Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEvidence of Nonlinear Signatures in Solar Wind Proton Density at the L1 Lagrange point
The solar wind is a medium characterized by strong turbulence and significant field fluctuations on various scales. Recent observations have revealed that magnetic turbulence exhibits a self-similar behavior. Similarly, high-resolution measurements of the proton density have shown comparable characteristics, prompting several studies into the multifractal properties of these density fluctuations. In this work, we show that low-resolution observations of the solar wind proton density over time, recorded by various spacecraft at Lagrange point L1, also exhibit non-linear and multifractal structures. The novelty of our study lies in the fact that this is the first systematic analysis of solar wind proton density using low-resolution (hourly) data collected by multiple spacecraft at the L1 Lagrange point over a span of 17 years. Furthermore, we interpret our results within the framework of non-extensive statistical mechanics, which appears to be consistent with the observed nonlinear behavior. Based on the data, we successfully validate the q-triplet predicted by non-extensive statistical theory. To the best of our knowledge, this represents the most rigorous and systematic validation to date of the q-triplet in the solar wind.
Physics-Based Forecasting of Tomorrow's Solar Wind at 1 AU
A faster than real time forecast system for solar wind and interplanetary magnetic field transients that is driven by hourly updated solar magnetograms is proposed to provide a continuous nowcast of the solar corona (<0.1AU) and 24-hours forecast of the solar wind at 1 AU by solving a full 3-D MHD model. This new model has been inspired by the concept of relativity of simultaneity used in the theory of special relativity. It is based on time transformation between two coordinate systems: the solar rest frame and a boosted system in which the current observations of the solar magnetic field and tomorrow's measurement of the solar wind at 1 AU are simultaneous. In this paper we derive the modified governing equations for both hydrodynamics (HD) and magnetohydrodynamics (MHD) and present a new numerical algorithm that only modifies the conserved quantities but preserves the original HD/MHD numerical flux. The proposed method enables an efficient numerical implementation, and thus a significantly longer forecast time than the traditional method.
Prediction of solar wind speed by applying convolutional neural network to potential field source surface (PFSS) magnetograms
An accurate solar wind speed model is important for space weather predictions, catastrophic event warnings, and other issues concerning solar wind - magnetosphere interaction. In this work, we construct a model based on convolutional neural network (CNN) and Potential Field Source Surface (PFSS) magnetograms, considering a solar wind source surface of R_{rm SS}=2.5R_odot, aiming to predict the solar wind speed at the Lagrange 1 (L1) point of the Sun-Earth system. The input of our model consists of four Potential Field Source Surface (PFSS) magnetograms at R_{rm SS}, which are 7, 6, 5, and 4 days before the target epoch. Reduced magnetograms are used to promote the model's efficiency. We use the Global Oscillation Network Group (GONG) photospheric magnetograms and the potential field extrapolation model to generate PFSS magnetograms at the source surface. The model provides predictions of the continuous test dataset with an averaged correlation coefficient (CC) of 0.52 and a root mean square error (RMSE) of 80.8 km/s in an eight-fold validation training scheme with the time resolution of the data as small as one hour. The model also has the potential to forecast high speed streams of the solar wind, which can be quantified with a general threat score of 0.39.
Solar System Elemental Abundances from the Solar Photosphere and CI-Chondrites
Solar photospheric abundances and CI-chondrite compositions are reviewed and updated to obtain representative solar system abundances of the elements and their isotopes. The new photospheric abundances obtained here lead to higher solar metallicity. Full 3D NLTE photospheric analyses are only available for 11 elements. A quality index for analyses is introduced. For several elements, uncertainties remain large. Protosolar mass fractions are H (X = 0.7060), He (Y = 0.2753), and for metals Li to U (Z = 0.0187). The protosolar (C+N)/H agrees within 13% with the ratio for the solar core from the Borexino experiment. Elemental abundances in CI-chondrites were screened by analytical methods, sample sizes, and evaluated using concentration frequency distributions. Aqueously mobile elements (e.g., alkalis, alkaline earths, etc.) often deviate from normal distributions indicating mobilization and/or sequestration into carbonates, phosphates, and sulfates. Revised CI-chondrite abundances of non-volatile elements are similar to earlier estimates. The moderately volatile elements F and Sb are higher than before, as are C, Br and I, whereas the CI-abundances of Hg and N are now significantly lower. The solar system nuclide distribution curves of s-process elements agree within 4% with s-process predictions of Galactic chemical evolution models. P-process nuclide distributions are assessed. No obvious correlation of CI-chondritic to solar elemental abundance ratios with condensation temperatures is observed, nor is there one for ratios of CI-chondrites/solar wind abundances.
Polytropic Behavior in Corotating Interaction Regions: Evidence of Alfvénic Heating
Corotating Interaction Regions (CIRs) are recurring structures in the solar wind, characterized by interactions between fast and slow solar wind streams that compress and heat plasma. This study investigates the polytropic behavior of distinct regions in and around CIRs: uncompressed slow solar wind, compressed slow solar wind, compressed fast solar wind, and uncompressed fast solar wind. Using Wind spacecraft data and an established methodology for calculating the polytropic index ({\gamma}), we analyze 117 CIR events. Results indicate varying {\gamma} values across regions, with heating observed in compressed regions driven by Alfv\'en wave dissipation originating from fast streams. In the uncompressed fast solar wind, {\gamma} exceeds adiabatic values the most and correlates well with strong Alfv\'enic wave activity.
Observations of Transition from Imbalanced to Balanced Kinetic Alfvénic Turbulence
We report observations of solar wind turbulence derived from measurements by the Parker Solar Probe. Our findings reveal the emergence of finite magnetic helicity within the transition range of the turbulence, aligning with signatures of kinetic Alfv\'en waves (KAWs). Notably, as the wave scale transitions from super-ion to sub-ion scales, the ratio of KAWs with opposing signs of magnetic helicity initially increases from approximately 1 to 6 before returning to 1. This observation provides, for the first time, compelling evidence for the transition from imbalanced kinetic Alfv\'enic turbulence to balanced kinetic Alfv\'enic turbulence.
Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere
Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by 'quieter' radial fields. We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. We fitted 3D bi-Maxwellian functions to the core of proton velocity distributions measured by the SPAN-Ai instrument onboard PSP to obtain the proton parallel, T_{p,|}, and perpendicular, T_{p,perp}, temperature. We show that the presence of patches is highlighted by a transverse deflection in the flow and magnetic field away from the radial direction. These deflections are correlated with enhancements in T_{p,|}, while T_{p,perp} remains relatively constant. Patches sometimes exhibit small proton and electron density enhancements. We interpret that patches are not simply a group of switchbacks, but rather switchbacks are embedded within a larger-scale structure identified by enhanced T_{p,|} that is distinct from the surrounding solar wind. We suggest that these observations are consistent with formation by reconnection-associated mechanisms in the corona.
Deep Learning the Forecast of Galactic Cosmic-Ray Spectra
We introduce a novel deep learning framework based on Long Short-Term Memory (LSTM) networks to predict galactic cosmic-ray spectra on a one-day-ahead basis by leveraging historical solar activity data, overcoming limitations inherent in traditional transport models. By flexibly incorporating multiple solar parameters, such as the heliospheric magnetic field, solar wind speed, and sunspot numbers, our model achieves accurate short-term and long-term predictions of cosmic-ray flux. The addition of historical cosmic-ray flux data significantly enhances prediction accuracy, allowing the model to capture complex dependencies between past and future flux variations. Additionally, the model reliably predicts full cosmic-ray spectra for different particle species, enhancing its utility for comprehensive space weather forecasting. Our approach offers a scalable, data-driven alternative to traditional physics-based methods, ensuring robust daily and long-term forecasts. This work opens avenues for advanced models that can integrate broader observational data, with significant implications for space weather monitoring and mission planning.
Connecting the Dots: A Machine Learning Ready Dataset for Ionospheric Forecasting Models
Operational forecasting of the ionosphere remains a critical space weather challenge due to sparse observations, complex coupling across geospatial layers, and a growing need for timely, accurate predictions that support Global Navigation Satellite System (GNSS), communications, aviation safety, as well as satellite operations. As part of the 2025 NASA Heliolab, we present a curated, open-access dataset that integrates diverse ionospheric and heliospheric measurements into a coherent, machine learning-ready structure, designed specifically to support next-generation forecasting models and address gaps in current operational frameworks. Our workflow integrates a large selection of data sources comprising Solar Dynamic Observatory data, solar irradiance indices (F10.7), solar wind parameters (velocity and interplanetary magnetic field), geomagnetic activity indices (Kp, AE, SYM-H), and NASA JPL's Global Ionospheric Maps of Total Electron Content (GIM-TEC). We also implement geospatially sparse data such as the TEC derived from the World-Wide GNSS Receiver Network and crowdsourced Android smartphone measurements. This novel heterogeneous dataset is temporally and spatially aligned into a single, modular data structure that supports both physical and data-driven modeling. Leveraging this dataset, we train and benchmark several spatiotemporal machine learning architectures for forecasting vertical TEC under both quiet and geomagnetically active conditions. This work presents an extensive dataset and modeling pipeline that enables exploration of not only ionospheric dynamics but also broader Sun-Earth interactions, supporting both scientific inquiry and operational forecasting efforts.
