while differentiable rendering methods like Neural Radiance Fields (NeRF) use differentiable volume rendering or surface-based representation to generate high-fidelity scenes. However, these methods require excessive runtime for rendering, making them impractical for daily applications. To address these challenges, we present EvaSurf, an Efficient View-Aware implicit textured Surface reconstruction method on mobile devices. In our method, we first employ an efficient surface-based model with a multi-view supervision module to ensure accurate mesh reconstruction. To enable high-fidelity rendering, we learn an implicit texture embedded with a set of Gaussian lobes to capture view-dependent information. Furthermore, with the explicit geometry and the implicit texture, we can employ a lightweight neural shader to reduce the expense of computation and further support real-time rendering on common mobile devices. Extensive experiments demonstrate that our method can reconstruct high-quality appearance and accurate mesh on both synthetic and real-world datasets. Moreover, our method can be trained in just 1-2 hours using a single GPU and run on mobile devices at over 40 FPS (Frames Per Second), with a final package required for rendering taking up only 40-50 MB.
ID-Pose: Sparse-view Camera Pose Estimation by Inverting Diffusion Models
Given sparse views of an object, estimating their camera poses is a long-standing and intractable problem. We harness the pre-trained diffusion model of novel views conditioned on viewpoints (Zero-1-to-3). We present ID-Pose which inverses the denoising diffusion process to estimate the relative pose given two input images. ID-Pose adds a noise on one image, and predicts the noise conditioned on the other image and a decision variable for the pose. The prediction error is used as the objective to find the optimal pose with the gradient descent method. ID-Pose can handle more than two images and estimate each of the poses with multiple image pairs from triangular relationships. ID-Pose requires no training and generalizes to real-world images. We conduct experiments using high-quality real-scanned 3D objects, where ID-Pose significantly outperforms state-of-the-art methods.
FruitNinja: 3D Object Interior Texture Generation with Gaussian Splatting
In the real world, objects reveal internal textures when sliced or cut, yet this behavior is not well-studied in 3D generation tasks today. For example, slicing a virtual 3D watermelon should reveal flesh and seeds. Given that no available dataset captures an object's full internal structure and collecting data from all slices is impractical, generative methods become the obvious approach. However, current 3D generation and inpainting methods often focus on visible appearance and overlook internal textures. To bridge this gap, we introduce FruitNinja, the first method to generate internal textures for 3D objects undergoing geometric and topological changes. Our approach produces objects via 3D Gaussian Splatting (3DGS) with both surface and interior textures synthesized, enabling real-time slicing and rendering without additional optimization. FruitNinja leverages a pre-trained diffusion model to progressively inpaint cross-sectional views and applies voxel-grid-based smoothing to achieve cohesive textures throughout the object. Our OpaqueAtom GS strategy overcomes 3DGS limitations by employing densely distributed opaque Gaussians, avoiding biases toward larger particles that destabilize training and sharp color transitions for fine-grained textures. Experimental results show that FruitNinja substantially outperforms existing approaches, showcasing unmatched visual quality in real-time rendered internal views across arbitrary geometry manipulations.
3D Copy-Paste: Physically Plausible Object Insertion for Monocular 3D Detection
A major challenge in monocular 3D object detection is the limited diversity and quantity of objects in real datasets. While augmenting real scenes with virtual objects holds promise to improve both the diversity and quantity of the objects, it remains elusive due to the lack of an effective 3D object insertion method in complex real captured scenes. In this work, we study augmenting complex real indoor scenes with virtual objects for monocular 3D object detection. The main challenge is to automatically identify plausible physical properties for virtual assets (e.g., locations, appearances, sizes, etc.) in cluttered real scenes. To address this challenge, we propose a physically plausible indoor 3D object insertion approach to automatically copy virtual objects and paste them into real scenes. The resulting objects in scenes have 3D bounding boxes with plausible physical locations and appearances. In particular, our method first identifies physically feasible locations and poses for the inserted objects to prevent collisions with the existing room layout. Subsequently, it estimates spatially-varying illumination for the insertion location, enabling the immersive blending of the virtual objects into the original scene with plausible appearances and cast shadows. We show that our augmentation method significantly improves existing monocular 3D object models and achieves state-of-the-art performance. For the first time, we demonstrate that a physically plausible 3D object insertion, serving as a generative data augmentation technique, can lead to significant improvements for discriminative downstream tasks such as monocular 3D object detection. Project website: https://gyhandy.github.io/3D-Copy-Paste/
FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding
Precisely perceiving the geometric and semantic properties of real-world 3D objects is crucial for the continued evolution of augmented reality and robotic applications. To this end, we present (), which incorporates vision-language embeddings of foundation models into 3D Gaussian Splatting (GS). The key contribution of this work is an efficient method to reconstruct and represent 3D vision-language models. This is achieved by distilling feature maps generated from image-based foundation models into those rendered from our 3D model. To ensure high-quality rendering and fast training, we introduce a novel scene representation by integrating strengths from both GS and multi-resolution hash encodings (MHE). Our effective training procedure also introduces a pixel alignment loss that makes the rendered feature distance of same semantic entities close, following the pixel-level semantic boundaries. Our results demonstrate remarkable multi-view semantic consistency, facilitating diverse downstream tasks, beating state-of-the-art methods by 10.2 percent on open-vocabulary language-based object detection, despite that we are 851times faster for inference. This research explores the intersection of vision, language, and 3D scene representation, paving the way for enhanced scene understanding in uncontrolled real-world environments. We plan to release the code upon paper acceptance.
TidyBot: Personalized Robot Assistance with Large Language Models
For a robot to personalize physical assistance effectively, it must learn user preferences that can be generally reapplied to future scenarios. In this work, we investigate personalization of household cleanup with robots that can tidy up rooms by picking up objects and putting them away. A key challenge is determining the proper place to put each object, as people's preferences can vary greatly depending on personal taste or cultural background. For instance, one person may prefer storing shirts in the drawer, while another may prefer them on the shelf. We aim to build systems that can learn such preferences from just a handful of examples via prior interactions with a particular person. We show that robots can combine language-based planning and perception with the few-shot summarization capabilities of large language models (LLMs) to infer generalized user preferences that are broadly applicable to future interactions. This approach enables fast adaptation and achieves 91.2% accuracy on unseen objects in our benchmark dataset. We also demonstrate our approach on a real-world mobile manipulator called TidyBot, which successfully puts away 85.0% of objects in real-world test scenarios.
