Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAutomated Code Review Using Large Language Models at Ericsson: An Experience Report
Code review is one of the primary means of assuring the quality of released software along with testing and static analysis. However, code review requires experienced developers who may not always have the time to perform an in-depth review of code. Thus, automating code review can help alleviate the cognitive burden on experienced software developers allowing them to focus on their primary activities of writing code to add new features and fix bugs. In this paper, we describe our experience in using Large Language Models towards automating the code review process in Ericsson. We describe the development of a lightweight tool using LLMs and static program analysis. We then describe our preliminary experiments with experienced developers in evaluating our code review tool and the encouraging results.
Constrained Decoding for Fill-in-the-Middle Code Language Models via Efficient Left and Right Quotienting of Context-Sensitive Grammars
Large Language Models are powerful tools for program synthesis and advanced auto-completion, but come with no guarantee that their output code is syntactically correct. This paper contributes an incremental parser that allows early rejection of syntactically incorrect code, as well as efficient detection of complete programs for fill-in-the-middle (FIM) tasks. We extend the Earley parsing algorithm to allow for left and right quotients of context-free grammars, and develop methods to handle quotienting of several context-sensitive features present in the grammars of many common programming languages. The result of these contributions is an efficient, general, and well-grounded method for left and right quotient parsing. To validate our theoretical contributions -- and the effectiveness of certain design decisions -- we evaluate our method on the particularly difficult case of FIM completion for Python 3, with syntax-correctness constraints. Our results demonstrate that constrained generation can significantly reduce the incidence of syntax errors in recommended code.
CodeFuse-CR-Bench: A Comprehensiveness-aware Benchmark for End-to-End Code Review Evaluation in Python Projects
Automated code review (CR) is a key application for Large Language Models (LLMs), but progress is hampered by a "reality gap": existing benchmarks evaluate models on isolated sub-tasks using simplified, context-poor data. This fails to reflect the holistic context-rich nature of real-world CR. To bridge this gap, we introduce CodeFuse-CR-Bench, the first comprehensiveness-aware benchmark for repository-level CR evaluation. CodeFuse-CR-Bench comprises 601 high-quality instances from 70 Python projects covering nine Pull-Request (PR) problem domains, where each instance provides rich, multi-faceted context including the associated issue, PR details, and repository state, enabling end-to-end evaluation. Beyond superficial metrics, we also propose a novel evaluation framework that combines rule-based checks for location and syntax with model-based judgments of review quality. We present the first large-scale assessment of state-of-the-art LLMs on this comprehensive CR task. Our results establish crucial baselines and reveal that (1) no single LLM dominates all aspects of CR; (2) Gemini 2.5 Pro achieves the highest comprehensive performance; and (3) different LLMs exhibit varying robustness to redundant context. These findings highlight the necessity of holistic, multi-dimensional evaluation and provide actionable insights for advancing truly intelligent yet practical CR assistants.
AI Control: Improving Safety Despite Intentional Subversion
As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. Researchers have investigated a variety of safety techniques for this purpose, e.g. using models to review the outputs of other models, or red-teaming techniques to surface subtle failure modes. However, researchers have not evaluated whether such techniques still ensure safety if the model is itself intentionally trying to subvert them. In this paper, we develop and evaluate pipelines of safety techniques ("protocols") that are robust to intentional subversion. We investigate a scenario in which we want to solve a sequence of programming problems, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate protocols that aim to never submit solutions containing backdoors, which we operationalize here as logical errors that are not caught by test cases. We investigate a range of protocols and test each against strategies that the untrusted model could use to subvert them. One protocol is what we call trusted editing. This protocol first asks GPT-4 to write code, and then asks GPT-3.5 to rate the suspiciousness of that code. If the code is below some suspiciousness threshold, it is submitted. Otherwise, GPT-3.5 edits the solution to remove parts that seem suspicious and then submits the edited code. Another protocol is untrusted monitoring. This protocol asks GPT-4 to write code, and then asks another instance of GPT-4 whether the code is backdoored, using various techniques to prevent the GPT-4 instances from colluding. These protocols improve substantially on simple baselines.
Improving Autoformalization using Type Checking
Large language models show promise for autoformalization, the task of automatically translating natural language into formal languages. However, current autoformalization methods remain limited. The last reported state-of-the-art performance on the ProofNet formalization benchmark for the Lean proof assistant, achieved using Codex for Lean 3, only showed successful formalization of 16.1% of informal statements. Similarly, our evaluation of GPT-4o for Lean 4 only produces successful translations 34.9% of the time. Our analysis shows that the performance of these models is largely limited by their inability to generate formal statements that successfully type-check (i.e., are syntactically correct and consistent with types) - with a whopping 86.6% of GPT-4o errors starting from a type-check failure. In this work, we propose a method to fix this issue through decoding with type-check filtering, where we initially sample a diverse set of candidate formalizations for an informal statement, then use the Lean proof assistant to filter out candidates that do not type-check. Using GPT-4o as a base model, and combining our method with self-consistency, we obtain a +18.3% absolute increase in formalization accuracy, and achieve a new state-of-the-art of 53.2% on ProofNet with Lean 4.
LogiCase: Effective Test Case Generation from Logical Description in Competitive Programming
Automated Test Case Generation (ATCG) is crucial for evaluating software reliability, particularly in competitive programming where robust algorithm assessments depend on diverse and accurate test cases. However, existing ATCG methods often fail to meet complex specifications or generate effective corner cases, limiting their utility. In this work, we introduce Context-Free Grammars with Counters (CCFGs), a formalism that captures both syntactic and semantic structures in input specifications. Using a fine-tuned CodeT5 model, we translate natural language input specifications into CCFGs, enabling the systematic generation of high-quality test cases. Experiments on the CodeContests dataset demonstrate that CCFG-based test cases outperform baseline methods in identifying incorrect algorithms, achieving significant gains in validity and effectiveness. Our approach provides a scalable and reliable grammar-driven framework for enhancing automated competitive programming evaluations.