Surya: Foundation Model for Heliophysics
Heliophysics is central to understanding and forecasting space weather events and solar activity. Despite decades of high-resolution observations from the Solar Dynamics Observatory (SDO), most models remain task-specific and constrained by scarce labeled data, limiting their capacity to generalize across solar phenomena. We introduce Surya, a 366M parameter foundation model for heliophysics designed to learn general-purpose solar representations from multi-instrument SDO observations, including eight Atmospheric Imaging Assembly (AIA) channels and five Helioseismic and Magnetic Imager (HMI) products. Surya employs a spatiotemporal transformer architecture with spectral gating and long--short range attention, pretrained on high-resolution solar image forecasting tasks and further optimized through autoregressive rollout tuning. Zero-shot evaluations demonstrate its ability to forecast solar dynamics and flare events, while downstream fine-tuning with parameter-efficient Low-Rank Adaptation (LoRA) shows strong performance on solar wind forecasting, active region segmentation, solar flare forecasting, and EUV spectra. Surya is the first foundation model in heliophysics that uses time advancement as a pretext task on full-resolution SDO data. Its novel architecture and performance suggest that the model is able to learn the underlying physics behind solar evolution.
Evidence for Widespread Hydrogen Sequestration within the Moon's South Polar Cold Traps
The measured neutron flux from the Moons south polar region shows evidence of locally enhanced hydrogen concentrations, likely in the form of water ice, within most permanently shadowed regions (PSR), poleward of 77 deg S latitude. Results are consistent with the original findings of Watson et al, 1961, which found that the PSRs cryogenic surfaces create exclusive conditions for the sequestration of water ice, due to their extremely low sublimation rates. Widespread PSR hydrogenation is demonstrated in several studies by showing that the contrasting PSR area distribution is being instrumentally blurred. The PSRs expected hydrogen observations are correlated by their area fraction of the fixed 30 km diameter footprint area of the Collimated Sensor for Epithermal Neutrons (CSETN), which is part of the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO). The correlation indicates that the PSRs are similarly hydrogenated, with an expected concentration = 0.27 wt%, relative to that of the anhydrous reference terrain (lower bounds). Hydrogen concentrations are demonstrated to be correlated to maximum temperature distributions within the basins of Haworth, Shoemaker and Faustini PSRs. Cabeus-1 PSR shows an anomalously enhanced hydrogen concentration indicating a second process contributes to its hydrogen budget. Results are consistent with ongoing processes that introduce volatiles to the surface including outgassing, solar wind production with regolith silicates, and mixing from small scale meteor impacts and diurnal temperature variation. We validate the bandpass filter used to subtract CSETNs detection of uncollimated neutrons with profiles of several PSRs neutron suppression before and after processing. Keywords: Moon, Epithermal Neutron, Hydrogen, Water, Ice, Volatiles, LRO, LEND, Diviner, LOLA
SuryaBench: Benchmark Dataset for Advancing Machine Learning in Heliophysics and Space Weather Prediction
This paper introduces a high resolution, machine learning-ready heliophysics dataset derived from NASA's Solar Dynamics Observatory (SDO), specifically designed to advance machine learning (ML) applications in solar physics and space weather forecasting. The dataset includes processed imagery from the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI), spanning a solar cycle from May 2010 to July 2024. To ensure suitability for ML tasks, the data has been preprocessed, including correction of spacecraft roll angles, orbital adjustments, exposure normalization, and degradation compensation. We also provide auxiliary application benchmark datasets complementing the core SDO dataset. These provide benchmark applications for central heliophysics and space weather tasks such as active region segmentation, active region emergence forecasting, coronal field extrapolation, solar flare prediction, solar EUV spectra prediction, and solar wind speed estimation. By establishing a unified, standardized data collection, this dataset aims to facilitate benchmarking, enhance reproducibility, and accelerate the development of AI-driven models for critical space weather prediction tasks, bridging gaps between solar physics, machine learning, and operational forecasting.
Operational Wind Speed Forecasts for Chile's Electric Power Sector Using a Hybrid ML Model
As Chile's electric power sector advances toward a future powered by renewable energy, accurate forecasting of renewable generation is essential for managing grid operations. The integration of renewable energy sources is particularly challenging due to the operational difficulties of managing their power generation, which is highly variable compared to fossil fuel sources, delaying the availability of clean energy. To mitigate this, we quantify the impact of increasing intermittent generation from wind and solar on thermal power plants in Chile and introduce a hybrid wind speed forecasting methodology which combines two custom ML models for Chile. The first model is based on TiDE, an MLP-based ML model for short-term forecasts, and the second is based on a graph neural network, GraphCast, for medium-term forecasts up to 10 days. Our hybrid approach outperforms the most accurate operational deterministic systems by 4-21% for short-term forecasts and 5-23% for medium-term forecasts and can directly lower the impact of wind generation on thermal ramping, curtailment, and system-level emissions in Chile.
An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage
Scalable and cost-effective solutions to renewable energy storage are essential to addressing the world's rising energy needs while reducing climate change. As we increase our reliance on renewable energy sources such as wind and solar, which produce intermittent power, storage is needed to transfer power from times of peak generation to peak demand. This may require the storage of power for hours, days, or months. One solution that offers the potential of scaling to nation-sized grids is the conversion of renewable energy to other fuels, such as hydrogen or methane. To be widely adopted, this process requires cost-effective solutions to running electrochemical reactions. An open challenge is finding low-cost electrocatalysts to drive these reactions at high rates. Through the use of quantum mechanical simulations (density functional theory), new catalyst structures can be tested and evaluated. Unfortunately, the high computational cost of these simulations limits the number of structures that may be tested. The use of machine learning may provide a method to efficiently approximate these calculations, leading to new approaches in finding effective electrocatalysts. In this paper, we provide an introduction to the challenges in finding suitable electrocatalysts, how machine learning may be applied to the problem, and the use of the Open Catalyst Project OC20 dataset for model training.
Localized Heating and Dynamics of the Solar Corona due to a Symbiosis of Waves and Reconnection
The Sun's outer atmosphere, the corona, is maintained at mega-Kelvin temperatures and fills the heliosphere with a supersonic outflowing wind. The dissipation of magnetic waves and direct electric currents are likely to be the most significant processes for heating the corona, but a lively debate exists on their relative roles. Here, we suggest that the two are often intrinsically linked, since magnetic waves may trigger current dissipation, and impulsive reconnection can launch magnetic waves. We present a study of the first of these processes by using a 2D physics-based numerical simulation using the Adaptive Mesh Refined (AMR) Versatile Advection Code (VAC). Magnetic waves such as fast magnetoacoustic waves are often observed to propagate in the large-scale corona and interact with local magnetic structures. The present numerical simulations show how the propagation of magnetic disturbances towards a null point or separator can lead to the accumulation of the electric currents. Lorentz forces can laterally push and vertically stretch the magnetic fields, forming a current sheet with a strong magnetic-field gradient. The magnetic field lines then break and reconnect, and so contribute towards coronal heating. Numerical results are presented that support these ideas and support the concept of a symbiosis between waves and reconnection in heating the solar corona.
Full Transport General Relativistic Radiation Magnetohydrodynamics for Nucleosynthesis in Collapsars
We model a compact black hole-accretion disk system in the collapsar scenario with full transport, frequency dependent, general relativistic radiation magnetohydrodynamics. We examine whether or not winds from a collapsar disk can undergo rapid neutron capture (r-process) nucleosynthesis and significantly contribute to solar r-process abundances. We find the inclusion of accurate transport has significant effects on outflows, raising the electron fraction above Y_{rm e} sim 0.3 and preventing third peak r-process material from being synthesized. We analyze the time-evolution of neutrino processes and electron fraction in the disk and present a simple one-dimensional model for the vertical structure that emerges. We compare our simulation to semi-analytic expectations and argue that accurate neutrino transport and realistic initial and boundary conditions are required to capture the dynamics and nucleosynthetic outcome of a collapsar.
Constraining atmospheric composition from the outflow: helium observations reveal the fundamental properties of two planets straddling the radius gap
TOI-836 is a ~2-3 Gyr K dwarf with an inner super Earth (R=1.7 R_oplus, P=3.8 d) and an outer mini Neptune (R=2.6 R_oplus, P=8.6 d). JWST/NIRSpec 2.8--5.2 mum transmission spectra are flat for both planets. We present Keck/NIRSPEC observations of escaping helium for super-Earth b, which shows no excess absorption in the 1083 nm triplet to deep limits (<0.2%), and mini-Neptune c, which shows strong (0.7%) excess absorption in both visits. These results demonstrate that planet c retains at least some primordial atmosphere, while planet b is consistent with having lost its entire primordial envelope. Self-consistent 1D radiative-hydrodynamic models of planet c reveal that the helium excess absorption signal is highly sensitive to metallicity: its equivalent width collapses by a factor of 13 as metallicity increases from 10x to 100x solar, and by a further factor of 12 as it increases to 200x solar. The observed equivalent width is 88\% the model prediction for 100x metallicity, suggesting an atmospheric metallicity similar to K2-18b and TOI-270d, the first two mini-Neptunes with detected absorption features in JWST transmission spectra. We highlight the helium triplet as a potentially powerful probe of atmospheric composition, with complementary strengths and weaknesses to atmospheric retrievals. The main strength is its extreme sensitivity to metallicity in the scientifically significant range of 10--200x solar, and the main weakness is the enormous model uncertainties in outflow suppression and confinement mechanisms, such as magnetic fields and stellar winds, which can suppress the signal by at least a factor of ~several.