Visual Dexterity: In-Hand Reorientation of Novel and Complex Object Shapes
In-hand object reorientation is necessary for performing many dexterous manipulation tasks, such as tool use in less structured environments that remain beyond the reach of current robots. Prior works built reorientation systems assuming one or many of the following: reorienting only specific objects with simple shapes, limited range of reorientation, slow or quasistatic manipulation, simulation-only results, the need for specialized and costly sensor suites, and other constraints which make the system infeasible for real-world deployment. We present a general object reorientation controller that does not make these assumptions. It uses readings from a single commodity depth camera to dynamically reorient complex and new object shapes by any rotation in real-time, with the median reorientation time being close to seven seconds. The controller is trained using reinforcement learning in simulation and evaluated in the real world on new object shapes not used for training, including the most challenging scenario of reorienting objects held in the air by a downward-facing hand that must counteract gravity during reorientation. Our hardware platform only uses open-source components that cost less than five thousand dollars. Although we demonstrate the ability to overcome assumptions in prior work, there is ample scope for improving absolute performance. For instance, the challenging duck-shaped object not used for training was dropped in 56 percent of the trials. When it was not dropped, our controller reoriented the object within 0.4 radians (23 degrees) 75 percent of the time. Videos are available at: https://taochenshh.github.io/projects/visual-dexterity.
Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering
The correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials, as well as the image formation process. While recent large-scale diffusion models have shown strong generative and inpainting capabilities, we find that current models do not sufficiently "understand" the scene shown in a single picture to generate consistent lighting effects (shadows, bright reflections, etc.) while preserving the identity and details of the composited object. We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process. Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes. Our physically based pipeline further enables automatic materials and tone-mapping refinement.
OmniPhysGS: 3D Constitutive Gaussians for General Physics-Based Dynamics Generation
Recently, significant advancements have been made in the reconstruction and generation of 3D assets, including static cases and those with physical interactions. To recover the physical properties of 3D assets, existing methods typically assume that all materials belong to a specific predefined category (e.g., elasticity). However, such assumptions ignore the complex composition of multiple heterogeneous objects in real scenarios and tend to render less physically plausible animation given a wider range of objects. We propose OmniPhysGS for synthesizing a physics-based 3D dynamic scene composed of more general objects. A key design of OmniPhysGS is treating each 3D asset as a collection of constitutive 3D Gaussians. For each Gaussian, its physical material is represented by an ensemble of 12 physical domain-expert sub-models (rubber, metal, honey, water, etc.), which greatly enhances the flexibility of the proposed model. In the implementation, we define a scene by user-specified prompts and supervise the estimation of material weighting factors via a pretrained video diffusion model. Comprehensive experiments demonstrate that OmniPhysGS achieves more general and realistic physical dynamics across a broader spectrum of materials, including elastic, viscoelastic, plastic, and fluid substances, as well as interactions between different materials. Our method surpasses existing methods by approximately 3% to 16% in metrics of visual quality and text alignment.
Zero-Shot Dual-Path Integration Framework for Open-Vocabulary 3D Instance Segmentation
Open-vocabulary 3D instance segmentation transcends traditional closed-vocabulary methods by enabling the identification of both previously seen and unseen objects in real-world scenarios. It leverages a dual-modality approach, utilizing both 3D point clouds and 2D multi-view images to generate class-agnostic object mask proposals. Previous efforts predominantly focused on enhancing 3D mask proposal models; consequently, the information that could come from 2D association to 3D was not fully exploited. This bias towards 3D data, while effective for familiar indoor objects, limits the system's adaptability to new and varied object types, where 2D models offer greater utility. Addressing this gap, we introduce Zero-Shot Dual-Path Integration Framework that equally values the contributions of both 3D and 2D modalities. Our framework comprises three components: 3D pathway, 2D pathway, and Dual-Path Integration. 3D pathway generates spatially accurate class-agnostic mask proposals of common indoor objects from 3D point cloud data using a pre-trained 3D model, while 2D pathway utilizes pre-trained open-vocabulary instance segmentation model to identify a diverse array of object proposals from multi-view RGB-D images. In Dual-Path Integration, our Conditional Integration process, which operates in two stages, filters and merges the proposals from both pathways adaptively. This process harmonizes output proposals to enhance segmentation capabilities. Our framework, utilizing pre-trained models in a zero-shot manner, is model-agnostic and demonstrates superior performance on both seen and unseen data, as evidenced by comprehensive evaluations on the ScanNet200 and qualitative results on ARKitScenes datasets.
Video Object Segmentation in Panoptic Wild Scenes
In this paper, we introduce semi-supervised video object segmentation (VOS) to panoptic wild scenes and present a large-scale benchmark as well as a baseline method for it. Previous benchmarks for VOS with sparse annotations are not sufficient to train or evaluate a model that needs to process all possible objects in real-world scenarios. Our new benchmark (VIPOSeg) contains exhaustive object annotations and covers various real-world object categories which are carefully divided into subsets of thing/stuff and seen/unseen classes for comprehensive evaluation. Considering the challenges in panoptic VOS, we propose a strong baseline method named panoptic object association with transformers (PAOT), which uses panoptic identification to associate objects with a pyramid architecture on multiple scales. Experimental results show that VIPOSeg can not only boost the performance of VOS models by panoptic training but also evaluate them comprehensively in panoptic scenes. Previous methods for classic VOS still need to improve in performance and efficiency when dealing with panoptic scenes, while our PAOT achieves SOTA performance with good efficiency on VIPOSeg and previous VOS benchmarks. PAOT also ranks 1st in the VOT2022 challenge. Our dataset is available at https://github.com/yoxu515/VIPOSeg-Benchmark.
Generative Image Dynamics
We present an approach to modeling an image-space prior on scene dynamics. Our prior is learned from a collection of motion trajectories extracted from real video sequences containing natural, oscillating motion such as trees, flowers, candles, and clothes blowing in the wind. Given a single image, our trained model uses a frequency-coordinated diffusion sampling process to predict a per-pixel long-term motion representation in the Fourier domain, which we call a neural stochastic motion texture. This representation can be converted into dense motion trajectories that span an entire video. Along with an image-based rendering module, these trajectories can be used for a number of downstream applications, such as turning still images into seamlessly looping dynamic videos, or allowing users to realistically interact with objects in real pictures.