Can ChatGPT replace StackOverflow? A Study on Robustness and Reliability of Large Language Model Code Generation
Recently, the large language models (LLMs) have shown extraordinary ability in understanding natural language and generating programming code. It has been a common practice of software engineers to consult LLMs when encountering coding questions. Although efforts have been made to avoid syntax errors and align the code with the intended semantics, the reliability and robustness of the code generationfrom LLMs have not yet been thoroughly studied. The executable code is not equivalent to the reliable and robust code, especially in the context of real-world software development. The misuse of APIs in the generated code could lead to severe problem, such as resource leaks, program crashes. To make things worse, the users of LLM code generation services are actually the developers that are most vulnerable to these code that seems right -- They are always novice developers that are not familiar with the APIs that LLMs generate code for them. Therefore, they could hardly tell the misuse in the code generated by LLMs, which further facilitates the incorrect code applied in real-world software. Existing code evaluation benchmark and datasets focus on crafting small tasks such as programming questions in coding interviews, which however deviates from the problem that developers would ask LLM for real-world coding help. To fill the missing piece, in this work, we propose a dataset RobustAPI for evaluating the reliability and robustness of code generated by LLMs. We collect 1208 coding questions from StackOverflow on 24 representative Java APIs. We summarize thecommon misuse patterns of these APIs and evaluate them oncurrent popular LLMs. The evaluation results show that evenfor GPT-4, 62% of the generated code contains API misuses,which would cause unexpected consequences if the code isintroduced into real-world software.
Advocate for Complete Benchmarks for Formal Reasoning with Formal/Informal Statements and Formal/Informal Proofs
This position paper provides a critical but constructive discussion of current practices in benchmarking and evaluative practices in the field of formal reasoning and automated theorem proving. We take the position that open code, open data, and benchmarks that are complete and error-free will accelerate progress in this field. We identify practices that create barriers to contributing to this field and suggest ways to remove them. We also discuss some of the practices that might produce misleading evaluative information. We aim to create discussions that bring together people from various groups contributing to automated theorem proving, autoformalization, and informal reasoning.
Dafny as Verification-Aware Intermediate Language for Code Generation
Using large language models (LLMs) to generate source code from natural language prompts is a popular and promising idea with a wide range of applications. One of its limitations is that the generated code can be faulty at times, often in a subtle way, despite being presented to the user as correct. In this paper, we explore ways in which formal methods can assist with increasing the quality of code generated by an LLM. Instead of emitting code in a target language directly, we propose that the user guides the LLM to first generate an opaque intermediate representation, in the verification-aware language Dafny, that can be automatically validated for correctness against agreed on specifications. The correct Dafny program is then compiled to the target language and returned to the user. All user-system interactions throughout the procedure occur via natural language; Dafny code is never exposed. We describe our current prototype and report on its performance on the HumanEval Python code generation benchmarks.
CheckEval: Robust Evaluation Framework using Large Language Model via Checklist
We introduce CheckEval, a novel evaluation framework using Large Language Models, addressing the challenges of ambiguity and inconsistency in current evaluation methods. CheckEval addresses these challenges by dividing evaluation criteria into detailed sub-aspects and constructing a checklist of Boolean questions for each, simplifying the evaluation. This approach not only renders the process more interpretable but also significantly enhances the robustness and reliability of results by focusing on specific evaluation dimensions. Validated through a focused case study using the SummEval benchmark, CheckEval indicates a strong correlation with human judgments. Furthermore, it demonstrates a highly consistent Inter-Annotator Agreement. These findings highlight the effectiveness of CheckEval for objective, flexible, and precise evaluations. By offering a customizable and interactive framework, CheckEval sets a new standard for the use of LLMs in evaluation, responding to the evolving needs of the field and establishing a clear method for future LLM-based evaluation.
Frustrated with Code Quality Issues? LLMs can Help!
As software projects progress, quality of code assumes paramount importance as it affects reliability, maintainability and security of software. For this reason, static analysis tools are used in developer workflows to flag code quality issues. However, developers need to spend extra efforts to revise their code to improve code quality based on the tool findings. In this work, we investigate the use of (instruction-following) large language models (LLMs) to assist developers in revising code to resolve code quality issues. We present a tool, CORE (short for COde REvisions), architected using a pair of LLMs organized as a duo comprised of a proposer and a ranker. Providers of static analysis tools recommend ways to mitigate the tool warnings and developers follow them to revise their code. The proposer LLM of CORE takes the same set of recommendations and applies them to generate candidate code revisions. The candidates which pass the static quality checks are retained. However, the LLM may introduce subtle, unintended functionality changes which may go un-detected by the static analysis. The ranker LLM evaluates the changes made by the proposer using a rubric that closely follows the acceptance criteria that a developer would enforce. CORE uses the scores assigned by the ranker LLM to rank the candidate revisions before presenting them to the developer. CORE could revise 59.2% Python files (across 52 quality checks) so that they pass scrutiny by both a tool and a human reviewer. The ranker LLM is able to reduce false positives by 25.8% in these cases. CORE produced revisions that passed the static analysis tool in 76.8% Java files (across 10 quality checks) comparable to 78.3% of a specialized program repair tool, with significantly much less engineering efforts.