Coronal Abundance Fractionation Linked to Chromospheric Transverse MHD Waves in a Solar Active Region Observed with FISS/GST and EIS/Hinode
Elemental abundances in the solar corona differ from those in the photosphere, with low first ionization potential (FIP) elements being enhanced, a phenomenon known as the FIP effect. This enhancement is attributed to ponderomotive forces linked to magnetohydrodynamic (MHD) waves, particularly incompressible transverse waves. Our study investigates the relationship between coronal abundance fractionation and chromospheric transverse MHD waves by examining the spatial correlation between FIP fractionation and these waves and by analyzing their properties to test the ponderomotive force model. We used H alpha data from the Fast Imaging Solar Spectrograph at the Goode Solar Telescope to detect chromospheric transverse MHD waves and Si{X} (low FIP) and S{X} (high FIP) spectra from Hinode EUV Imaging Spectrometer to determine relative abundances in an active region. Extrapolated linear force free magnetic fields from Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetograms further linked the observed chromospheric waves with coronal composition. Approximately 400 wave packets were identified and characterized by their period, velocity amplitude, propagation speed, and direction. These incompressible or weakly compressible waves were mainly observed near loop footpoints in the sunspot penumbra and superpenumbral fibrils. Regions of high FIP fractionation coincided with closed magnetic fields where these waves were present, and low-frequency, downward-propagating waves comprised about 43/% of the total. Our results demonstrate a strong correlation between coronal abundance fractionation and chromospheric transverse MHD waves, supporting the view that the FIP effect is driven by the ponderomotive force from these waves.
Can Alfvénic Fluctuations Affect the Correlation and Complexity of Magnetic Fields in Magnetic Ejecta? A Case Study Based on Multi-Spacecraft Measurements at 1~au
We investigate whether Alfv\'enic fluctuations (AFs) can affect the structure of magnetic ejecta (MEs) within interplanetary coronal mass ejections (ICMEs). We study an ICME observed on 2001 December 29 at 1 au by ACE and Wind, at a total angular separation of sim0.8^circ (sim0.014~au). We focus on the correlation and complexity of its magnetic structure measured between two spacecraft in association with large-amplitude AFs. The Alfv\'enicity of the ME is investigated in terms of the residual energy and cross helicity of fluctuations. We find that as for the event of interest, large-amplitude AFs occur in the rear region of the ME at both Wind and ACE with a duration of about six hours. We compare the correlation of the magnetic field strength and vector components measured between Wind and ACE, and investigate complexity in terms of the magnetic hodograms. The region showing AFs is found to be associated with a decreased correlation of the magnetic field components and an increased complexity of the ME magnetic configuration detected at ACE and Wind, which may be due to the fact that the two spacecraft crossing the same ME along different trajectories likely sampled AFs in different oscillation phases. Combining multi-point in-situ measurements and remote-sensing observations of the ICME source region, we further discuss different potential sources of the AFs.
Observational signatures of mixing-induced cooling in the Kelvin-Helmholtz instability
Cool (approx 10^4K), dense material permeates the hot (approx 10^6K), tenuous solar corona in form of coronal condensations, for example prominences and coronal rain. As the solar atmosphere evolves, turbulence can drive mixing between the condensations and the surrounding corona, with the mixing layer exhibiting an enhancement in emission from intermediate temperature (approx10^5K) spectral lines, which is often attributed to turbulent heating within the mixing layer. However, radiative cooling is highly efficient at intermediate temperatures and numerical simulations have shown that radiative cooling can far exceed turbulent heating in prominence-corona mixing scenarios. As such the mixing layer can have a net loss of thermal energy, i.e., the mixing layer is cooling rather than heating. Here, we investigate the observational signatures of cooling processes in Kelvin-Helmholtz mixing between a prominence thread and the surrounding solar corona through 2D numerical simulations. Optically thin emission is synthesised for Si IV, along with optically thick emission for Halpha, Ca II K and Mg II h using Lightweaver The Mg II h probes the turbulent mixing layer, whereas Halpha and Ca II K form within the thread and along its boundary respectively. As the mixing evolves, intermediate temperatures form leading to an increase in Si IV emission, which coincides with increased radiative losses. The simulation is dominated by cooling in the mixing layer, rather than turbulent heating, and yet enhanced emission in warm lines is produced. As such, an observational signature of decreased emission in cooler lines and increased emission in hotter lines may be a signature of mixing, rather than an implication of heating.
Detection asymmetry in solar energetic particle events
Context. Solar energetic particles (SEPs) are detected in interplanetary space in association with flares and coronal mass ejections (CMEs) at the Sun. The magnetic connection between the observing spacecraft and the solar active region (AR) source of the event is a key parameter in determining whether SEPs are observed and the properties of the particle event. Aims. We investigate whether an east-west asymmetry in the detection of SEP events is present in observations and discuss its possible link to corotation of magnetic flux tubes with the Sun. Methods. We used a published dataset of 239 CMEs recorded between 2006 and 2017 and having source regions both on the front side and far side of the Sun as seen from Earth. We produced distributions of occurrence of in-situ SEP intensity enhancements associated with the CME events, versus \Delta \phi, the separation in longitude between the source active region and the magnetic footpoint of the observing spacecraft based on the nominal Parker spiral. We focused on protons of energy >10 MeV measured by the STEREO A, STEREO B and GOES spacecraft at 1 au. We also considered the occurrence of 71-112 keV electron events detected by MESSENGER between 0.31 and 0.47 au. Results. We find an east-west asymmetry in the detection of >10 MeV proton events and of 71-112 keV electron events. For protons, observers for which the source AR is on the east side of the spacecraft footpoint and not well connected (-180 < \Delta \phi < -40) are 93% more likely to detect an SEP event compared to observers with +40 < \Delta \phi < +180. The asymmetry may be a signature of corotation of magnetic flux tubes with the Sun, given that for events with \Delta \phi < 0 corotation sweeps the particle-filled flux tubes towards the observing spacecraft, while for \Delta \phi > 0 it takes them away from it.
A Comparative Study on Generative Models for High Resolution Solar Observation Imaging
Solar activity is one of the main drivers of variability in our solar system and the key source of space weather phenomena that affect Earth and near Earth space. The extensive record of high resolution extreme ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) offers an unprecedented, very large dataset of solar images. In this work, we make use of this comprehensive dataset to investigate capabilities of current state-of-the-art generative models to accurately capture the data distribution behind the observed solar activity states. Starting from StyleGAN-based methods, we uncover severe deficits of this model family in handling fine-scale details of solar images when training on high resolution samples, contrary to training on natural face images. When switching to the diffusion based generative model family, we observe strong improvements of fine-scale detail generation. For the GAN family, we are able to achieve similar improvements in fine-scale generation when turning to ProjectedGANs, which uses multi-scale discriminators with a pre-trained frozen feature extractor. We conduct ablation studies to clarify mechanisms responsible for proper fine-scale handling. Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts, as suggested by the evaluation we conduct. We make all code, models and workflows used in this study publicly available at https://github.com/SLAMPAI/generative-models-for-highres-solar-images.
What Determines the Brightness of the Magnetically Open Solar Corona?: Insights from Three-dimensional Radiative Magnetohydrodynamic Simulations and Observations
We investigate the relationship between solar coronal holes and open-field regions using three-dimensional radiative magnetohydrodynamic (MHD) simulations combined with remote-sensing observations from the Solar Dynamics Observatory (SDO). Our numerical simulations reveal that magnetically open regions in the corona can exhibit brightness comparable to quiet regions, challenging the conventional view that open-field regions are inherently dark coronal holes. We find that the coronal brightness is primarily determined by the total energy input from photospheric magnetic activities, such as the small-scale dynamo, rather than differences in dissipative processes within the corona. Using synthesized EUV intensity maps, we show that brightness thresholds commonly used to identify coronal holes may overlook open-field regions, especially at lower spatial resolutions. Observational analysis utilizing SDO/HMI and AIA synoptic maps supports our simulation results, demonstrating that magnetic field extrapolation techniques, such as the Potential Field Source Surface (PFSS) model, are sensitive to the chosen parameters, including the source surface height. We suggest that discrepancies in estimates of open magnetic flux (the ``open flux problem'') arise both from the modeling assumptions in coronal magnetic field extrapolation and systematic biases in solar surface magnetic field observations. Our findings indicate the need for reconsidering criteria used to identify coronal holes as indicators of open-field regions to better characterize the solar open magnetic flux.