Dexplore: Scalable Neural Control for Dexterous Manipulation from Reference-Scoped Exploration
Hand-object motion-capture (MoCap) repositories offer large-scale, contact-rich demonstrations and hold promise for scaling dexterous robotic manipulation. Yet demonstration inaccuracies and embodiment gaps between human and robot hands limit the straightforward use of these data. Existing methods adopt a three-stage workflow, including retargeting, tracking, and residual correction, which often leaves demonstrations underused and compound errors across stages. We introduce Dexplore, a unified single-loop optimization that jointly performs retargeting and tracking to learn robot control policies directly from MoCap at scale. Rather than treating demonstrations as ground truth, we use them as soft guidance. From raw trajectories, we derive adaptive spatial scopes, and train with reinforcement learning to keep the policy in-scope while minimizing control effort and accomplishing the task. This unified formulation preserves demonstration intent, enables robot-specific strategies to emerge, improves robustness to noise, and scales to large demonstration corpora. We distill the scaled tracking policy into a vision-based, skill-conditioned generative controller that encodes diverse manipulation skills in a rich latent representation, supporting generalization across objects and real-world deployment. Taken together, these contributions position Dexplore as a principled bridge that transforms imperfect demonstrations into effective training signals for dexterous manipulation.
MOST: Multiple Object localization with Self-supervised Transformers for object discovery
We tackle the challenging task of unsupervised object localization in this work. Recently, transformers trained with self-supervised learning have been shown to exhibit object localization properties without being trained for this task. In this work, we present Multiple Object localization with Self-supervised Transformers (MOST) that uses features of transformers trained using self-supervised learning to localize multiple objects in real world images. MOST analyzes the similarity maps of the features using box counting; a fractal analysis tool to identify tokens lying on foreground patches. The identified tokens are then clustered together, and tokens of each cluster are used to generate bounding boxes on foreground regions. Unlike recent state-of-the-art object localization methods, MOST can localize multiple objects per image and outperforms SOTA algorithms on several object localization and discovery benchmarks on PASCAL-VOC 07, 12 and COCO20k datasets. Additionally, we show that MOST can be used for self-supervised pre-training of object detectors, and yields consistent improvements on fully, semi-supervised object detection and unsupervised region proposal generation.
Memory-aided Contrastive Consensus Learning for Co-salient Object Detection
Co-Salient Object Detection (CoSOD) aims at detecting common salient objects within a group of relevant source images. Most of the latest works employ the attention mechanism for finding common objects. To achieve accurate CoSOD results with high-quality maps and high efficiency, we propose a novel Memory-aided Contrastive Consensus Learning (MCCL) framework, which is capable of effectively detecting co-salient objects in real time (~150 fps). To learn better group consensus, we propose the Group Consensus Aggregation Module (GCAM) to abstract the common features of each image group; meanwhile, to make the consensus representation more discriminative, we introduce the Memory-based Contrastive Module (MCM), which saves and updates the consensus of images from different groups in a queue of memories. Finally, to improve the quality and integrity of the predicted maps, we develop an Adversarial Integrity Learning (AIL) strategy to make the segmented regions more likely composed of complete objects with less surrounding noise. Extensive experiments on all the latest CoSOD benchmarks demonstrate that our lite MCCL outperforms 13 cutting-edge models, achieving the new state of the art (~5.9% and ~6.2% improvement in S-measure on CoSOD3k and CoSal2015, respectively). Our source codes, saliency maps, and online demos are publicly available at https://github.com/ZhengPeng7/MCCL.
Multiview Compressive Coding for 3D Reconstruction
A central goal of visual recognition is to understand objects and scenes from a single image. 2D recognition has witnessed tremendous progress thanks to large-scale learning and general-purpose representations. Comparatively, 3D poses new challenges stemming from occlusions not depicted in the image. Prior works try to overcome these by inferring from multiple views or rely on scarce CAD models and category-specific priors which hinder scaling to novel settings. In this work, we explore single-view 3D reconstruction by learning generalizable representations inspired by advances in self-supervised learning. We introduce a simple framework that operates on 3D points of single objects or whole scenes coupled with category-agnostic large-scale training from diverse RGB-D videos. Our model, Multiview Compressive Coding (MCC), learns to compress the input appearance and geometry to predict the 3D structure by querying a 3D-aware decoder. MCC's generality and efficiency allow it to learn from large-scale and diverse data sources with strong generalization to novel objects imagined by DALLcdotE 2 or captured in-the-wild with an iPhone.
Img2CAD: Conditioned 3D CAD Model Generation from Single Image with Structured Visual Geometry
In this paper, we propose Img2CAD, the first approach to our knowledge that uses 2D image inputs to generate CAD models with editable parameters. Unlike existing AI methods for 3D model generation using text or image inputs often rely on mesh-based representations, which are incompatible with CAD tools and lack editability and fine control, Img2CAD enables seamless integration between AI-based 3D reconstruction and CAD software. We have identified an innovative intermediate representation called Structured Visual Geometry (SVG), characterized by vectorized wireframes extracted from objects. This representation significantly enhances the performance of generating conditioned CAD models. Additionally, we introduce two new datasets to further support research in this area: ABC-mono, the largest known dataset comprising over 200,000 3D CAD models with rendered images, and KOCAD, the first dataset featuring real-world captured objects alongside their ground truth CAD models, supporting further research in conditioned CAD model generation.
Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction
Traditional approaches for learning 3D object categories have been predominantly trained and evaluated on synthetic datasets due to the unavailability of real 3D-annotated category-centric data. Our main goal is to facilitate advances in this field by collecting real-world data in a magnitude similar to the existing synthetic counterparts. The principal contribution of this work is thus a large-scale dataset, called Common Objects in 3D, with real multi-view images of object categories annotated with camera poses and ground truth 3D point clouds. The dataset contains a total of 1.5 million frames from nearly 19,000 videos capturing objects from 50 MS-COCO categories and, as such, it is significantly larger than alternatives both in terms of the number of categories and objects. We exploit this new dataset to conduct one of the first large-scale "in-the-wild" evaluations of several new-view-synthesis and category-centric 3D reconstruction methods. Finally, we contribute NerFormer - a novel neural rendering method that leverages the powerful Transformer to reconstruct an object given a small number of its views. The CO3D dataset is available at https://github.com/facebookresearch/co3d .