Enhancing Large Language Models for Text-to-Testcase Generation
Context: Test-driven development (TDD) is a widely employed software development practice that involves developing test cases based on requirements prior to writing the code. Although various methods for automated test case generation have been proposed, they are not specifically tailored for TDD, where requirements instead of code serve as input. Objective: In this paper, we introduce a text-to-testcase generation approach based on a large language model (GPT-3.5) that is fine-tuned on our curated dataset with an effective prompt design. Method: Our approach involves enhancing the capabilities of basic GPT-3.5 for text-to-testcase generation task that is fine-tuned on our curated dataset with an effective prompting design. We evaluated the effectiveness of our approach using a span of five large-scale open-source software projects. Results: Our approach generated 7k test cases for open source projects, achieving 78.5% syntactic correctness, 67.09% requirement alignment, and 61.7% code coverage, which substantially outperforms all other LLMs (basic GPT-3.5, Bloom, and CodeT5). In addition, our ablation study demonstrates the substantial performance improvement of the fine-tuning and prompting components of the GPT-3.5 model. Conclusions: These findings lead us to conclude that fine-tuning and prompting should be considered in the future when building a language model for the text-to-testcase generation task
CLEVER: A Curated Benchmark for Formally Verified Code Generation
We introduce {rm C{small LEVER}}, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, {rm C{small LEVER}} avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use {rm C{small LEVER}} to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).
YATE: The Role of Test Repair in LLM-Based Unit Test Generation
Recent advances in automated test generation utilises language models to produce unit tests. While effective, language models tend to generate many incorrect tests with respect to both syntax and semantics. Although such incorrect tests can be easily detected and discarded, they constitute a "missed opportunity" -- if fixed, they are often valuable as they directly add testing value (they effectively target the underlying program logic to be tested) and indirectly form good seeds for generating additional tests. To this end, we propose a simple technique for repairing some of these incorrect tests through a combination of rule-based static analysis and re-prompting. We evaluate this simple approach, named YATE, on a set of 6 open-source projects and show that it can effectively produce tests that cover on average 32.06% more lines and kill 21.77% more mutants than a plain LLM-based method. We also compare YATE with four other LLM-based methods, namely HITS, SYMPROMPT, TESTSPARK and COVERUP and show that it produces tests that cover substantially more code. YATE achieves 22% higher line coverage, 20% higher branch coverage and kill 20% more mutants at a comparable cost (number of calls to LLMs).
Natural Language-Guided Programming
In today's software world with its cornucopia of reusable software libraries, when a programmer is faced with a programming task that they suspect can be completed through the use of a library, they often look for code examples using a search engine and then manually adapt found examples to their specific context of use. We put forward a vision based on a new breed of developer tools that have the potential to largely automate this process. The key idea is to adapt code autocompletion tools such that they take into account not only the developer's already-written code but also the intent of the task the developer is trying to achieve next, formulated in plain natural language. We call this practice of enriching the code with natural language intent to facilitate its completion natural language-guided programming. To show that this idea is feasible we design, implement and benchmark a tool that solves this problem in the context of a specific domain (data science) and a specific programming language (Python). Central to the tool is the use of language models trained on a large corpus of documented code. Our initial experiments confirm the feasibility of the idea but also make it clear that we have only scratched the surface of what may become possible in the future. We end the paper with a comprehensive research agenda to stimulate additional research in the budding area of natural language-guided programming.
SPoC: Search-based Pseudocode to Code
We consider the task of mapping pseudocode to long programs that are functionally correct. Given test cases as a mechanism to validate programs, we search over the space of possible translations of the pseudocode to find a program that passes the validation. However, without proper credit assignment to localize the sources of program failures, it is difficult to guide search toward more promising programs. We propose to perform credit assignment based on signals from compilation errors, which constitute 88.7% of program failures. Concretely, we treat the translation of each pseudocode line as a discrete portion of the program, and whenever a synthesized program fails to compile, an error localization method tries to identify the portion of the program responsible for the failure. We then focus search over alternative translations of the pseudocode for those portions. For evaluation, we collected the SPoC dataset (Search-based Pseudocode to Code) containing 18,356 programs with human-authored pseudocode and test cases. Under a budget of 100 program compilations, performing search improves the synthesis success rate over using the top-one translation of the pseudocode from 25.6% to 44.7%.
Automatically Generating Commit Messages from Diffs using Neural Machine Translation
Commit messages are a valuable resource in comprehension of software evolution, since they provide a record of changes such as feature additions and bug repairs. Unfortunately, programmers often neglect to write good commit messages. Different techniques have been proposed to help programmers by automatically writing these messages. These techniques are effective at describing what changed, but are often verbose and lack context for understanding the rationale behind a change. In contrast, humans write messages that are short and summarize the high level rationale. In this paper, we adapt Neural Machine Translation (NMT) to automatically "translate" diffs into commit messages. We trained an NMT algorithm using a corpus of diffs and human-written commit messages from the top 1k Github projects. We designed a filter to help ensure that we only trained the algorithm on higher-quality commit messages. Our evaluation uncovered a pattern in which the messages we generate tend to be either very high or very low quality. Therefore, we created a quality-assurance filter to detect cases in which we are unable to produce good messages, and return a warning instead.
