1 Steering the CensorShip: Uncovering Representation Vectors for LLM "Thought" Control Large language models (LLMs) have transformed the way we access information. These models are often tuned to refuse to comply with requests that are considered harmful and to produce responses that better align with the preferences of those who control the models. To understand how this "censorship" works. We use representation engineering techniques to study open-weights safety-tuned models. We present a method for finding a refusal--compliance vector that detects and controls the level of censorship in model outputs. We also analyze recent reasoning LLMs, distilled from DeepSeek-R1, and uncover an additional dimension of censorship through "thought suppression". We show a similar approach can be used to find a vector that suppresses the model's reasoning process, allowing us to remove censorship by applying the negative multiples of this vector 2 authors · Apr 23, 2025
- Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time. 3 authors · Dec 18, 2025