PhysWorld: From Real Videos to World Models of Deformable Objects via Physics-Aware Demonstration Synthesis
Interactive world models that simulate object dynamics are crucial for robotics, VR, and AR. However, it remains a significant challenge to learn physics-consistent dynamics models from limited real-world video data, especially for deformable objects with spatially-varying physical properties. To overcome the challenge of data scarcity, we propose PhysWorld, a novel framework that utilizes a simulator to synthesize physically plausible and diverse demonstrations to learn efficient world models. Specifically, we first construct a physics-consistent digital twin within MPM simulator via constitutive model selection and global-to-local optimization of physical properties. Subsequently, we apply part-aware perturbations to the physical properties and generate various motion patterns for the digital twin, synthesizing extensive and diverse demonstrations. Finally, using these demonstrations, we train a lightweight GNN-based world model that is embedded with physical properties. The real video can be used to further refine the physical properties. PhysWorld achieves accurate and fast future predictions for various deformable objects, and also generalizes well to novel interactions. Experiments show that PhysWorld has competitive performance while enabling inference speeds 47 times faster than the recent state-of-the-art method, i.e., PhysTwin.
Make-it-Real: Unleashing Large Multimodal Model's Ability for Painting 3D Objects with Realistic Materials
Physically realistic materials are pivotal in augmenting the realism of 3D assets across various applications and lighting conditions. However, existing 3D assets and generative models often lack authentic material properties. Manual assignment of materials using graphic software is a tedious and time-consuming task. In this paper, we exploit advancements in Multimodal Large Language Models (MLLMs), particularly GPT-4V, to present a novel approach, Make-it-Real: 1) We demonstrate that GPT-4V can effectively recognize and describe materials, allowing the construction of a detailed material library. 2) Utilizing a combination of visual cues and hierarchical text prompts, GPT-4V precisely identifies and aligns materials with the corresponding components of 3D objects. 3) The correctly matched materials are then meticulously applied as reference for the new SVBRDF material generation according to the original diffuse map, significantly enhancing their visual authenticity. Make-it-Real offers a streamlined integration into the 3D content creation workflow, showcasing its utility as an essential tool for developers of 3D assets.
Adaptive Mobile Manipulation for Articulated Objects In the Open World
Deploying robots in open-ended unstructured environments such as homes has been a long-standing research problem. However, robots are often studied only in closed-off lab settings, and prior mobile manipulation work is restricted to pick-move-place, which is arguably just the tip of the iceberg in this area. In this paper, we introduce Open-World Mobile Manipulation System, a full-stack approach to tackle realistic articulated object operation, e.g. real-world doors, cabinets, drawers, and refrigerators in open-ended unstructured environments. The robot utilizes an adaptive learning framework to initially learns from a small set of data through behavior cloning, followed by learning from online practice on novel objects that fall outside the training distribution. We also develop a low-cost mobile manipulation hardware platform capable of safe and autonomous online adaptation in unstructured environments with a cost of around 20,000 USD. In our experiments we utilize 20 articulate objects across 4 buildings in the CMU campus. With less than an hour of online learning for each object, the system is able to increase success rate from 50% of BC pre-training to 95% using online adaptation. Video results at https://open-world-mobilemanip.github.io/
Real-Time Flying Object Detection with YOLOv8
This paper presents a generalized model for real-time detection of flying objects that can be used for transfer learning and further research, as well as a refined model that is ready for implementation. We achieve this by training our first generalized model on a data set containing 40 different classes of flying objects, forcing the model to extract abstract feature representations. We then perform transfer learning with these learned parameters on a data set more representative of real world environments (i.e., higher frequency of occlusion, small spatial sizes, rotations, etc.) to generate our refined model. Object detection of flying objects remains challenging due to large variance object spatial sizes/aspect ratios, rate of speed, occlusion, and clustered backgrounds. To address some of the presented challenges while simultaneously maximizing performance, we utilize the current state of the art single-shot detector, YOLOv8, in an attempt to find the best tradeoff between inference speed and mAP. While YOLOv8 is being regarded as the new state-of-the-art, an official paper has not been provided. Thus, we provide an in-depth explanation of the new architecture and functionality that YOLOv8 has adapted. Our final generalized model achieves an mAP50-95 of 0.685 and average inference speed on 1080p videos of 50 fps. Our final refined model maintains this inference speed and achieves an improved mAP50-95 of 0.835.
Segmenting Known Objects and Unseen Unknowns without Prior Knowledge
Panoptic segmentation methods assign a known class to each pixel given in input. Even for state-of-the-art approaches, this inevitably enforces decisions that systematically lead to wrong predictions for objects outside the training categories. However, robustness against out-of-distribution samples and corner cases is crucial in safety-critical settings to avoid dangerous consequences. Since real-world datasets cannot contain enough data points to adequately sample the long tail of the underlying distribution, models must be able to deal with unseen and unknown scenarios as well. Previous methods targeted this by re-identifying already-seen unlabeled objects. In this work, we propose the necessary step to extend segmentation with a new setting which we term holistic segmentation. Holistic segmentation aims to identify and separate objects of unseen, unknown categories into instances without any prior knowledge about them while performing panoptic segmentation of known classes. We tackle this new problem with U3HS, which finds unknowns as highly uncertain regions and clusters their corresponding instance-aware embeddings into individual objects. By doing so, for the first time in panoptic segmentation with unknown objects, our U3HS is trained without unknown categories, reducing assumptions and leaving the settings as unconstrained as in real-life scenarios. Extensive experiments on public data from MS COCO, Cityscapes, and Lost&Found demonstrate the effectiveness of U3HS for this new, challenging, and assumptions-free setting called holistic segmentation. Project page: https://holisticseg.github.io.
Beyond Objects: Contextual Synthetic Data Generation for Fine-Grained Classification
Text-to-image (T2I) models are increasingly used for synthetic dataset generation, but generating effective synthetic training data for classification remains challenging. Fine-tuning a T2I model with a few real examples can help improve the quality of synthetic training data; however, it may also cause overfitting and reduce diversity in the generated samples. We propose a fine-tuning strategy BOB (BeyondOBjects) to mitigate these concerns for fine-grained classification. Given a small set of real examples, we first extract class-agnostic attributes such as scene background and object pose. We then explicitly condition on these attributes during fine-tuning of the T2I model and marginalize them out during generation. This design mitigates overfitting, preserves the T2I model's generative prior, reduces estimation errors, and further minimizes unintended inter-class associations. Extensive experiments across multiple T2I models, backbones, and datasets show that our method achieves state-of-the-art performance in low-shot fine-grained classification when augmented with synthetic data. Concretely, BOB outperforms DataDream by 7.4% on the Aircraft dataset (from 50.0% to 57.4% when fine-tuning a CLIP classifier with five real images augmented with 100 synthetic images). In three of the four benchmarks, fine-tuning downstream models with 5 real images augmented with BOB achieves better performance than fine-tuning with 10 real images. Collectively, BOB outperforms prior art in 18 of 24 experimental settings, with 2+% accuracy improvements in 14 of these settings.