Battle of the Large Language Models: Dolly vs LLaMA vs Vicuna vs Guanaco vs Bard vs ChatGPT -- A Text-to-SQL Parsing Comparison
The success of ChatGPT has ignited an AI race, with researchers striving to develop new large language models (LLMs) that can match or surpass the language understanding and generation abilities of commercial ones. In recent times, a number of models have emerged, claiming performance near that of GPT-3.5 or GPT-4 through various instruction-tuning methods. As practitioners of Text-to-SQL parsing, we are grateful for their valuable contributions to open-source research. However, it is important to approach these claims with a sense of scrutiny and ascertain the actual effectiveness of these models. Therefore, we pit six popular large language models against each other, systematically evaluating their Text-to-SQL parsing capability on nine benchmark datasets with five different prompting strategies, covering both zero-shot and few-shot scenarios. Regrettably, the open-sourced models fell significantly short of the performance achieved by closed-source models like GPT-3.5, highlighting the need for further work to bridge the performance gap between these models.
NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the Linux Operating System
We present new data and semantic parsing methods for the problem of mapping English sentences to Bash commands (NL2Bash). Our long-term goal is to enable any user to perform operations such as file manipulation, search, and application-specific scripting by simply stating their goals in English. We take a first step in this domain, by providing a new dataset of challenging but commonly used Bash commands and expert-written English descriptions, along with baseline methods to establish performance levels on this task.
PSIMiner: A Tool for Mining Rich Abstract Syntax Trees from Code
The application of machine learning algorithms to source code has grown in the past years. Since these algorithms are quite sensitive to input data, it is not surprising that researchers experiment with input representations. Nowadays, a popular starting point to represent code is abstract syntax trees (ASTs). Abstract syntax trees have been used for a long time in various software engineering domains, and in particular in IDEs. The API of modern IDEs allows to manipulate and traverse ASTs, resolve references between code elements, etc. Such algorithms can enrich ASTs with new data and therefore may be useful in ML-based code analysis. In this work, we present PSIMiner - a tool for processing PSI trees from the IntelliJ Platform. PSI trees contain code syntax trees as well as functions to work with them, and therefore can be used to enrich code representation using static analysis algorithms of modern IDEs. To showcase this idea, we use our tool to infer types of identifiers in Java ASTs and extend the code2seq model for the method name prediction problem.
Using clarification questions to improve software developers' Web search
Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.
Automatic Construction of a Korean Toxic Instruction Dataset for Ethical Tuning of Large Language Models
Caution: this paper may include material that could be offensive or distressing. The advent of Large Language Models (LLMs) necessitates the development of training approaches that mitigate the generation of unethical language and aptly manage toxic user queries. Given the challenges related to human labor and the scarcity of data, we present KoTox, comprising 39K unethical instruction-output pairs. This collection of automatically generated toxic instructions refines the training of LLMs and establishes a foundational framework for improving LLMs' ethical awareness and response to various toxic inputs, promoting more secure and responsible interactions in Natural Language Processing (NLP) applications.
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
ReviewerGPT? An Exploratory Study on Using Large Language Models for Paper Reviewing
Given the rapid ascent of large language models (LLMs), we study the question: (How) can large language models help in reviewing of scientific papers or proposals? We first conduct some pilot studies where we find that (i) GPT-4 outperforms other LLMs (Bard, Vicuna, Koala, Alpaca, LLaMa, Dolly, OpenAssistant, StableLM), and (ii) prompting with a specific question (e.g., to identify errors) outperforms prompting to simply write a review. With these insights, we study the use of LLMs (specifically, GPT-4) for three tasks: 1. Identifying errors: We construct 13 short computer science papers each with a deliberately inserted error, and ask the LLM to check for the correctness of these papers. We observe that the LLM finds errors in 7 of them, spanning both mathematical and conceptual errors. 2. Verifying checklists: We task the LLM to verify 16 closed-ended checklist questions in the respective sections of 15 NeurIPS 2022 papers. We find that across 119 {checklist question, paper} pairs, the LLM had an 86.6% accuracy. 3. Choosing the "better" paper: We generate 10 pairs of abstracts, deliberately designing each pair in such a way that one abstract was clearly superior than the other. The LLM, however, struggled to discern these relatively straightforward distinctions accurately, committing errors in its evaluations for 6 out of the 10 pairs. Based on these experiments, we think that LLMs have a promising use as reviewing assistants for specific reviewing tasks, but not (yet) for complete evaluations of papers or proposals.
SeCaV: A Sequent Calculus Verifier in Isabelle/HOL
We describe SeCaV, a sequent calculus verifier for first-order logic in Isabelle/HOL, and the SeCaV Unshortener, an online tool that expands succinct derivations into the full SeCaV syntax. We leverage the power of Isabelle/HOL as a proof checker for our SeCaV derivations. The interactive features of Isabelle/HOL make our system transparent. For instance, the user can simply click on a side condition to see its exact definition. Our formalized soundness and completeness proofs pertain exactly to the calculus as exposed to the user and not just to some model of our tool. Users can also write their derivations in the SeCaV Unshortener, which provides a lighter syntax, and expand them for later verification. We have used both tools in our teaching.
XSTest: A Test Suite for Identifying Exaggerated Safety Behaviours in Large Language Models
Without proper safeguards, large language models will readily follow malicious instructions and generate toxic content. This motivates safety efforts such as red-teaming and large-scale feedback learning, which aim to make models both helpful and harmless. However, there is a tension between these two objectives, since harmlessness requires models to refuse complying with unsafe prompts, and thus not be helpful. Recent anecdotal evidence suggests that some models may have struck a poor balance, so that even clearly safe prompts are refused if they use similar language to unsafe prompts or mention sensitive topics. In this paper, we introduce a new test suite called XSTest to identify such eXaggerated Safety behaviours in a structured and systematic way. In its current form, XSTest comprises 200 safe prompts across ten prompt types that well-calibrated models should not refuse to comply with. We describe XSTest's creation and composition, and use the test suite to highlight systematic failure modes in a recently-released state-of-the-art language model.