The impact of stellar winds and tidal locking effects on the habitability of Earth-like exoplanets around M dwarf stars
We present an assessment of the effects of stellar wind magnetic and mechanical components on the habitability of Earth-like exoplanets orbiting the inner and outer radii of the habitable zone (HZ) of M dwarfs. We consider stars with masses in the range of 0.09 - 0.75 M_odot and planets with a surface dipolar magnetic field of 0.5 G. We estimate the size of the magnetospheres of such exoplanets using the pressure balance equation including the contribution of magnetic and ram pressures from stellar winds. We explore different scenarios, including fast and slow stellar winds, to assess the relevance of kinetic contribution. Furthermore, the effect of tidal locking and potential deviations from the Parker spiral, typically used to describe the interplanetary magnetic field, are analyzed. We show that for low mass stars (M < 0.15 M_odot), the ram pressure exerted by stellar winds affects the size of the magnetosphere more than the stellar wind magnetic pressure. Interestingly, when the ram pressure is not much stronger than the magnetic pressure, typically for higher mass stars, the inclusion of ram pressure can be beneficial to the magnetosphere due to the magnetopause currents. A magnetosphere with the size of that of modern Earth is difficult to achieve with the current assumptions. However, an early Earth magnetosphere is achieved by roughly half of our hypothetical planets orbiting the outer radius of the HZ in most of the considered cases. We find that deviations from the Parker spiral can affect the results significantly, reducing the magnetosphere by 56% in extreme cases. Most of the hypothetical planets are most likely (or might be) tidally locked, with the notable exception of those orbiting the outer HZ of GJ 846 and V1005 Ori.
Stochastic acceleration in arbitrary astrophysical environments
Turbulent magnetic fields are to some extent a universal feature in astrophysical phenomena. Charged particles that encounter these turbulence get on average accelerated according to the so-called second-order Fermi process. However, in most astrophysical environments there are additional competing processes, such as different kinds of first-order energy changes and particle escape, that effect the resulting momentum distribution of the particles. In this work we provide to our knowledge the first semi-analytical solution of the isotropic steady-state momentum diffusion equation including continuous and catastrophic momentum changes that can be applied to any arbitrary astrophysical system of interest. Here, we adopt that the assigned magnetic turbulence is constrained on a finite range and the particle flux vanishes beyond these boundaries. Consequently, we show that the so-called pile-up bump -- that has for some special cases long been established -- is a universal feature of stochastic acceleration that emerges around the momentum chi_{rm eq} where acceleration and continuous loss are in equilibrium if the particle's residence time in the system is sufficient at chi_{rm eq}. In general, the impact of continuous and catastrophic momentum changes plays a crucial role in the shape of the steady-state momentum distribution of the accelerated particles, where simplified unbroken power-law approximations are often not adequate.
Surprising Variation of Gamma Rays from the Sun over the Solar Cycle Revealed with Fermi-LAT
The steady-state gamma-ray emission from the Sun is thought to consist of two emission components due to interactions with Galactic cosmic rays: (1) a hadronic component covering the solar disk, and (2) a leptonic component peaking at the solar edge and extending into the heliosphere. The flux of these components is expected to vary with the 11-year solar cycle, being highest during solar minimum and lowest during solar maximum, because it is correlated with the cosmic-ray flux. No study has yet analyzed the flux variation of the two components separately over solar cycles. In this work, we measure the temporal variations of the flux of each component over 15 years of Fermi Large Area Telescope observations and compare them with the sunspot number and Galactic cosmic-ray flux from AMS-02 near the Earth. We find that the flux variation of the disk anticorrelates with solar activity and correlates with cosmic-ray protons, confirming its emission mechanism. The flux variation of the extended component anticorrelates with solar activity only until mid 2012. After that, we no longer observe any correlation or anticorrelation, even with the CR electron flux. This most likely suggests that cosmic-ray transport and modulation in the inner heliosphere are unexpectedly complex and different for electrons and protons or, alternatively, the presence of an additional, unknown component of gamma rays or cosmic rays. These findings impact space weather research and emphasize the need for close monitoring of Cycle 25 and the ongoing polarity reversal.
Open-source Flux Transport (OFT). I. HipFT -- High-performance Flux Transport
Global solar photospheric magnetic maps play a critical role in solar and heliospheric physics research. Routine magnetograph measurements of the field occur only along the Sun-Earth line, leaving the far-side of the Sun unobserved. Surface Flux Transport (SFT) models attempt to mitigate this by modeling the surface evolution of the field. While such models have long been established in the community (with several releasing public full-Sun maps), none are open source. The Open Source Flux Transport (OFT) model seeks to fill this gap by providing an open and user-extensible SFT model that also builds on the knowledge of previous models with updated numerical and data acquisition/assimilation methods along with additional user-defined features. In this first of a series of papers on OFT, we introduce its computational core: the High-performance Flux Transport (HipFT) code (github.com/predsci/hipft). HipFT implements advection, diffusion, and data assimilation in a modular design that supports a variety of flow models and options. It can compute multiple realizations in a single run across model parameters to create ensembles of maps for uncertainty quantification and is high-performance through the use of multi-CPU and multi-GPU parallelism. HipFT is designed to enable users to easily write extensions, enhancing its flexibility and adaptability. We describe HipFT's model features, validations of its numerical methods, performance of its parallel and GPU-accelerated code implementation, analysis/post-processing options, and example use cases.
Low-energy Injection and Nonthermal Particle Acceleration in Relativistic Magnetic Turbulence
Relativistic magnetic turbulence has been proposed as a process for producing nonthermal particles in high-energy astrophysics. Particle energization may be contributed by both magnetic reconnection and turbulent fluctuations, but their interplay is poorly understood. It has been suggested that during magnetic reconnection the parallel electric field dominates particle acceleration up to the lower bound of the power-law particle spectrum, but recent studies show that electric fields perpendicular to magnetic field can play an important, if not dominant role. In this study, we carry out 2D fully kinetic particle-in-cell simulations of magnetically dominated decaying turbulence in a relativistic pair plasma. For a fixed magnetization parameter sigma_0=20, we find that the injection energy {varepsilon}_{rm inj} converges with increasing domain size to {varepsilon}_{rm inj}simeq 10m_ec^2. In contrast, the power-law index, the cut-off energy, and the power-law extent increase steadily with domain size. We trace a large number of particles and evaluate the contributions of the work done by the parallel (W_parallel) and perpendicular (W_perp) electric fields during both the injection phase and the post-injection phase. We find that during the injection phase, the W_perp contribution increases with domain size, suggesting that it may eventually dominate injection for a sufficiently large domain. In contrast, both components contribute equally during the post-injection phase, insensitive to the domain size. For high energy ({varepsilon}varepsilon_{rm inj}) particles, W_perp dominates the subsequent energization. These findings may improve our understanding of nonthermal particles and their emissions in astrophysical plasmas.
Solar-cycle variations in meridional flows and rotational shear within the Sun's near-surface shear layer
Using solar-cycle long helioseismic measurements of meridional and zonal flows in the near-surface shear layer (NSSL) of the Sun, we study their spatio-temporal variations and connections to active regions. We find that near-surface inflows towards active latitudes are part of a local circulation with an outflow away from them at depths around 0.97 R, which is also the location where the deviations in the radial gradient of rotation change sign. These results, together with opposite-signed changes over latitude and depth in the above quantities observed during the solar minimum period, point to the action of the Coriolis force on large-scale flows as the primary cause of changes in the rotation gradient within the NSSL. We also find that such Coriolis force-mediated changes in near-surface flows towards active latitudes only marginally change the amplitude of zonal flow and hence are not likely to be its driving force. Our measurements typically achieve a high signal-to-noise ratio (>5σ) for near-surface flows but can drop to 3σ near the base (0.95 R) of the NSSL. Close agreements between the depth profiles of changes in rotation gradient and in meridional flows measured from quite different global and local helioseismic techniques, respectively, show that the results are not dependent on the analysis techniques.
Probing solar modulation of AMS-02 time-dependent D, ^3He and ^4He fluxes with modified force field approximation
The AMS-02 experiment recently published time-dependent fluxes of deuterons (D) from May 2011 to April 2021, divided into 33 periods of four Bartels rotations each. These temporal structures are associated with solar modulation. In this study, three modified force-field approximation are employed to examine the long-term behavior of cosmic-ray (CR) isotopes such as D, ^3He, and ^4He, as well as the ratios D/^3He and ^3He/^4He. The solar modulation potential is rigidity-dependent for these modified force-field approximation models. Due to the unknown local interstellar spectrum (LIS) for these isotopes, we utilize the Non-LIS method for solar modulation. By fitting to the AMS-02 time-dependent fluxes, we derive the solar modulation parameters. Our findings prove the assumption in literature that all isotopes can be fitted using the same solar modulation parameters and it shown that the modified FFA models are validated parametrization for solar modulation. Based on these, we forecast the daily fluxes of D, ^3He and ^4He from 2011 to 2020.
