new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Debate Helps Supervise Unreliable Experts

As AI systems are used to answer more difficult questions and potentially help create new knowledge, judging the truthfulness of their outputs becomes more difficult and more important. How can we supervise unreliable experts, which have access to the truth but may not accurately report it, to give answers that are systematically true and don't just superficially seem true, when the supervisor can't tell the difference between the two on their own? In this work, we show that debate between two unreliable experts can help a non-expert judge more reliably identify the truth. We collect a dataset of human-written debates on hard reading comprehension questions where the judge has not read the source passage, only ever seeing expert arguments and short quotes selectively revealed by 'expert' debaters who have access to the passage. In our debates, one expert argues for the correct answer, and the other for an incorrect answer. Comparing debate to a baseline we call consultancy, where a single expert argues for only one answer which is correct half of the time, we find that debate performs significantly better, with 84% judge accuracy compared to consultancy's 74%. Debates are also more efficient, being 68% of the length of consultancies. By comparing human to AI debaters, we find evidence that with more skilled (in this case, human) debaters, the performance of debate goes up but the performance of consultancy goes down. Our error analysis also supports this trend, with 46% of errors in human debate attributable to mistakes by the honest debater (which should go away with increased skill); whereas 52% of errors in human consultancy are due to debaters obfuscating the relevant evidence from the judge (which should become worse with increased skill). Overall, these results show that debate is a promising approach for supervising increasingly capable but potentially unreliable AI systems.

  • 7 authors
·
Nov 15, 2023

Benchmarks for Pirá 2.0, a Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate Change

Pir\'a is a reading comprehension dataset focused on the ocean, the Brazilian coast, and climate change, built from a collection of scientific abstracts and reports on these topics. This dataset represents a versatile language resource, particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge. Despite its potential, a detailed set of baselines has not yet been developed for Pir\'a. By creating these baselines, researchers can more easily utilize Pir\'a as a resource for testing machine learning models across a wide range of question answering tasks. In this paper, we define six benchmarks over the Pir\'a dataset, covering closed generative question answering, machine reading comprehension, information retrieval, open question answering, answer triggering, and multiple choice question answering. As part of this effort, we have also produced a curated version of the original dataset, where we fixed a number of grammar issues, repetitions, and other shortcomings. Furthermore, the dataset has been extended in several new directions, so as to face the aforementioned benchmarks: translation of supporting texts from English into Portuguese, classification labels for answerability, automatic paraphrases of questions and answers, and multiple choice candidates. The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pir\'a dataset.

  • 8 authors
·
Sep 19, 2023

Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation

We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books. Previous efforts to construct such datasets relied on crowd-sourcing, but the emergence of transformers with a context size of 1 million or more tokens now enables entirely automatic approaches. Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text, such as questions involving character arcs, broader themes, or the consequences of early actions later in the story. We propose a holistic pipeline for automatic data generation including question generation, answering, and model scoring using an ``Evaluator''. We find that a relative approach, comparing answers between models in a pairwise fashion and ranking with a Bradley-Terry model, provides a more consistent and differentiating scoring mechanism than an absolute scorer that rates answers individually. We also show that LLMs from different model families produce moderate agreement in their ratings. We ground our approach using the manually curated NarrativeQA dataset, where our evaluator shows excellent agreement with human judgement and even finds errors in the dataset. Using our automatic evaluation approach, we show that using an entire book as context produces superior reading comprehension performance compared to baseline no-context (parametric knowledge only) and retrieval-based approaches.

  • 12 authors
·
May 31, 2024

DuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension

We propose DuoRC, a novel dataset for Reading Comprehension (RC) that motivates several new challenges for neural approaches in language understanding beyond those offered by existing RC datasets. DuoRC contains 186,089 unique question-answer pairs created from a collection of 7680 pairs of movie plots where each pair in the collection reflects two versions of the same movie - one from Wikipedia and the other from IMDb - written by two different authors. We asked crowdsourced workers to create questions from one version of the plot and a different set of workers to extract or synthesize answers from the other version. This unique characteristic of DuoRC where questions and answers are created from different versions of a document narrating the same underlying story, ensures by design, that there is very little lexical overlap between the questions created from one version and the segments containing the answer in the other version. Further, since the two versions have different levels of plot detail, narration style, vocabulary, etc., answering questions from the second version requires deeper language understanding and incorporating external background knowledge. Additionally, the narrative style of passages arising from movie plots (as opposed to typical descriptive passages in existing datasets) exhibits the need to perform complex reasoning over events across multiple sentences. Indeed, we observe that state-of-the-art neural RC models which have achieved near human performance on the SQuAD dataset, even when coupled with traditional NLP techniques to address the challenges presented in DuoRC exhibit very poor performance (F1 score of 37.42% on DuoRC v/s 86% on SQuAD dataset). This opens up several interesting research avenues wherein DuoRC could complement other RC datasets to explore novel neural approaches for studying language understanding.