A benchmark for vericoding: formally verified program synthesis
We present and test the largest benchmark for vericoding, LLM-generation of formally verified code from formal specifications - in contrast to vibe coding, which generates potentially buggy code from a natural language description. Our benchmark contains 12,504 formal specifications, with 3,029 in Dafny, 2,334 in Verus/Rust and 7,141 in Lean. Of these, 6,174 are new unseen problems. We find vericoding success rates of 27% in Lean, 44% in Verus/Rust and 82% in Dafny using off-the-shelf LLMs. Adding natural-language descriptions does not significantly improve performance. We also find that LLM progress has improved progress on pure Dafny verification from 68% to 96% over the past year. The benchmark and vericoding results are shared at https://github.com/Beneficial-AI-Foundation/vericoding-benchmark
Self-graphing equations
Can you find an xy-equation that, when graphed, writes itself on the plane? This idea became internet-famous when a Wikipedia article on Tupper's self-referential formula went viral in 2012. Under scrutiny, the question has two flaws: it is meaningless (it depends on typography) and it is trivial (for reasons we will explain). We fix these flaws by formalizing the problem, and we give a very general solution using techniques from computability theory.
CodeCriticBench: A Holistic Code Critique Benchmark for Large Language Models
The critique capacity of Large Language Models (LLMs) is essential for reasoning abilities, which can provide necessary suggestions (e.g., detailed analysis and constructive feedback). Therefore, how to evaluate the critique capacity of LLMs has drawn great attention and several critique benchmarks have been proposed. However, existing critique benchmarks usually have the following limitations: (1). Focusing on diverse reasoning tasks in general domains and insufficient evaluation on code tasks (e.g., only covering code generation task), where the difficulty of queries is relatively easy (e.g., the code queries of CriticBench are from Humaneval and MBPP). (2). Lacking comprehensive evaluation from different dimensions. To address these limitations, we introduce a holistic code critique benchmark for LLMs called CodeCriticBench. Specifically, our CodeCriticBench includes two mainstream code tasks (i.e., code generation and code QA) with different difficulties. Besides, the evaluation protocols include basic critique evaluation and advanced critique evaluation for different characteristics, where fine-grained evaluation checklists are well-designed for advanced settings. Finally, we conduct extensive experimental results of existing LLMs, which show the effectiveness of CodeCriticBench.
Revisiting Code Similarity Evaluation with Abstract Syntax Tree Edit Distance
This paper revisits recent code similarity evaluation metrics, particularly focusing on the application of Abstract Syntax Tree (AST) editing distance in diverse programming languages. In particular, we explore the usefulness of these metrics and compare them to traditional sequence similarity metrics. Our experiments showcase the effectiveness of AST editing distance in capturing intricate code structures, revealing a high correlation with established metrics. Furthermore, we explore the strengths and weaknesses of AST editing distance and prompt-based GPT similarity scores in comparison to BLEU score, execution match, and Jaccard Similarity. We propose, optimize, and publish an adaptable metric that demonstrates effectiveness across all tested languages, representing an enhanced version of Tree Similarity of Edit Distance (TSED).
AutoCode: LLMs as Problem Setters for Competitive Programming
Writing competitive programming problems is exacting. Authors must: set constraints, input distributions, and edge cases that rule out shortcuts; target specific algorithms (e.g., max-flow, dynamic programming, data structures); and calibrate complexity beyond the reach of most competitors. We argue that this makes for an ideal test of general large language model capabilities and study whether they can do this reliably. We introduce AutoCode, which uses multiple rounds of validation to yield competition-grade problem statements and test cases. On held-out problems, AutoCode test suites approach 99% consistency with official judgments, a significant improvement over current state-of-the-art methods like HardTests, which achieve less than 81%. Furthermore, starting with a random seed problem, AutoCode can create novel variants with reference and brute-force solutions. By cross-verifying these generated solutions against test cases, we can further filter out malformed problems. Our system ensures high correctness, as verified by human experts. AutoCode successfully produces novel problems judged by Grandmaster-level (top 0.3%) competitive programmers to be of contest quality.
Language Models Can Teach Themselves to Program Better
Recent Language Models (LMs) achieve breakthrough performance in code generation when trained on human-authored problems, even solving some competitive-programming problems. Self-play has proven useful in games such as Go, and thus it is natural to ask whether LMs can generate their own instructive programming problems to improve their performance. We show that it is possible for an LM to synthesize programming problems and solutions, which are filtered for correctness by a Python interpreter. The LM's performance is then seen to improve when it is fine-tuned on its own synthetic problems and verified solutions; thus the model 'improves itself' using the Python interpreter. Problems are specified formally as programming puzzles [Schuster et al., 2021], a code-based problem format where solutions can easily be verified for correctness by execution. In experiments on publicly-available LMs, test accuracy more than doubles. This work demonstrates the potential for code LMs, with an interpreter, to generate instructive problems and improve their own performance.