New Radio Observations of the Supernova Remnant CTA 1
We present new radio images of the supernova remnant (SNR) CTA 1 at 1420 and 408 MHz, and in the 21 cm line of H I observed with the Dominion Radio Astrophysical Observatory Synthesis Telescope and at 1420 MHz observed with the Effelsberg 100 m telescope. We confirm previously described continuum features and elaborate further on filamentary features identified using the high-resolution (1') maps from these new observations. We investigate the abrupt change in sign of rotation measure (RM) across the SNR, using the linear polarization observations in the four bands around 1420 MHz. Following X. H. Sun et al.'s (2011) investigation, we both confirm that the distribution of signs of the RMs for extragalactic sources in the area appears to match that of the shell, as well as combine the data from the four bands to estimate the relative depolarization and the intrinsic rotation measure of the SNR. We do not conclusively reject X. H. Sun et al.'s (2011) claim of a Faraday screen in the foreground causing the distribution of RMs that we observe; however, we do suggest an alternative explanation of a swept-up stellar wind from the progenitor star with a toroidal magnetic field. Finally, we expand on the analysis of the H I observations by applying the Rolling Hough Transform to isolate filamentary structure and better identify H I emission with the SNR. Further constraining the H I velocity channels associated with CTA 1, we use more recent Galactic rotation curves to calculate an updated kinematic distance of 1.09 +/- 0.2 kpc.
Observational Signatures of Galactic Turbulent Dynamos
We analyse the observational signatures of galactic magnetic fields that are self-consistently generated in magnetohydrodynamic simulations of the interstellar medium through turbulence driven by supernova (SN) explosions and differential rotation. In particular, we study the time evolution of the Faraday rotation measure (RM), synchrotron radiation, and Stokes parameters by characterising the typical structures formed in the plane of observation. We do this by defining two distinct models for both thermal and cosmic ray (CR) electron distributions. Our results indicate that the maps of RM have structures which are sheared and rendered anisotropically by differential rotation and that they depend on the choice of thermal electrons model as well as the SN rate. Synchrotron maps are qualitatively similar to the maps of the mean magnetic field along the line of sight and structures are only marginally affected by the CR model. Stokes parameters and related quantities, such as the degree of linear polarisation, are highly dependent on both frequency and resolution of the observation.
Radiation-magnetohydrodynamics with MPI-AMRVAC using flux-limited diffusion
Context. Radiation plays a significant role in solar and astrophysical environments as it may constitute a sizeable fraction of the energy density, momentum flux, and the total pressure. Modelling the dynamic interaction between radiation and magnetized plasmas in such environments is an intricate and computationally costly task. Aims. The goal of this work is to demonstrate the capabilities of the open-source parallel, block-adaptive computational framework MPI-AMRVAC, in solving equations of radiation-magnetohydrodynamics (RMHD), and to present benchmark test cases relevant for radiation-dominated magnetized plasmas. Methods. The existing magnetohydrodynamics (MHD) and flux-limited diffusion (FLD) radiative-hydrodynamics physics modules are combined to solve the equations of radiation-magnetohydrodynamics (RMHD) on block-adaptive finite volume Cartesian meshes in any dimensionality. Results. We introduce and validate several benchmark test cases such as steady radiative MHD shocks, radiation-damped linear MHD waves, radiation-modified Riemann problems and a multi-dimensional radiative magnetoconvection case. We recall the basic governing Rankine-Hugoniot relations for shocks and the dispersion relation for linear MHD waves in the presence of optically thick radiation fields where the diffusion limit is reached. The RMHD system allows for 8 linear wave types, where the classical 7-wave MHD picture (entropy and three wave pairs for slow, Alfven and fast) is augmented with a radiative diffusion mode. Conclusions. The MPI-AMRVAC code now has the capability to perform multidimensional RMHD simulations with mesh adaptation making it well-suited for larger scientific applications to study magnetized matter-radiation interactions in solar and stellar interiors and atmospheres.
Solar Event Tracking with Deep Regression Networks: A Proof of Concept Evaluation
With the advent of deep learning for computer vision tasks, the need for accurately labeled data in large volumes is vital for any application. The increasingly available large amounts of solar image data generated by the Solar Dynamic Observatory (SDO) mission make this domain particularly interesting for the development and testing of deep learning systems. The currently available labeled solar data is generated by the SDO mission's Feature Finding Team's (FFT) specialized detection modules. The major drawback of these modules is that detection and labeling is performed with a cadence of every 4 to 12 hours, depending on the module. Since SDO image data products are created every 10 seconds, there is a considerable gap between labeled observations and the continuous data stream. In order to address this shortcoming, we trained a deep regression network to track the movement of two solar phenomena: Active Region and Coronal Hole events. To the best of our knowledge, this is the first attempt of solar event tracking using a deep learning approach. Since it is impossible to fully evaluate the performance of the suggested event tracks with the original data (only partial ground truth is available), we demonstrate with several metrics the effectiveness of our approach. With the purpose of generating continuously labeled solar image data, we present this feasibility analysis showing the great promise of deep regression networks for this task.
Solaris: A Foundation Model of the Sun
Foundation models have demonstrated remarkable success across various scientific domains, motivating our exploration of their potential in solar physics. In this paper, we present Solaris, the first foundation model for forecasting the Sun's atmosphere. We leverage 13 years of full-disk, multi-wavelength solar imagery from the Solar Dynamics Observatory, spanning a complete solar cycle, to pre-train Solaris for 12-hour interval forecasting. Solaris is built on a large-scale 3D Swin Transformer architecture with 109 million parameters. We demonstrate Solaris' ability to generalize by fine-tuning on a low-data regime using a single wavelength (1700 {\AA}), that was not included in pre-training, outperforming models trained from scratch on this specific wavelength. Our results indicate that Solaris can effectively capture the complex dynamics of the solar atmosphere and transform solar forecasting.
Bell Instability and Cosmic-Ray Acceleration in AGN Ultrafast Outflow Shocks
We investigate magnetic-field amplification driven by the nonresonant hybrid (NRH or Bell) instability and its impact on cosmic-ray (CR) acceleration at reverse shocks of ultrafast outflows (UFOs) from active galactic nuclei (AGN). Previous kinetic studies by particle-in-cell simulations have demonstrated that when maximum CR energy is near the injection scale, NRH instability efficiently amplifies magnetic field up to the saturation level. However, the efficiency of NRH instability goes down as maximum energy increase since CR current is carried by escaping CRs near the maximum energy. We employ a one-dimensional MHD--CR framework solving telegraph-type diffusion--convection equations to trace the coupled evolution of CRs, magnetic fields, and shock dynamics under realistic parameters. We find a distinct transition with magnetic field strength: for weak background fields (B_{0}!lesssim!10^{-4},G), NRH instability efficiently amplifies upstream turbulence, driving a self-regulated state where E_{max} becomes independent of initial strength of magnetic turbulence. In contrast, for stronger background fields (B_{0}!gtrsim!10^{-3},G), the escaping CR current is too weak to drive NRH instability, and magnetic turbulence further decays through parametric instabilities, potentially reducing the acceleration efficiency. We give the physical interpretation for the transition and discuss conditions for PeV--EeV acceleration at UFO reverse shocks.
Fully Compressible Magnetohydrodynamic Simulations of Solar Convection Zones with CHORUS++
The objective of this study is to develop a fully compressible magnetohydrodynamic solver for fast simulations of the global dynamo of the Sun using unstructured grids and GPUs. Accurate modeling of the Sun's convective layers is vital to predicting the Sun's behavior, including the solar dynamo and sunspot cycles. Currently, there are many efficient codes capable of conducting these large simulations; however, many assume an anealastic density distribution. The anelastic assumption is capable of producing accurate results for low mach numbers; however, it fails in regions with a higher mach number and a fully compressible flow must be considered. To avoid these issues, Wang et al. [1] created a Compressible High-ORder Unstructured Spectral difference (CHORUS) code for simulating fluid dynamics inside stars and planets. CHORUS++ augmented the CHORUS code to adopt a higher degree of polynomials by using cubed-sphere meshing and transfinite mapping to perform simulations on unstructured grids [2]. Recently, CHORUS++ was further developed for parallel magnetohydrodynamic (MHD) solutions on GPUs at Clarkson University. In this study the solar benchmark problems presented by Chen et al. [2] are extended to unsteady solar dynamo problems, with two different density scale heights. The CHORUS-MHD code is further accelerated by multiple GPUs and used to successfully solve these solar dynamo benchmark problems. [1] Wang, J., Liang, C., and Miesch, M. S., "A Compressible High-Order Unstructured Spectral Difference Code for Stratified Convection in Rotating Spherical Shells," Journal of Computational Physics, Vol. 290, 2015, pp. 90-111. [2] Chen, K., Liang, C., and Wan, M., "Arbitrarily high-order accurate simulations of compressible rotationally constrained convection using a transfinite mapping on cubed-sphere grids," Physics of Fluids, Vol. 35, 2023, p. 086120.
Deriving pulsar pair-production multiplicities from pulsar wind nebulae using H.E.S.S. and LHAASO observations
Pulsar Wind Nebulae (PWNe) dominate the galactic gamma-ray sky at very high energies, and are major contributors to the leptonic cosmic ray flux. However, whether or not pulsars also accelerate ions to comparable energies is not yet experimentally confirmed. We aim to constrain the birth period and pair-production multiplicity for a set of pulsars. In doing so, we aim to constrain the proportion of ions in the pulsar magnetosphere and hence the proportion of ions that could enter the pulsar wind. We estimate possible ranges of the value of the average pair production multiplicity for a sample of 26 pulsars in the Australia Telescope National Facility (ATNF) catalogue, which have also been observed by the High Energy Stereoscopic System (H.E.S.S.) telescopes. We then derive lower limits for the pulsar birth periods and average pair production multiplicities for a subset of these sources where the extent of the pulsar wind nebula and surrounding supernova shell have been measured in the radio. We also derive curves for the average pair production multiplicities as a function of birth period for sources recently observed by the Large High Altitude Air Shower Observatory (LHAASO). We show that there is a potential for hadrons entering the pulsar wind for most of the H.E.S.S. and LHAASO sources we consider, dependent upon the efficiency of luminosity conversion into particles. We also present estimates of the pulsar birth period for six of these sources, which all fall into the range of simeq10-50 ms.