  • 4 authors
·
Apr 21, 2018

ViMMRC 2.0 -- Enhancing Machine Reading Comprehension on Vietnamese Literature Text

Machine reading comprehension has been an interesting and challenging task in recent years, with the purpose of extracting useful information from texts. To attain the computer ability to understand the reading text and answer relevant information, we introduce ViMMRC 2.0 - an extension of the previous ViMMRC for the task of multiple-choice reading comprehension in Vietnamese Textbooks which contain the reading articles for students from Grade 1 to Grade 12. This dataset has 699 reading passages which are prose and poems, and 5,273 questions. The questions in the new dataset are not fixed with four options as in the previous version. Moreover, the difficulty of questions is increased, which challenges the models to find the correct choice. The computer must understand the whole context of the reading passage, the question, and the content of each choice to extract the right answers. Hence, we propose a multi-stage approach that combines the multi-step attention network (MAN) with the natural language inference (NLI) task to enhance the performance of the reading comprehension model. Then, we compare the proposed methodology with the baseline BERTology models on the new dataset and the ViMMRC 1.0. From the results of the error analysis, we found that the challenge of the reading comprehension models is understanding the implicit context in texts and linking them together in order to find the correct answers. Finally, we hope our new dataset will motivate further research to enhance the ability of computers to understand the Vietnamese language.

  • 5 authors
·
Mar 31, 2023

Retrospective Reader for Machine Reading Comprehension

Machine reading comprehension (MRC) is an AI challenge that requires machine to determine the correct answers to questions based on a given passage. MRC systems must not only answer question when necessary but also distinguish when no answer is available according to the given passage and then tactfully abstain from answering. When unanswerable questions are involved in the MRC task, an essential verification module called verifier is especially required in addition to the encoder, though the latest practice on MRC modeling still most benefits from adopting well pre-trained language models as the encoder block by only focusing on the "reading". This paper devotes itself to exploring better verifier design for the MRC task with unanswerable questions. Inspired by how humans solve reading comprehension questions, we proposed a retrospective reader (Retro-Reader) that integrates two stages of reading and verification strategies: 1) sketchy reading that briefly investigates the overall interactions of passage and question, and yield an initial judgment; 2) intensive reading that verifies the answer and gives the final prediction. The proposed reader is evaluated on two benchmark MRC challenge datasets SQuAD2.0 and NewsQA, achieving new state-of-the-art results. Significance tests show that our model is significantly better than the strong ELECTRA and ALBERT baselines. A series of analysis is also conducted to interpret the effectiveness of the proposed reader.

  • 3 authors
·
Jan 27, 2020

Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond

Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.

  • 3 authors
·
May 13, 2020

Vector representations of text data in deep learning

In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.

  • 1 authors
·
Jan 7, 2019

T2Ranking: A large-scale Chinese Benchmark for Passage Ranking

Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/

  • 11 authors
·
Apr 7, 2023

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding

Recent state-of-the-art natural language understanding models, such as BERT and XLNet, score a pair of sentences (A and B) using multiple cross-attention operations - a process in which each word in sentence A attends to all words in sentence B and vice versa. As a result, computing the similarity between a query sentence and a set of candidate sentences, requires the propagation of all query-candidate sentence-pairs throughout a stack of cross-attention layers. This exhaustive process becomes computationally prohibitive when the number of candidate sentences is large. In contrast, sentence embedding techniques learn a sentence-to-vector mapping and compute the similarity between the sentence vectors via simple elementary operations. In this paper, we introduce Distilled Sentence Embedding (DSE) - a model that is based on knowledge distillation from cross-attentive models, focusing on sentence-pair tasks. The outline of DSE is as follows: Given a cross-attentive teacher model (e.g. a fine-tuned BERT), we train a sentence embedding based student model to reconstruct the sentence-pair scores obtained by the teacher model. We empirically demonstrate the effectiveness of DSE on five GLUE sentence-pair tasks. DSE significantly outperforms several ELMO variants and other sentence embedding methods, while accelerating computation of the query-candidate sentence-pairs similarities by several orders of magnitude, with an average relative degradation of 4.6% compared to BERT. Furthermore, we show that DSE produces sentence embeddings that reach state-of-the-art performance on universal sentence representation benchmarks. Our code is made publicly available at https://github.com/microsoft/Distilled-Sentence-Embedding.

  • 6 authors
·
Aug 14, 2019

VLSP 2021 - ViMRC Challenge: Vietnamese Machine Reading Comprehension

One of the emerging research trends in natural language understanding is machine reading comprehension (MRC) which is the task to find answers to human questions based on textual data. Existing Vietnamese datasets for MRC research concentrate solely on answerable questions. However, in reality, questions can be unanswerable for which the correct answer is not stated in the given textual data. To address the weakness, we provide the research community with a benchmark dataset named UIT-ViQuAD 2.0 for evaluating the MRC task and question answering systems for the Vietnamese language. We use UIT-ViQuAD 2.0 as a benchmark dataset for the challenge on Vietnamese MRC at the Eighth Workshop on Vietnamese Language and Speech Processing (VLSP 2021). This task attracted 77 participant teams from 34 universities and other organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 77.24% in F1-score and 67.43% in Exact Match on the private test set. The Vietnamese MRC systems proposed by the top 3 teams use XLM-RoBERTa, a powerful pre-trained language model based on the transformer architecture. The UIT-ViQuAD 2.0 dataset motivates researchers to further explore the Vietnamese machine reading comprehension task and related tasks such as question answering, question generation, and natural language inference.

  • 6 authors
·
Mar 21, 2022