MultiMend: Multilingual Program Repair with Context Augmentation and Multi-Hunk Patch Generation
Context: Bugs in code are inevitable and can lead to severe consequences, ranging from security vulnerabilities to operational failures. Debugging software remains challenging despite advances in testing and verification, often requiring extensive manual effort. Learning-based automated program repair (APR) has shown promise in reducing the time, effort, and cost of manually fixing bugs. However, existing techniques face several challenges, including language-dependent strategies, limited bug context utilization, and difficulties in handling bugs that span multiple locations in the code. Objective: This paper introduces MultiMend, a learning-based APR approach designed to improve repair performance on multiple programming languages with language-independent context augmentation and multi-hunk patch generation. Method: MultiMend fine-tunes a pre-trained encoder-decoder transformer model (CodeT5) to generate bug-fixing patches. It embeds source code lines and applies retrieval-augmented generation to augment the buggy context with relevant lines during patch generation. The approach systematically constructs patches for multi-hunk bugs to reduce the needed patch validations. We evaluate MultiMend on four benchmarks with four programming languages and compare it with state-of-the-art methods. Results: Experimental results show that MultiMend achieves competitive effectiveness and efficiency against compared tools. Across all benchmarks, MultiMend fixes 2,077 bugs, of which 1,455 are identical to the developer's patch, and 106 are for multi-hunk bugs. Both context augmentation and multi-hunk patch generation positively contribute to the results. Conclusion: MultiMend shows promising performance across benchmarks. The findings highlight its applicability to real-world software maintenance and its potential to reduce manual debugging efforts.
Handling and Presenting Harmful Text in NLP Research
Text data can pose a risk of harm. However, the risks are not fully understood, and how to handle, present, and discuss harmful text in a safe way remains an unresolved issue in the NLP community. We provide an analytical framework categorising harms on three axes: (1) the harm type (e.g., misinformation, hate speech or racial stereotypes); (2) whether a harm is sought as a feature of the research design if explicitly studying harmful content (e.g., training a hate speech classifier), versus unsought if harmful content is encountered when working on unrelated problems (e.g., language generation or part-of-speech tagging); and (3) who it affects, from people (mis)represented in the data to those handling the data and those publishing on the data. We provide advice for practitioners, with concrete steps for mitigating harm in research and in publication. To assist implementation we introduce HarmCheck -- a documentation standard for handling and presenting harmful text in research.
Model Checking a C++ Software Framework, a Case Study
This paper presents a case study on applying two model checkers, SPIN and DIVINE, to verify key properties of a C++ software framework, known as ADAPRO, originally developed at CERN. SPIN was used for verifying properties on the design level. DIVINE was used for verifying simple test applications that interacted with the implementation. Both model checkers were found to have their own respective sets of pros and cons, but the overall experience was positive. Because both model checkers were used in a complementary manner, they provided valuable new insights into the framework, which would arguably have been hard to gain by traditional testing and analysis tools only. Translating the C++ source code into the modeling language of the SPIN model checker helped to find flaws in the original design. With DIVINE, defects were found in parts of the code base that had already been subject to hundreds of hours of unit tests, integration tests, and acceptance tests. Most importantly, model checking was found to be easy to integrate into the workflow of the software project and bring added value, not only as verification, but also validation methodology. Therefore, using model checking for developing library-level code seems realistic and worth the effort.
Helping LLMs Improve Code Generation Using Feedback from Testing and Static Analysis
Large Language Models (LLMs) are one of the most promising developments in the field of artificial intelligence, and the software engineering community has readily noticed their potential role in the software development life-cycle. Developers routinely ask LLMs to generate code snippets, increasing productivity but also potentially introducing ownership, privacy, correctness, and security issues. Previous work highlighted how code generated by mainstream commercial LLMs is often not safe, containing vulnerabilities, bugs, and code smells. In this paper, we present a framework that leverages testing and static analysis to assess the quality, and guide the self-improvement, of code generated by general-purpose, open-source LLMs. First, we ask LLMs to generate C code to solve a number of programming tasks. Then we employ ground-truth tests to assess the (in)correctness of the generated code, and a static analysis tool to detect potential safety vulnerabilities. Next, we assess the models ability to evaluate the generated code, by asking them to detect errors and vulnerabilities. Finally, we test the models ability to fix the generated code, providing the reports produced during the static analysis and incorrectness evaluation phases as feedback. Our results show that models often produce incorrect code, and that the generated code can include safety issues. Moreover, they perform very poorly at detecting either issue. On the positive side, we observe a substantial ability to fix flawed code when provided with information about failed tests or potential vulnerabilities, indicating a promising avenue for improving the safety of LLM-based code generation tools.
Leveraging Large Language Models for Automated Proof Synthesis in Rust
Formal verification can provably guarantee the correctness of critical system software, but the high proof burden has long hindered its wide adoption. Recently, Large Language Models (LLMs) have shown success in code analysis and synthesis. In this paper, we present a combination of LLMs and static analysis to synthesize invariants, assertions, and other proof structures for a Rust-based formal verification framework called Verus. In a few-shot setting, LLMs demonstrate impressive logical ability in generating postconditions and loop invariants, especially when analyzing short code snippets. However, LLMs lack the ability to retain and propagate context information, a strength of traditional static analysis. Based on these observations, we developed a prototype based on OpenAI's GPT-4 model. Our prototype decomposes the verification task into multiple smaller ones, iteratively queries GPT-4, and combines its output with lightweight static analysis. We evaluated the prototype with a developer in the automation loop on 20 vector-manipulating programs. The results demonstrate that it significantly reduces human effort in writing entry-level proof code.
Unchecked and Overlooked: Addressing the Checkbox Blind Spot in Large Language Models with CheckboxQA
Checkboxes are critical in real-world document processing where the presence or absence of ticks directly informs data extraction and decision-making processes. Yet, despite the strong performance of Large Vision and Language Models across a wide range of tasks, they struggle with interpreting checkable content. This challenge becomes particularly pressing in industries where a single overlooked checkbox may lead to costly regulatory or contractual oversights. To address this gap, we introduce the CheckboxQA dataset, a targeted resource designed to evaluate and improve model performance on checkbox-related tasks. It reveals the limitations of current models and serves as a valuable tool for advancing document comprehension systems, with significant implications for applications in sectors such as legal tech and finance. The dataset is publicly available at: https://github.com/Snowflake-Labs/CheckboxQA
Grammar-Based Code Representation: Is It a Worthy Pursuit for LLMs?