Part$^{2}$GS: Part-aware Modeling of Articulated Objects using 3D Gaussian Splatting
Articulated objects are common in the real world, yet modeling their structure and motion remains a challenging task for 3D reconstruction methods. In this work, we introduce Part^{2}GS, a novel framework for modeling articulated digital twins of multi-part objects with high-fidelity geometry and physically consistent articulation. Part^{2}GS leverages a part-aware 3D Gaussian representation that encodes articulated components with learnable attributes, enabling structured, disentangled transformations that preserve high-fidelity geometry. To ensure physically consistent motion, we propose a motion-aware canonical representation guided by physics-based constraints, including contact enforcement, velocity consistency, and vector-field alignment. Furthermore, we introduce a field of repel points to prevent part collisions and maintain stable articulation paths, significantly improving motion coherence over baselines. Extensive evaluations on both synthetic and real-world datasets show that Part^{2}GS consistently outperforms state-of-the-art methods by up to 10times in Chamfer Distance for movable parts.
Re-Aligning Language to Visual Objects with an Agentic Workflow
Language-based object detection (LOD) aims to align visual objects with language expressions. A large amount of paired data is utilized to improve LOD model generalizations. During the training process, recent studies leverage vision-language models (VLMs) to automatically generate human-like expressions for visual objects, facilitating training data scaling up. In this process, we observe that VLM hallucinations bring inaccurate object descriptions (e.g., object name, color, and shape) to deteriorate VL alignment quality. To reduce VLM hallucinations, we propose an agentic workflow controlled by an LLM to re-align language to visual objects via adaptively adjusting image and text prompts. We name this workflow Real-LOD, which includes planning, tool use, and reflection steps. Given an image with detected objects and VLM raw language expressions, Real-LOD reasons its state automatically and arranges action based on our neural symbolic designs (i.e., planning). The action will adaptively adjust the image and text prompts and send them to VLMs for object re-description (i.e., tool use). Then, we use another LLM to analyze these refined expressions for feedback (i.e., reflection). These steps are conducted in a cyclic form to gradually improve language descriptions for re-aligning to visual objects. We construct a dataset that contains a tiny amount of 0.18M images with re-aligned language expression and train a prevalent LOD model to surpass existing LOD methods by around 50% on the standard benchmarks. Our Real-LOD workflow, with automatic VL refinement, reveals a potential to preserve data quality along with scaling up data quantity, which further improves LOD performance from a data-alignment perspective.
Seeing and Seeing Through the Glass: Real and Synthetic Data for Multi-Layer Depth Estimation
Transparent objects are common in daily life, and understanding their multi-layer depth information -- perceiving both the transparent surface and the objects behind it -- is crucial for real-world applications that interact with transparent materials. In this paper, we introduce LayeredDepth, the first dataset with multi-layer depth annotations, including a real-world benchmark and a synthetic data generator, to support the task of multi-layer depth estimation. Our real-world benchmark consists of 1,500 images from diverse scenes, and evaluating state-of-the-art depth estimation methods on it reveals that they struggle with transparent objects. The synthetic data generator is fully procedural and capable of providing training data for this task with an unlimited variety of objects and scene compositions. Using this generator, we create a synthetic dataset with 15,300 images. Baseline models training solely on this synthetic dataset produce good cross-domain multi-layer depth estimation. Fine-tuning state-of-the-art single-layer depth models on it substantially improves their performance on transparent objects, with quadruplet accuracy on our benchmark increased from 55.14% to 75.20%. All images and validation annotations are available under CC0 at https://layereddepth.cs.princeton.edu.
ObjectAdd: Adding Objects into Image via a Training-Free Diffusion Modification Fashion
We introduce ObjectAdd, a training-free diffusion modification method to add user-expected objects into user-specified area. The motive of ObjectAdd stems from: first, describing everything in one prompt can be difficult, and second, users often need to add objects into the generated image. To accommodate with real world, our ObjectAdd maintains accurate image consistency after adding objects with technical innovations in: (1) embedding-level concatenation to ensure correct text embedding coalesce; (2) object-driven layout control with latent and attention injection to ensure objects accessing user-specified area; (3) prompted image inpainting in an attention refocusing & object expansion fashion to ensure rest of the image stays the same. With a text-prompted image, our ObjectAdd allows users to specify a box and an object, and achieves: (1) adding object inside the box area; (2) exact content outside the box area; (3) flawless fusion between the two areas
Unidentified Video Objects: A Benchmark for Dense, Open-World Segmentation
Current state-of-the-art object detection and segmentation methods work well under the closed-world assumption. This closed-world setting assumes that the list of object categories is available during training and deployment. However, many real-world applications require detecting or segmenting novel objects, i.e., object categories never seen during training. In this paper, we present, UVO (Unidentified Video Objects), a new benchmark for open-world class-agnostic object segmentation in videos. Besides shifting the problem focus to the open-world setup, UVO is significantly larger, providing approximately 8 times more videos compared with DAVIS, and 7 times more mask (instance) annotations per video compared with YouTube-VOS and YouTube-VIS. UVO is also more challenging as it includes many videos with crowded scenes and complex background motions. We demonstrated that UVO can be used for other applications, such as object tracking and super-voxel segmentation, besides open-world object segmentation. We believe that UVo is a versatile testbed for researchers to develop novel approaches for open-world class-agnostic object segmentation, and inspires new research directions towards a more comprehensive video understanding beyond classification and detection.
Real-Time Referring Expression Comprehension by Single-Stage Grounding Network
In this paper, we propose a novel end-to-end model, namely Single-Stage Grounding network (SSG), to localize the referent given a referring expression within an image. Different from previous multi-stage models which rely on object proposals or detected regions, our proposed model aims to comprehend a referring expression through one single stage without resorting to region proposals as well as the subsequent region-wise feature extraction. Specifically, a multimodal interactor is proposed to summarize the local region features regarding the referring expression attentively. Subsequently, a grounder is proposed to localize the referring expression within the given image directly. For further improving the localization accuracy, a guided attention mechanism is proposed to enforce the grounder to focus on the central region of the referent. Moreover, by exploiting and predicting visual attribute information, the grounder can further distinguish the referent objects within an image and thereby improve the model performance. Experiments on RefCOCO, RefCOCO+, and RefCOCOg datasets demonstrate that our proposed SSG without relying on any region proposals can achieve comparable performance with other advanced models. Furthermore, our SSG outperforms the previous models and achieves the state-of-art performance on the ReferItGame dataset. More importantly, our SSG is time efficient and can ground a referring expression in a 416*416 image from the RefCOCO dataset in 25ms (40 referents per second) on average with a Nvidia Tesla P40, accomplishing more than 9* speedups over the existing multi-stage models.
ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics
Physical simulators have been widely used in robot planning and control. Among them, differentiable simulators are particularly favored, as they can be incorporated into gradient-based optimization algorithms that are efficient in solving inverse problems such as optimal control and motion planning. Simulating deformable objects is, however, more challenging compared to rigid body dynamics. The underlying physical laws of deformable objects are more complex, and the resulting systems have orders of magnitude more degrees of freedom and therefore they are significantly more computationally expensive to simulate. Computing gradients with respect to physical design or controller parameters is typically even more computationally challenging. In this paper, we propose a real-time, differentiable hybrid Lagrangian-Eulerian physical simulator for deformable objects, ChainQueen, based on the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM can simulate deformable objects including contact and can be seamlessly incorporated into inference, control and co-design systems. We demonstrate that our simulator achieves high precision in both forward simulation and backward gradient computation. We have successfully employed it in a diverse set of control tasks for soft robots, including problems with nearly 3,000 decision variables.
OmnimatteZero: Training-free Real-time Omnimatte with Pre-trained Video Diffusion Models
Omnimatte aims to decompose a given video into semantically meaningful layers, including the background and individual objects along with their associated effects, such as shadows and reflections. Existing methods often require extensive training or costly self-supervised optimization. In this paper, we present OmnimatteZero, a training-free approach that leverages off-the-shelf pre-trained video diffusion models for omnimatte. It can remove objects from videos, extract individual object layers along with their effects, and composite those objects onto new videos. We accomplish this by adapting zero-shot image inpainting techniques for video object removal, a task they fail to handle effectively out-of-the-box. We then show that self-attention maps capture information about the object and its footprints and use them to inpaint the object's effects, leaving a clean background. Additionally, through simple latent arithmetic, object layers can be isolated and recombined seamlessly with new video layers to produce new videos. Evaluations show that OmnimatteZero not only achieves superior performance in terms of background reconstruction but also sets a new record for the fastest Omnimatte approach, achieving real-time performance with minimal frame runtime.
Detecting Moving Objects Using a Novel Optical-Flow-Based Range-Independent Invariant
This paper focuses on a novel approach for detecting moving objects during camera motion. We present an optical-flow-based transformation that yields a consistent 2D invariant image output regardless of time instants, range of points in 3D, and the speed of the camera. In other words, this transformation generates a lookup image that remains invariant despite the changing projection of the 3D scene and camera motion. In the new domain, projections of 3D points that deviate from the values of the predefined lookup image can be clearly identified as moving relative to the stationary 3D environment, making them seamlessly detectable. The method does not require prior knowledge of the direction of motion or speed of the camera, nor does it necessitate 3D point range information. It is well-suited for real-time parallel processing, rendering it highly practical for implementation. We have validated the effectiveness of the new domain through simulations and experiments, demonstrating its robustness in scenarios involving rectilinear camera motion, both in simulations and with real-world data. This approach introduces new ways for moving objects detection during camera motion, and also lays the foundation for future research in the context of moving object detection during six-degrees-of-freedom camera motion.
SCENEREPLICA: Benchmarking Real-World Robot Manipulation by Creating Replicable Scenes
We present a new reproducible benchmark for evaluating robot manipulation in the real world, specifically focusing on pick-and-place. Our benchmark uses the YCB objects, a commonly used dataset in the robotics community, to ensure that our results are comparable to other studies. Additionally, the benchmark is designed to be easily reproducible in the real world, making it accessible to researchers and practitioners. We also provide our experimental results and analyzes for model-based and model-free 6D robotic grasping on the benchmark, where representative algorithms are evaluated for object perception, grasping planning, and motion planning. We believe that our benchmark will be a valuable tool for advancing the field of robot manipulation. By providing a standardized evaluation framework, researchers can more easily compare different techniques and algorithms, leading to faster progress in developing robot manipulation methods.
Devil is in the Queries: Advancing Mask Transformers for Real-world Medical Image Segmentation and Out-of-Distribution Localization
Real-world medical image segmentation has tremendous long-tailed complexity of objects, among which tail conditions correlate with relatively rare diseases and are clinically significant. A trustworthy medical AI algorithm should demonstrate its effectiveness on tail conditions to avoid clinically dangerous damage in these out-of-distribution (OOD) cases. In this paper, we adopt the concept of object queries in Mask Transformers to formulate semantic segmentation as a soft cluster assignment. The queries fit the feature-level cluster centers of inliers during training. Therefore, when performing inference on a medical image in real-world scenarios, the similarity between pixels and the queries detects and localizes OOD regions. We term this OOD localization as MaxQuery. Furthermore, the foregrounds of real-world medical images, whether OOD objects or inliers, are lesions. The difference between them is less than that between the foreground and background, possibly misleading the object queries to focus redundantly on the background. Thus, we propose a query-distribution (QD) loss to enforce clear boundaries between segmentation targets and other regions at the query level, improving the inlier segmentation and OOD indication. Our proposed framework is tested on two real-world segmentation tasks, i.e., segmentation of pancreatic and liver tumors, outperforming previous state-of-the-art algorithms by an average of 7.39% on AUROC, 14.69% on AUPR, and 13.79% on FPR95 for OOD localization. On the other hand, our framework improves the performance of inlier segmentation by an average of 5.27% DSC when compared with the leading baseline nnUNet.
DETRs Beat YOLOs on Real-time Object Detection
The YOLO series has become the most popular framework for real-time object detection due to its reasonable trade-off between speed and accuracy. However, we observe that the speed and accuracy of YOLOs are negatively affected by the NMS. Recently, end-to-end Transformer-based detectors (DETRs) have provided an alternative to eliminating NMS. Nevertheless, the high computational cost limits their practicality and hinders them from fully exploiting the advantage of excluding NMS. In this paper, we propose the Real-Time DEtection TRansformer (RT-DETR), the first real-time end-to-end object detector to our best knowledge that addresses the above dilemma. We build RT-DETR in two steps, drawing on the advanced DETR: first we focus on maintaining accuracy while improving speed, followed by maintaining speed while improving accuracy. Specifically, we design an efficient hybrid encoder to expeditiously process multi-scale features by decoupling intra-scale interaction and cross-scale fusion to improve speed. Then, we propose the uncertainty-minimal query selection to provide high-quality initial queries to the decoder, thereby improving accuracy. In addition, RT-DETR supports flexible speed tuning by adjusting the number of decoder layers to adapt to various scenarios without retraining. Our RT-DETR-R50 / R101 achieves 53.1% / 54.3% AP on COCO and 108 / 74 FPS on T4 GPU, outperforming previously advanced YOLOs in both speed and accuracy. We also develop scaled RT-DETRs that outperform the lighter YOLO detectors (S and M models). Furthermore, RT-DETR-R50 outperforms DINO-R50 by 2.2% AP in accuracy and about 21 times in FPS. After pre-training with Objects365, RT-DETR-R50 / R101 achieves 55.3% / 56.2% AP. The project page: https://zhao-yian.github.io/RTDETR.
