new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 15

Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems, cyber risk at the edge

The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture.

  • 10 authors
·
Mar 12, 2019

AutoAttacker: A Large Language Model Guided System to Implement Automatic Cyber-attacks

Large language models (LLMs) have demonstrated impressive results on natural language tasks, and security researchers are beginning to employ them in both offensive and defensive systems. In cyber-security, there have been multiple research efforts that utilize LLMs focusing on the pre-breach stage of attacks like phishing and malware generation. However, so far there lacks a comprehensive study regarding whether LLM-based systems can be leveraged to simulate the post-breach stage of attacks that are typically human-operated, or "hands-on-keyboard" attacks, under various attack techniques and environments. As LLMs inevitably advance, they may be able to automate both the pre- and post-breach attack stages. This shift may transform organizational attacks from rare, expert-led events to frequent, automated operations requiring no expertise and executed at automation speed and scale. This risks fundamentally changing global computer security and correspondingly causing substantial economic impacts, and a goal of this work is to better understand these risks now so we can better prepare for these inevitable ever-more-capable LLMs on the horizon. On the immediate impact side, this research serves three purposes. First, an automated LLM-based, post-breach exploitation framework can help analysts quickly test and continually improve their organization's network security posture against previously unseen attacks. Second, an LLM-based penetration test system can extend the effectiveness of red teams with a limited number of human analysts. Finally, this research can help defensive systems and teams learn to detect novel attack behaviors preemptively before their use in the wild....

  • 8 authors
·
Mar 1, 2024

Countermind: A Multi-Layered Security Architecture for Large Language Models

The security of Large Language Model (LLM) applications is fundamentally challenged by "form-first" attacks like prompt injection and jailbreaking, where malicious instructions are embedded within user inputs. Conventional defenses, which rely on post hoc output filtering, are often brittle and fail to address the root cause: the model's inability to distinguish trusted instructions from untrusted data. This paper proposes Countermind, a multi-layered security architecture intended to shift defenses from a reactive, post hoc posture to a proactive, pre-inference, and intra-inference enforcement model. The architecture proposes a fortified perimeter designed to structurally validate and transform all inputs, and an internal governance mechanism intended to constrain the model's semantic processing pathways before an output is generated. The primary contributions of this work are conceptual designs for: (1) A Semantic Boundary Logic (SBL) with a mandatory, time-coupled Text Crypter intended to reduce the plaintext prompt injection attack surface, provided all ingestion paths are enforced. (2) A Parameter-Space Restriction (PSR) mechanism, leveraging principles from representation engineering, to dynamically control the LLM's access to internal semantic clusters, with the goal of mitigating semantic drift and dangerous emergent behaviors. (3) A Secure, Self-Regulating Core that uses an OODA loop and a learning security module to adapt its defenses based on an immutable audit log. (4) A Multimodal Input Sandbox and Context-Defense mechanisms to address threats from non-textual data and long-term semantic poisoning. This paper outlines an evaluation plan designed to quantify the proposed architecture's effectiveness in reducing the Attack Success Rate (ASR) for form-first attacks and to measure its potential latency overhead.

  • 1 authors
·
Oct 13