Evidence for an MHD disk wind via optical forbidden line spectro-astrometry
Spectro-astrometry is used to investigate the low velocity component (LVC) of the optical forbidden emission from the T Tauri stars RU Lupi and AS 205 N. Both stars also have high velocity forbidden emission (HVC) which is tracing a jet. For AS 205 N, analysis reveals a complicated outflow system. For RU Lupi, the [O I] 6300 and [S II] 6716, 6731 LV narrow component (NC) is offset along the same position angle (PA) as the HVC but with a different velocity gradient than the jet, in that displacement from the stellar position along the rotation axis is decreasing with increasing velocity. From the LVC NC PA and velocity gradient, it is inferred that the NC is tracing a wide angled MHD disk wind. A photoevaporative wind is ruled out. This is supported by a comparison with a previous spectro-astrometric study of the CO fundamental line. The decrease in offset with increasing velocity is interpreted as tracing an increase in the height of the wind with increasing disk radius. This is one of the first measurements of the spatial extent of the forbidden emission line LVC NC (~ 40 au, 8 au for RU~Lupi in the [S II] 6731 and [O I] 6300 lines) and the first direct confirmation that the LVC narrow component can trace an MHD disk wind.
Prompt emission of relativistic protons up to GeV energies from M6.4-class solar flare on July 17, 2023
We show evidence of particle acceleration at GEV energies associated directly with protons from the prompt emission of a long-duration M6-class solar flare on July 17, 2023, rather than from protons acceleration by shocks from its associated Coronal Mass Ejection (CME), which erupted with a speed of 1342 km/s. Solar Energetic Particles (SEP) accelerated by the blast have reached Earth, up to an almost S3 (strong) category of a radiation storm on the NOAA scale. Also, we show a temporal correlation between the fast rising of GOES-16 proton and muon excess at ground level in the count rate of the New-Tupi muon detector at the central SAA region. A Monte Carlo spectral analysis based on muon excess at New-Tupi is consistent with the acceleration of electrons and protons (ions) up to relativistic energies (GeV energy range) in the impulsive phase of the flare. In addition, we present another two marginal particle excesses (with low confidence) at ground-level detectors in correlation with the solar flare prompt emission.
Pre-perihelion Development of Interstellar Comet 3I/ATLAS
We describe pre-perihelion optical observations of interstellar comet 3I/ATLAS taken during July - September 2025 using the Nordic Optical Telescope. Fixed aperture photometry of the comet is well described by a power law function of heliocentric distance, rH, with the exponent (``index") n = 3.8+/-0.3 across the 4.6 au to 1.8 au distance range (phase function 0.04+/-0.02 magnitude/degree assumed). This indicates that the dust production rates vary in proportion to rH**(-1.8+/-0.3). An rH**(-2) variation is expected of a strongly volatile material, and consistent with independent spectroscopic observations showing that carbon dioxide is the primary driver of activity. The measured heliocentric index is unremarkable in the context of solar system comets, for which n is widely dispersed, and provides no basis on which to describe 3I as either dynamically old (thermally processed) or new (pristine). The morphology of the comet changes from a Sun-facing dust fan in the early 2025 July observations, to one dominated by an antisolar dust tail at later dates. We attribute the delayed emergence of the tail to the large size (effective radius 0.1 mm) and slow ejection (5 m/s) of the optically dominant dust particles, and their consequently sluggish response to solar radiation pressure. Small (micron-sized) particles may be present but not in numbers sufficient to dominate the scattering cross-section. Their relative depletion possibly reflects interparticle cohesion, which binds small particles more effectively than large ones. A similar preponderance of 0.1 mm grains was reported in 2I/Borisov. However, 2I differed from 3I in having a much smaller (asteroid-like) heliocentric index, n = 1.9+/-0.1. Dust production rates in 3I are 180 kg/s at 2 au, compared with 70 kg/s in 2I/Borisov at the same distance.
Deep Space Weather Model: Long-Range Solar Flare Prediction from Multi-Wavelength Images
Accurate, reliable solar flare prediction is crucial for mitigating potential disruptions to critical infrastructure, while predicting solar flares remains a significant challenge. Existing methods based on heuristic physical features often lack representation learning from solar images. On the other hand, end-to-end learning approaches struggle to model long-range temporal dependencies in solar images. In this study, we propose Deep Space Weather Model (Deep SWM), which is based on multiple deep state space models for handling both ten-channel solar images and long-range spatio-temporal dependencies. Deep SWM also features a sparse masked autoencoder, a novel pretraining strategy that employs a two-phase masking approach to preserve crucial regions such as sunspots while compressing spatial information. Furthermore, we built FlareBench, a new public benchmark for solar flare prediction covering a full 11-year solar activity cycle, to validate our method. Our method outperformed baseline methods and even human expert performance on standard metrics in terms of performance and reliability. The project page can be found at https://keio-smilab25.github.io/DeepSWM.
High N/O ratio at high redshift as a result of a strong burst of star formation and differential galactic winds
Recent observations by JWST have revealed supersolar ^{14}N abundances in galaxies at very high redshift. On the other hand, these galaxies show subsolar metallicity. The observed N/O ratios are difficult to reproduce in the framework of chemical evolution models for the Milky Way. Our aim is to reproduce these high N/O ratios with chemical evolution models assuming different histories of star formation triggering galactic winds coupled with detailed nucleosynthesis prescriptions for ^{14}N, ^{12}C, ^{16}O and ^{56}Fe. We compute several models for small galaxies (10^{9} - 10^{10} M_{odot}) with high star formation efficiency and strong galactic winds. These winds are assumed to be differential, carrying out mainly the products of the explosion of core-collapse supernovae. We find that only models with high star formation rates, normal initial mass function, and differential galactic winds can reproduce the observed chemical abundances. We also find that with the same assumptions about star formation and galactic winds, but with a very rapid formation resulting from fast gas infall, we can also reproduce the estimated ages of these objects. We find no necessity to invoke peculiar nucleosynthesis from Population III stars, very massive stars and supermassive stars.
Magnetic Field Strength Effects on Nucleosynthesis from Neutron Star Merger Outflows
Magnetohydrodynamic turbulence drives the central engine of post-merger remnants, potentially powering both a nucleosynthetically active disk wind and the relativistic jet behind a short gamma ray burst. We explore the impact of the magnetic field on this engine by simulating three post-merger black hole accretion disks using general relativistic magnetohydrodynamics with Monte Carlo neutrino transport, in each case varying the initial magnetic field strength. We find increasing ejecta masses associated with increasing magnetic field strength. We find that a fairly robust main r -process pattern is produced in all three cases, scaled by the ejected mass. Changing the initial magnetic field strength has a considerable effect on the geometry of the outflow and hints at complex central engine dynamics influencing lanthanide outflows. We find that actinide production is especially sensitive to magnetic field strength, with overall actinide mass fraction calculated at 1 Gyr post-merger increasing by more than a factor of six with a tenfold increase in magnetic field strength. This hints at a possible connection to the variability in actinide enhancements exhibited by metal poor, r -process-enhanced stars.
A prediction for 25th solar cycle using visibility graph and Hathaway function
We apply a complex network approach to analyse the time series of five solar parameters, and propose an strategy to predict the number of sunspots for the next solar maximum, and when will this maximum will occur. The approach is based on the Visibility Graph (VG) algorithm, and a slightly modified version of it, the Horizontal Visibility Graph (HVG), which map a time series into a complex network. Various network metrics exhibit either an exponential or a scale-free behavior, and we find that the evolution of the characteristic decay exponents is consistent with variations of the sunspots number along solar cycles. During solar minimum, the sunspots number and the solar index time series have characteristic decay exponents that correlate well with the next maximum sunspots number, suggesting that they may be good precursors of the intensity of the next solar maximum. Based on this observation, we find that, based on current data, the algorithm predicts a number of 179 sunspots for cycle 25. Combining this with the Hathaway function, adjusted to yield such maximum sunspots number, we find that the maximum for solar cycle 25 will occur in December 2024/January 2025.
The young Sun's XUV-activity as a constraint for lower CO_2-limits in the Earth's Archean atmosphere
Despite their importance for determining the evolution of the Earth's atmosphere and surface conditions, the evolutionary histories of the Earth's atmospheric CO_2 abundance during the Archean eon and the Sun's activity are poorly constrained. In this study, we apply a state-of-the-art physical model for the upper atmosphere of the Archean Earth to study the effects of different atmospheric CO_2/N_2 mixing ratios and solar activity levels on the escape of the atmosphere to space. We find that unless CO_2 was a major constituent of the atmosphere during the Archean eon, enhanced heating of the thermosphere by the Sun's strong X-ray and ultraviolet radiation would have caused rapid escape to space. We derive lower limits on the atmospheric CO_2 abundance of approximately 40\% at 3.8~billion years ago, which is likely enough to counteract the faint young Sun and keep the Earth from being completely frozen. Furthermore, our results indicate that the Sun was most likely born as a slow to moderate {rotating young G-star} to prevent rapid escape, putting essential constraints on the Sun's activity evolution throughout the solar system's history. In case that there were yet unknown cooling mechanisms present in the Archean atmosphere, this could reduce our CO_2 stability limits, and it would allow a more active Sun.