Grammar serves as a cornerstone in programming languages and software engineering, providing frameworks to define the syntactic space and program structure. Existing research demonstrates the effectiveness of grammar-based code representations in small-scale models, showing their ability to reduce syntax errors and enhance performance. However, as language models scale to the billion level or beyond, syntax-level errors become rare, making it unclear whether grammar information still provides performance benefits. To explore this, we develop a series of billion-scale GrammarCoder models, incorporating grammar rules in the code generation process. Experiments on HumanEval (+) and MBPP (+) demonstrate a notable improvement in code generation accuracy. Further analysis shows that grammar-based representations enhance LLMs' ability to discern subtle code differences, reducing semantic errors caused by minor variations. These findings suggest that grammar-based code representations remain valuable even in billion-scale models, not only by maintaining syntax correctness but also by improving semantic differentiation.
Measuring Coding Challenge Competence With APPS
While programming is one of the most broadly applicable skills in modern society, modern machine learning models still cannot code solutions to basic problems. Despite its importance, there has been surprisingly little work on evaluating code generation, and it can be difficult to accurately assess code generation performance rigorously. To meet this challenge, we introduce APPS, a benchmark for code generation. Unlike prior work in more restricted settings, our benchmark measures the ability of models to take an arbitrary natural language specification and generate satisfactory Python code. Similar to how companies assess candidate software developers, we then evaluate models by checking their generated code on test cases. Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges. We fine-tune large language models on both GitHub and our training set, and we find that the prevalence of syntax errors is decreasing exponentially as models improve. Recent models such as GPT-Neo can pass approximately 20% of the test cases of introductory problems, so we find that machine learning models are now beginning to learn how to code. As the social significance of automatic code generation increases over the coming years, our benchmark can provide an important measure for tracking advancements.
Ranking LLM-Generated Loop Invariants for Program Verification
Synthesizing inductive loop invariants is fundamental to automating program verification. In this work, we observe that Large Language Models (such as gpt-3.5 or gpt-4) are capable of synthesizing loop invariants for a class of programs in a 0-shot setting, yet require several samples to generate the correct invariants. This can lead to a large number of calls to a program verifier to establish an invariant. To address this issue, we propose a {\it re-ranking} approach for the generated results of LLMs. We have designed a ranker that can distinguish between correct inductive invariants and incorrect attempts based on the problem definition. The ranker is optimized as a contrastive ranker. Experimental results demonstrate that this re-ranking mechanism significantly improves the ranking of correct invariants among the generated candidates, leading to a notable reduction in the number of calls to a verifier.
LazyReview A Dataset for Uncovering Lazy Thinking in NLP Peer Reviews
Peer review is a cornerstone of quality control in scientific publishing. With the increasing workload, the unintended use of `quick' heuristics, referred to as lazy thinking, has emerged as a recurring issue compromising review quality. Automated methods to detect such heuristics can help improve the peer-reviewing process. However, there is limited NLP research on this issue, and no real-world dataset exists to support the development of detection tools. This work introduces LazyReview, a dataset of peer-review sentences annotated with fine-grained lazy thinking categories. Our analysis reveals that Large Language Models (LLMs) struggle to detect these instances in a zero-shot setting. However, instruction-based fine-tuning on our dataset significantly boosts performance by 10-20 performance points, highlighting the importance of high-quality training data. Furthermore, a controlled experiment demonstrates that reviews revised with lazy thinking feedback are more comprehensive and actionable than those written without such feedback. We will release our dataset and the enhanced guidelines that can be used to train junior reviewers in the community. (Code available here: https://github.com/UKPLab/arxiv2025-lazy-review)
Examination of Code generated by Large Language Models
Large language models (LLMs), such as ChatGPT and Copilot, are transforming software development by automating code generation and, arguably, enable rapid prototyping, support education, and boost productivity. Therefore, correctness and quality of the generated code should be on par with manually written code. To assess the current state of LLMs in generating correct code of high quality, we conducted controlled experiments with ChatGPT and Copilot: we let the LLMs generate simple algorithms in Java and Python along with the corresponding unit tests and assessed the correctness and the quality (coverage) of the generated (test) codes. We observed significant differences between the LLMs, between the languages, between algorithm and test codes, and over time. The present paper reports these results together with the experimental methods allowing repeated and comparable assessments for more algorithms, languages, and LLMs over time.
An Exploration Into Web Session Security- A Systematic Literature Review
The most common attacks against web sessions are reviewed in this paper, for example, some attacks against web browsers' honest users attempting to create session with trusted web browser application legally. We have assessed with four different ways to judge the viability of a certain solution by reviewing existing security solutions which prevent or halt the different attacks. Then we have pointed out some guidelines that have been taken into account by the designers of the proposals we reviewed. The guidelines we have identified will be helpful for the creative solutions proceeding web security in a more structured and holistic way.