3D Gaussian Splatting for Real-Time Radiance Field Rendering
Radiance Field methods have recently revolutionized novel-view synthesis of scenes captured with multiple photos or videos. However, achieving high visual quality still requires neural networks that are costly to train and render, while recent faster methods inevitably trade off speed for quality. For unbounded and complete scenes (rather than isolated objects) and 1080p resolution rendering, no current method can achieve real-time display rates. We introduce three key elements that allow us to achieve state-of-the-art visual quality while maintaining competitive training times and importantly allow high-quality real-time (>= 30 fps) novel-view synthesis at 1080p resolution. First, starting from sparse points produced during camera calibration, we represent the scene with 3D Gaussians that preserve desirable properties of continuous volumetric radiance fields for scene optimization while avoiding unnecessary computation in empty space; Second, we perform interleaved optimization/density control of the 3D Gaussians, notably optimizing anisotropic covariance to achieve an accurate representation of the scene; Third, we develop a fast visibility-aware rendering algorithm that supports anisotropic splatting and both accelerates training and allows realtime rendering. We demonstrate state-of-the-art visual quality and real-time rendering on several established datasets.
HORT: Monocular Hand-held Objects Reconstruction with Transformers
Reconstructing hand-held objects in 3D from monocular images remains a significant challenge in computer vision. Most existing approaches rely on implicit 3D representations, which produce overly smooth reconstructions and are time-consuming to generate explicit 3D shapes. While more recent methods directly reconstruct point clouds with diffusion models, the multi-step denoising makes high-resolution reconstruction inefficient. To address these limitations, we propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects. Our method follows a coarse-to-fine strategy, first generating a sparse point cloud from the image and progressively refining it into a dense representation using pixel-aligned image features. To enhance reconstruction accuracy, we integrate image features with 3D hand geometry to jointly predict the object point cloud and its pose relative to the hand. Our model is trained end-to-end for optimal performance. Experimental results on both synthetic and real datasets demonstrate that our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
REArtGS: Reconstructing and Generating Articulated Objects via 3D Gaussian Splatting with Geometric and Motion Constraints
Articulated objects, as prevalent entities in human life, their 3D representations play crucial roles across various applications. However, achieving both high-fidelity textured surface reconstruction and dynamic generation for articulated objects remains challenging for existing methods. In this paper, we present REArtGS, a novel framework that introduces additional geometric and motion constraints to 3D Gaussian primitives, enabling high-quality textured surface reconstruction and generation for articulated objects. Specifically, given multi-view RGB images of arbitrary two states of articulated objects, we first introduce an unbiased Signed Distance Field (SDF) guidance to regularize Gaussian opacity fields, enhancing geometry constraints and improving surface reconstruction quality. Then we establish deformable fields for 3D Gaussians constrained by the kinematic structures of articulated objects, achieving unsupervised generation of surface meshes in unseen states. Extensive experiments on both synthetic and real datasets demonstrate our approach achieves high-quality textured surface reconstruction for given states, and enables high-fidelity surface generation for unseen states. Codes will be released after acceptance and the project website is at https://sites.google.com/view/reartgs/home.
Real-World Offline Reinforcement Learning from Vision Language Model Feedback
Offline reinforcement learning can enable policy learning from pre-collected, sub-optimal datasets without online interactions. This makes it ideal for real-world robots and safety-critical scenarios, where collecting online data or expert demonstrations is slow, costly, and risky. However, most existing offline RL works assume the dataset is already labeled with the task rewards, a process that often requires significant human effort, especially when ground-truth states are hard to ascertain (e.g., in the real-world). In this paper, we build on prior work, specifically RL-VLM-F, and propose a novel system that automatically generates reward labels for offline datasets using preference feedback from a vision-language model and a text description of the task. Our method then learns a policy using offline RL with the reward-labeled dataset. We demonstrate the system's applicability to a complex real-world robot-assisted dressing task, where we first learn a reward function using a vision-language model on a sub-optimal offline dataset, and then we use the learned reward to employ Implicit Q learning to develop an effective dressing policy. Our method also performs well in simulation tasks involving the manipulation of rigid and deformable objects, and significantly outperform baselines such as behavior cloning and inverse RL. In summary, we propose a new system that enables automatic reward labeling and policy learning from unlabeled, sub-optimal offline datasets.
Fast-Image2Point: Towards Real-Time Point Cloud Reconstruction of a Single Image using 3D Supervision
A key question in the problem of 3D reconstruction is how to train a machine or a robot to model 3D objects. Many tasks like navigation in real-time systems such as autonomous vehicles directly depend on this problem. These systems usually have limited computational power. Despite considerable progress in 3D reconstruction systems in recent years, applying them to real-time systems such as navigation systems in autonomous vehicles is still challenging due to the high complexity and computational demand of the existing methods. This study addresses current problems in reconstructing objects displayed in a single-view image in a faster (real-time) fashion. To this end, a simple yet powerful deep neural framework is developed. The proposed framework consists of two components: the feature extractor module and the 3D generator module. We use point cloud representation for the output of our reconstruction module. The ShapeNet dataset is utilized to compare the method with the existing results in terms of computation time and accuracy. Simulations demonstrate the superior performance of the proposed method. Index Terms-Real-time 3D reconstruction, single-view reconstruction, supervised learning, deep neural network
SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-Level Feature Denoising and Rotation Loss Smoothing
Small and cluttered objects are common in real-world which are challenging for detection. The difficulty is further pronounced when the objects are rotated, as traditional detectors often routinely locate the objects in horizontal bounding box such that the region of interest is contaminated with background or nearby interleaved objects. In this paper, we first innovatively introduce the idea of denoising to object detection. Instance-level denoising on the feature map is performed to enhance the detection to small and cluttered objects. To handle the rotation variation, we also add a novel IoU constant factor to the smooth L1 loss to address the long standing boundary problem, which to our analysis, is mainly caused by the periodicity of angular (PoA) and exchangeability of edges (EoE). By combing these two features, our proposed detector is termed as SCRDet++. Extensive experiments are performed on large aerial images public datasets DOTA, DIOR, UCAS-AOD as well as natural image dataset COCO, scene text dataset ICDAR2015, small traffic light dataset BSTLD and our released S^2TLD by this paper. The results show the effectiveness of our approach. The released dataset S2TLD is made public available, which contains 5,786 images with 14,130 traffic light instances across five categories.
XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera
We present a real-time approach for multi-person 3D motion capture at over 30 fps using a single RGB camera. It operates successfully in generic scenes which may contain occlusions by objects and by other people. Our method operates in subsequent stages. The first stage is a convolutional neural network (CNN) that estimates 2D and 3D pose features along with identity assignments for all visible joints of all individuals.We contribute a new architecture for this CNN, called SelecSLS Net, that uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy. In the second stage, a fully connected neural network turns the possibly partial (on account of occlusion) 2Dpose and 3Dpose features for each subject into a complete 3Dpose estimate per individual. The third stage applies space-time skeletal model fitting to the predicted 2D and 3D pose per subject to further reconcile the 2D and 3D pose, and enforce temporal coherence. Our method returns the full skeletal pose in joint angles for each subject. This is a further key distinction from previous work that do not produce joint angle results of a coherent skeleton in real time for multi-person scenes. The proposed system runs on consumer hardware at a previously unseen speed of more than 30 fps given 512x320 images as input while achieving state-of-the-art accuracy, which we will demonstrate on a range of challenging real-world scenes.
YOLO-World: Real-Time Open-Vocabulary Object Detection
The You Only Look Once (YOLO) series of detectors have established themselves as efficient and practical tools. However, their reliance on predefined and trained object categories limits their applicability in open scenarios. Addressing this limitation, we introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities through vision-language modeling and pre-training on large-scale datasets. Specifically, we propose a new Re-parameterizable Vision-Language Path Aggregation Network (RepVL-PAN) and region-text contrastive loss to facilitate the interaction between visual and linguistic information. Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency. On the challenging LVIS dataset, YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed. Furthermore, the fine-tuned YOLO-World achieves remarkable performance on several downstream tasks, including object detection and open-vocabulary instance segmentation.
SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects
To enable meaningful robotic manipulation of objects in the real-world, 6D pose estimation is one of the critical aspects. Most existing approaches have difficulties to extend predictions to scenarios where novel object instances are continuously introduced, especially with heavy occlusions. In this work, we propose a few-shot pose estimation (FSPE) approach called SA6D, which uses a self-adaptive segmentation module to identify the novel target object and construct a point cloud model of the target object using only a small number of cluttered reference images. Unlike existing methods, SA6D does not require object-centric reference images or any additional object information, making it a more generalizable and scalable solution across categories. We evaluate SA6D on real-world tabletop object datasets and demonstrate that SA6D outperforms existing FSPE methods, particularly in cluttered scenes with occlusions, while requiring fewer reference images.
Navigating to Objects Specified by Images
Images are a convenient way to specify which particular object instance an embodied agent should navigate to. Solving this task requires semantic visual reasoning and exploration of unknown environments. We present a system that can perform this task in both simulation and the real world. Our modular method solves sub-tasks of exploration, goal instance re-identification, goal localization, and local navigation. We re-identify the goal instance in egocentric vision using feature-matching and localize the goal instance by projecting matched features to a map. Each sub-task is solved using off-the-shelf components requiring zero fine-tuning. On the HM3D InstanceImageNav benchmark, this system outperforms a baseline end-to-end RL policy 7x and a state-of-the-art ImageNav model 2.3x (56% vs 25% success). We deploy this system to a mobile robot platform and demonstrate effective real-world performance, achieving an 88% success rate across a home and an office environment.
BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
We present a near real-time method for 6-DoF tracking of an unknown object from a monocular RGBD video sequence, while simultaneously performing neural 3D reconstruction of the object. Our method works for arbitrary rigid objects, even when visual texture is largely absent. The object is assumed to be segmented in the first frame only. No additional information is required, and no assumption is made about the interaction agent. Key to our method is a Neural Object Field that is learned concurrently with a pose graph optimization process in order to robustly accumulate information into a consistent 3D representation capturing both geometry and appearance. A dynamic pool of posed memory frames is automatically maintained to facilitate communication between these threads. Our approach handles challenging sequences with large pose changes, partial and full occlusion, untextured surfaces, and specular highlights. We show results on HO3D, YCBInEOAT, and BEHAVE datasets, demonstrating that our method significantly outperforms existing approaches. Project page: https://bundlesdf.github.io
Natural Adversarial Objects
Although state-of-the-art object detection methods have shown compelling performance, models often are not robust to adversarial attacks and out-of-distribution data. We introduce a new dataset, Natural Adversarial Objects (NAO), to evaluate the robustness of object detection models. NAO contains 7,934 images and 9,943 objects that are unmodified and representative of real-world scenarios, but cause state-of-the-art detection models to misclassify with high confidence. The mean average precision (mAP) of EfficientDet-D7 drops 74.5% when evaluated on NAO compared to the standard MSCOCO validation set. Moreover, by comparing a variety of object detection architectures, we find that better performance on MSCOCO validation set does not necessarily translate to better performance on NAO, suggesting that robustness cannot be simply achieved by training a more accurate model. We further investigate why examples in NAO are difficult to detect and classify. Experiments of shuffling image patches reveal that models are overly sensitive to local texture. Additionally, using integrated gradients and background replacement, we find that the detection model is reliant on pixel information within the bounding box, and insensitive to the background context when predicting class labels. NAO can be downloaded at https://drive.google.com/drive/folders/15P8sOWoJku6SSEiHLEts86ORfytGezi8.
Real-time Localized Photorealistic Video Style Transfer
We present a novel algorithm for transferring artistic styles of semantically meaningful local regions of an image onto local regions of a target video while preserving its photorealism. Local regions may be selected either fully automatically from an image, through using video segmentation algorithms, or from casual user guidance such as scribbles. Our method, based on a deep neural network architecture inspired by recent work in photorealistic style transfer, is real-time and works on arbitrary inputs without runtime optimization once trained on a diverse dataset of artistic styles. By augmenting our video dataset with noisy semantic labels and jointly optimizing over style, content, mask, and temporal losses, our method can cope with a variety of imperfections in the input and produce temporally coherent videos without visual artifacts. We demonstrate our method on a variety of style images and target videos, including the ability to transfer different styles onto multiple objects simultaneously, and smoothly transition between styles in time.