A Diagnostic Kit for Optical Emission Lines Shaped by Accretion Disc Winds
Blueshifted absorption is the classic spectroscopic signature of an accretion disc wind in X-ray binaries and cataclysmic variables (CVs). However, outflows can also create pure emission lines, especially at optical wavelengths. Therefore, developing other outflow diagnostics for these types of lines is worthwhile. With this in mind, we construct a systematic grid of 3645 synthetic wind-formed H-alpha line profiles for CVs with the radiative transfer code SIROCCO. Our grid yields a variety of line shapes: symmetric, asymmetric, single- to quadruple-peaked, and even P-Cygni profiles. About 20% of these lines -- our `Gold' sample -- have strengths and widths consistent with observations. We use this grid to test a recently proposed method for identifying wind-formed emission lines based on deviations in the wing profile shape: the `excess equivalent width diagnostic diagram'. We find that our `Gold' sample can preferentially populate the suggested `wind regions' of this diagram. However, the method is highly sensitive to the adopted definition of the line profile `wing'. Hence, we propose a refined definition based on the full-width at half maximum to improve the interpretability of the diagnostic diagram. Furthermore, we define an approximate scaling relation for the strengths of wind-formed CV emission lines in terms of the outflow parameters. This relation provides a fast way to assess whether -- and what kind of -- outflow can produce an observed emission line. All our wind-based models are open-source and we provide an easy-to-use web-based tool to browse our full set of H-alpha spectral profiles.
Hall effect thruster design via deep neural network for additive manufacturing
Hall effect thrusters are one of the most versatile and popular electric propulsion systems for space use. Industry trends towards interplanetary missions arise advances in design development of such propulsion systems. It is understood that correct sizing of discharge channel in Hall effect thruster impact performance greatly. Since the complete physics model of such propulsion system is not yet optimized for fast computations and design iterations, most thrusters are being designed using so-called scaling laws. But this work focuses on rather novel approach, which is outlined less frequently than ordinary scaling design approach in literature. Using deep machine learning it is possible to create predictive performance model, which can be used to effortlessly get design of required hall thruster with required characteristics using way less computational power than design from scratch and way more flexible than usual scaling approach.
The High-resolution Accretion Disks of Embedded protoStars (HADES) simulations. I. Impact of Protostellar Magnetic Fields on the Accretion Modes
How embedded, actively accreting low-mass protostars accrete their mass is still greatly debated. Observations are now piecing together the puzzle of embedded protostellar accretion, in particular with new facilities in the near-infrared. However, high-resolution theoretical models are still lacking, with a stark paucity of detailed simulations of these early phases. Here we present high-resolution non-ideal magneto-hydrodynamic simulations of a Solar mass protostar accreting at rates exceeding 10^{-6} M_{odot} yr^{-1}. We show the results of the accretion flow for four different protostellar magnetic fields, 10 G, 500 G, 1 kG, and 2 kG, combined with a disk magnetic field. For weaker (10 G and 500 G) protostar magnetic fields, accretion occurs via a turbulent boundary layer mode, with disk material impacting across the protostellar surface. In the 500 G model, the presence of a magnetically dominated outflow focuses the accretion towards the equator, slightly enhancing and ordering the accretion. For kG magnetic fields, the disk becomes truncated due to the protostellar dipole and exhibits magnetospheric accretion, with the 2 kG model having accretion bursts induced by the interchange instability. We present bolometric light curves for the models and find that they reproduce observations of Class I protostars from YSOVAR, with high bursts followed by an exponential decay possibly being a signature of instability-driven accretion. Finally, we present the filling fractions of accretion and find that 90\% of the mass is accreted in a surface area fraction of 10-20\%. These simulations will be extended in future work for a broader parameter space, with their high resolution and high temporal spacing able to explore a wide range of interesting protostellar physics.
Tree-based Forecasting of Day-ahead Solar Power Generation from Granular Meteorological Features
Accurate forecasts for day-ahead photovoltaic (PV) power generation are crucial to support a high PV penetration rate in the local electricity grid and to assure stability in the grid. We use state-of-the-art tree-based machine learning methods to produce such forecasts and, unlike previous studies, we hereby account for (i) the effects various meteorological as well as astronomical features have on PV power production, and this (ii) at coarse as well as granular spatial locations. To this end, we use data from Belgium and forecast day-ahead PV power production at an hourly resolution. The insights from our study can assist utilities, decision-makers, and other stakeholders in optimizing grid operations, economic dispatch, and in facilitating the integration of distributed PV power into the electricity grid.
Forecasting the Ionosphere from Sparse GNSS Data with Temporal-Fusion Transformers
The ionosphere critically influences Global Navigation Satellite Systems (GNSS), satellite communications, and Low Earth Orbit (LEO) operations, yet accurate prediction of its variability remains challenging due to nonlinear couplings between solar, geomagnetic, and thermospheric drivers. Total Electron Content (TEC), a key ionospheric parameter, is derived from GNSS observations, but its reliable forecasting is limited by the sparse nature of global measurements and the limited accuracy of empirical models, especially during strong space weather conditions. In this work, we present a machine learning framework for ionospheric TEC forecasting that leverages Temporal Fusion Transformers (TFT) to predict sparse ionosphere data. Our approach accommodates heterogeneous input sources, including solar irradiance, geomagnetic indices, and GNSS-derived vertical TEC, and applies preprocessing and temporal alignment strategies. Experiments spanning 2010-2025 demonstrate that the model achieves robust predictions up to 24 hours ahead, with root mean square errors as low as 3.33 TECU. Results highlight that solar EUV irradiance provides the strongest predictive signals. Beyond forecasting accuracy, the framework offers interpretability through attention-based analysis, supporting both operational applications and scientific discovery. To encourage reproducibility and community-driven development, we release the full implementation as the open-source toolkit ionopy.
Solar Irradiation Forecasting using Genetic Algorithms
Renewable energy forecasting is attaining greater importance due to its constant increase in contribution to the electrical power grids. Solar energy is one of the most significant contributors to renewable energy and is dependent on solar irradiation. For the effective management of electrical power grids, forecasting models that predict solar irradiation, with high accuracy, are needed. In the current study, Machine Learning techniques such as Linear Regression, Extreme Gradient Boosting and Genetic Algorithm Optimization are used to forecast solar irradiation. The data used for training and validation is recorded from across three different geographical stations in the United States that are part of the SURFRAD network. A Global Horizontal Index (GHI) is predicted for the models built and compared. Genetic Algorithm Optimization is applied to XGB to further improve the accuracy of solar irradiation prediction.
Chiral effects and Joule heating in hot and dense matter
Initial states of dense matter with nonzero electron chiral imbalance could potentially give rise to strong magnetic fields through chiral plasma instability. Previous work indicated that unless chiral chemical potential is as large as the electron vector chemical potential, the growth of magnetic fields due to the instability is washed out by chirality flipping rate enabled by electron mass. We re-examine this claim in a broader range of parameters and find that at higher temperatures the hierarchy is reversed supporting a growing magnetic field for an initial electron chiral chemical potential much smaller than the electron vector chemical potential. Further, we identify a qualitatively new effect relevant for magnetized hot and dense medium where chiral magnetic effect (CME) sourced by density fluctuation acts as a powerful source of Joule heating. Remarkably, even modest chiral chemical potentials (keV) in such environment can deposit energy densities set by the QCD scale in a relatively short time of the order of a few milliseconds or seconds. We speculate how this mechanism makes CME-driven Joule heating a potentially critical ingredient in the dynamics of turbulent density fluctuation of supernovae and neutron star mergers.
GyroSwin: 5D Surrogates for Gyrokinetic Plasma Turbulence Simulations
Nuclear fusion plays a pivotal role in the quest for reliable and sustainable energy production. A major roadblock to viable fusion power is understanding plasma turbulence, which significantly impairs plasma confinement, and is vital for next-generation reactor design. Plasma turbulence is governed by the nonlinear gyrokinetic equation, which evolves a 5D distribution function over time. Due to its high computational cost, reduced-order models are often employed in practice to approximate turbulent transport of energy. However, they omit nonlinear effects unique to the full 5D dynamics. To tackle this, we introduce GyroSwin, the first scalable 5D neural surrogate that can model 5D nonlinear gyrokinetic simulations, thereby capturing the physical phenomena neglected by reduced models, while providing accurate estimates of turbulent heat transport.GyroSwin (i) extends hierarchical Vision Transformers to 5D, (ii) introduces cross-attention and integration modules for latent 3Dleftrightarrow5D interactions between electrostatic potential fields and the distribution function, and (iii) performs channelwise mode separation inspired by nonlinear physics. We demonstrate that GyroSwin outperforms widely used reduced numerics on heat flux prediction, captures the turbulent energy cascade, and reduces the cost of fully resolved nonlinear gyrokinetics by three orders of magnitude while remaining physically verifiable. GyroSwin shows promising scaling laws, tested up to one billion parameters, paving the way for scalable neural surrogates for gyrokinetic simulations of plasma turbulence.
Energy-dependent temporal study of GX 13+1 with AstroSat observation
In this work, we performed an energy-dependent study of low-frequency oscillations observed in GX 13+1 using AstroSat (Large Area X-ray Proportional Counter and Soft X-ray Telescope). The hardness-intensity diagram (HID) of the observation resembles a `nu'-shaped track, while the color-color diagram exhibits a `<'-shaped track, similar to the horizontal and normal branches of the Z source. We conducted flux-resolved temporal studies focusing on low-frequency variability and divided the HID into five regions: A, B, C, D, and E. Low-frequency quasi-periodic oscillations (QPOs) were detected in Regions A, B, and C. The QPO in Region A has a frequency of 5.06^{+0.54}_{-0.48} Hz with a quality factor (Q-factor) of 2.80. In Region B, the QPO was detected at 4.52^{+0.14}_{-0.13} Hz with a Q-factor of 5.79, while in Region C, it was observed at 4.70^{+0.62}_{-0.42} Hz with a Q-factor of 4.35. The QPO frequencies, Q-factors, and low root-mean-square (rms) values (1.32\%, 1.34\%, and 0.7\%) suggest that these oscillations are Normal Branch Oscillations, similar to those reported in GX 340+0. We modeled the rms and lag of the QPOs using a propagative model, considering variations in blackbody temperature, coronal heating rate, and optical depth. Our findings indicate that the observed QPOs are likely driven by interactions between the corona and variations in the blackbody temperature.
Implications of the abundance of halo coronal mass ejections for the strength of solar cycle 25
We assess the relative strength of solar cycle (SC) 25 with respect to SCs 23 and 24 based on the abundance of halo coronal mass ejections (CMEs). We make use of the halo CME database (https://cdaw.gsfc.nasa.gov/CME_list/halo/halo.html) to compare the halo CME abundance during the first four years in each of SCs 23 to 25. The main result is that in several aspects such as the abundance, occurrence rate, source locations, and halo heights, halo CMEs are similar between SCs 24 and 25 but different from SC 23. This result follows from the fact that weaker cycles have low heliospheric total pressure, whose backreaction on CMEs allows them to expand more and hence enhancing the chance of becoming a halo. The solar cycle variation of halo CME properties is consistent with the precursor-based cycle prediction methods that indicate SC 25 is similar to or only slightly stronger than SC 24.
Transformers Applied to Short-term Solar PV Power Output Forecasting
Reliable forecasts of the power output from variable renewable energy generators like solar photovoltaic systems are important to balancing load on real-time electricity markets and ensuring electricity supply reliability. However, solar PV power output is highly uncertain, with significant variations occurring over both longer (daily or seasonally) and shorter (within minutes) timescales due to weather conditions, especially cloud cover. This paper builds on existing work that uses convolutional neural networks in the computer vision task of predicting (in a Nowcast model) and forecasting (in a Forecast model) solar PV power output (Stanford EAO SUNSET Model). A pure transformer architecture followed by a fully-connected layer is applied to one year of image data with experiments run on various combinations of learning rate and batch size. We find that the transformer architecture performs almost as well as the baseline model in the PV output prediction task. However, it performs worse on sunny days.
Unlocking the radio-gamma spectrum of the pulsar wind nebula around PSR J1124-5916 in SNR G292.0+1.8
We present the first detection of GeV gamma-ray emission potentially associated with the pulsar wind nebula (PWN) hosted by the young core-collapse supernova remnant G292.0+1.8, based on a detailed time-resolved analysis of Fermi-LAT data. By isolating the unpulsed component from the dominant magnetospheric radiation of PSR~J1124-5916, we successfully disentangle a candidate nebular emission in the GeV range, characterise its morphology and extract its spectrum. This identification places G292.0+1.8 among the few systems in which the pulsar and PWN contributions have been spectrally resolved at high energies, offering new insight into their respective emission mechanisms. We characterise the gamma-ray spectrum of the pulsar and model the broadband spectral energy distribution (SED) of the PWN using radio, X-ray, and GeV data. The emission is well described by a single electron population with two spectral breaks: one intrinsic to the injection spectrum and another produced by synchrotron cooling in a magnetic field of sim15~muG. Notably, the inferred magnetic field and the low TeV flux of the nebula resemble those of 3C~58, suggesting that similar low-field environments can arise in young PWNe. The high-energy portion of the SED is now tightly constrained by our GeV detection and existing TeV upper limits. Compared to our model, earlier predictions tend to underpredict the gamma-ray flux, while others that succeed in reproducing the GeV component often overpredict the TeV emission. This mismatch underscores the challenges in modelling particle acceleration and radiation processes in young PWNe and establishes G292.0+1.8 as a valuable benchmark for testing and refining such models.
Water Snowline in Young Stellar Objects with Various Density Structures Using Radiative Transfer Models
Tracing the water snowline in low-mass young stellar objects (YSOs) is important because dust grain growth is promoted and the chemical composition varies at the water snowline, which influences planet formation and its properties. In protostellar envelopes, the water snowline can be estimated as a function of luminosity using a relation derived from radiative transfer models, and these predictions are consistent with observations. However, accurately estimating the water snowline in protoplanetary disks requires new relations that account for the disk structure. We present the relations between luminosity and water snowline using the dust continuum radiative transfer models with various density structures. We adopt two-dimensional density structures for an envelope-only model (Model E), an envelope+disk+cavity model (Model E+D), and a protoplanetary disk model (Model PPD). The relations between the water snowline, where T_dust = 100 K, and the total luminosity, ranging 0.1-1,000 solar luminosity, are well fitted by a power-law relation, R_snow=a * (L/L_solar)^p au. The factor a decreases with increasing disk density, while the power index p has values around 0.5 in all models. As the disk becomes denser, the water snowline forms at smaller radii even at the same luminosity, since dense dust hinders photon propagation. We also explore the effect of viscous heating on the water snowline. In Model PPD with viscous heating, the water snowline shifts outward by a few au up to 15 au, increasing the factor a and decreasing the power index p. In Model E+D with lower disk mass, the effect of viscous heating is negligible, indicating that the disk mass controls the effect. The discrepancy between our models and direct observations provides insights into the recent outburst event and the presence of a disk structure in low-mass YSOs.
Potential Contribution of Young Pulsar Wind Nebulae to Galactic High-Energy Neutrino Emission
Pulsar wind nebulae (PWNe), especially the young ones, are among the most energetic astrophysical sources in the Galaxy. It is usually believed that the spin-down energy injected from the pulsars is converted into magnetic field and relativistic electrons, but the possible presence of proton acceleration inside PWNe cannot be ruled out. Previous works have estimated the neutrino emission from PWNe using various source catalogs measured in gamma-rays. However, such results rely on the sensitivity of TeV gamma-ray observations and may omit the contribution by unresolved sources. Here we estimate the potential neutrino emission from a synthetic population of PWNe in the Galaxy with a focus on the ones that are still in the free expansion phase. In the calculation, we model the temporal evolution of the free-expanding PWNe and consider the transport of protons inside the PWNe. The Crab nebula is treated as a standard template for young PWNe to evaluate some model parameters, such as the energy conversion fraction of relativistic protons and the target gas density for the hadronic process, which are relevant to neutrino production. In the optimistic case, the neutrino flux from the simulated young PWNe may constitute to 5% of the measured flux by IceCube around 100 TeV. At higher energy around 1 PeV, the neutrino emission from the population highly depends on the injection spectral shape, and also on the emission of the nearby prominent sources.
AI Foundation Model for Heliophysics: Applications, Design, and Implementation
Deep learning-based methods have been widely researched in the areas of language and vision, demonstrating their capacity to understand long sequences of data and their usefulness in numerous helio-physics applications. Foundation models (FMs), which are pre-trained on a large-scale datasets, form the basis for a variety of downstream tasks. These models, especially those based on transformers in vision and language, show exceptional potential for adapting to a wide range of downstream applications. In this paper, we provide our perspective on the criteria for designing an FM for heliophysics and associated challenges and applications using the Solar Dynamics Observatory (SDO) dataset. We believe that this is the first study to design an FM in the domain of heliophysics.
The Role of the Critical Ionization Velocity Effect in Interstellar Space and the Derived Abundance of Helium
Gaussian analysis of new, high-angular-resolution interstellar 21-cm neutral hydrogen emission profile structure more clearly reveals the presence of the previously reported signature of the critical ionization velocity ({\it CIV}) of Helium (34 km s^{-1}). The present analysis includes 1496 component line widths for 178 neutral hydrogen profiles in two areas of sky at galactic latitudes around -50^circ, well away from the galactic plane. The new data considered here allow the interstellar abundance of Helium to be calculated, and the derived value of 0.095 pm 0.020 compares extremely well with the value of 0.085 for the cosmic abundance based on solar data. Although the precise mechanisms that give rise to the {\it CIV} effect in interstellar space are not yet understood, our results may provide additional motivation for further theoretical study of how the mechanism operates.