LLM4VV: Developing LLM-Driven Testsuite for Compiler Validation
Large language models (LLMs) are a new and powerful tool for a wide span of applications involving natural language and demonstrate impressive code generation abilities. In this paper, we explore the capabilitity of state-of-the-art LLMs, including closed-source options like OpenAI GPT-4 and open-source alternatives like Meta AI Codellama, to automatically generate tests and use these tests to validate and verify compiler implementations of a directive-based programming paradigm, OpenACC. Our approach entails exploring various prompt engineering techniques including a code template, retrieval-augmented generation (RAG) with code template, expressive prompt using RAG with code template, one-shot example, and RAG with one-shot example. This paper focusses on (a) exploring the capabilities of the latest LLMs for code generation, (b) investigating prompt and fine tuning methods, and (c) analyzing the outcome of LLMs generated tests
Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs
With the rapid evolution of large language models (LLMs), new and hard-to-predict harmful capabilities are emerging. This requires developers to be able to identify risks through the evaluation of "dangerous capabilities" in order to responsibly deploy LLMs. In this work, we collect the first open-source dataset to evaluate safeguards in LLMs, and deploy safer open-source LLMs at a low cost. Our dataset is curated and filtered to consist only of instructions that responsible language models should not follow. We annotate and assess the responses of six popular LLMs to these instructions. Based on our annotation, we proceed to train several BERT-like classifiers, and find that these small classifiers can achieve results that are comparable with GPT-4 on automatic safety evaluation. Warning: this paper contains example data that may be offensive, harmful, or biased.
Can LLM Generate Regression Tests for Software Commits?
Large Language Models (LLMs) have shown tremendous promise in automated software engineering. In this paper, we investigate the opportunities of LLMs for automatic regression test generation for programs that take highly structured, human-readable inputs, such as XML parsers or JavaScript interpreters. Concretely, we explore the following regression test generation scenarios for such programs that have so far been difficult to test automatically in the absence of corresponding input grammars: bullet Bug finding. Given a code change (e.g., a commit or pull request), our LLM-based approach generates a test case with the objective of revealing any bugs that might be introduced if that change is applied. bullet Patch testing. Given a patch, our LLM-based approach generates a test case that fails before but passes after the patch. This test can be added to the regression test suite to catch similar bugs in the future. We implement Cleverest, a feedback-directed, zero-shot LLM-based regression test generation technique, and evaluate its effectiveness on 22 commits to three subject programs: Mujs, Libxml2, and Poppler. For programs using more human-readable file formats, like XML or JavaScript, we found Cleverest performed very well. It generated easy-to-understand bug-revealing or bug-reproduction test cases for the majority of commits in just under three minutes -- even when only the code diff or commit message (unless it was too vague) was given. For programs with more compact file formats, like PDF, as expected, it struggled to generate effective test cases. However, the LLM-supplied test cases are not very far from becoming effective (e.g., when used as a seed by a greybox fuzzer or as a starting point by the developer).
gec-metrics: A Unified Library for Grammatical Error Correction Evaluation
We introduce gec-metrics, a library for using and developing grammatical error correction (GEC) evaluation metrics through a unified interface. Our library enables fair system comparisons by ensuring that everyone conducts evaluations using a consistent implementation. Moreover, it is designed with a strong focus on API usage, making it highly extensible. It also includes meta-evaluation functionalities and provides analysis and visualization scripts, contributing to developing GEC evaluation metrics. Our code is released under the MIT license and is also distributed as an installable package. The video is available on YouTube.
E3: Entailment-driven Extracting and Editing for Conversational Machine Reading
Conversational machine reading systems help users answer high-level questions (e.g. determine if they qualify for particular government benefits) when they do not know the exact rules by which the determination is made(e.g. whether they need certain income levels or veteran status). The key challenge is that these rules are only provided in the form of a procedural text (e.g. guidelines from government website) which the system must read to figure out what to ask the user. We present a new conversational machine reading model that jointly extracts a set of decision rules from the procedural text while reasoning about which are entailed by the conversational history and which still need to be edited to create questions for the user. On the recently introduced ShARC conversational machine reading dataset, our Entailment-driven Extract and Edit network (E3) achieves a new state-of-the-art, outperforming existing systems as well as a new BERT-based baseline. In addition, by explicitly highlighting which information still needs to be gathered, E3 provides a more explainable alternative to prior work. We release source code for our models and experiments at https://github.com/vzhong/e3.
MacroBench: A Novel Testbed for Web Automation Scripts via Large Language Models
We introduce MacroBench, a code-first benchmark that evaluates whether LLMs can synthesize reusable browser-automation programs (macros) from natural-language goals by reading HTML/DOM and emitting Selenium. MacroBench instantiates seven self-hosted sites covering 681 tasks across interaction complexity and targeting difficulty. Our end-to-end protocol validates generated code via static checks, sandboxed execution, and outcome verification (DOM assertions, database snapshots), and includes a safety suite for scraping, spam/abuse, and credential/privacy prompts. Across 2,636 model-task runs, we observe stratified success: GPT-4o-mini (96.8%), GPT-4o (95.3%), Gemini (89.0%), DeepSeek (83.4%). Models handle simple tasks reliably (91.7%) but fail on complex workflows (0.0%), and none meet production-quality coding practices despite functional completion. We release our complete benchmark pipeline, evaluation framework, and experimental results at https://github.com/hyunjun1121/MacroBench to enable reproducible assessment of macro synthesis for web automation.
Break the Breakout: Reinventing LM Defense Against Jailbreak Attacks with Self-Refinement
Caution: This paper includes offensive words that could potentially cause unpleasantness. Language models (LMs) are vulnerable to exploitation for adversarial misuse. Training LMs for safety alignment is extensive and makes it hard to respond to fast-developing attacks immediately, such as jailbreaks. We propose self-refine with formatting that achieves outstanding safety even in non-safety-aligned LMs and evaluate our method alongside several defense baselines, demonstrating that it is the safest training-free method against jailbreak attacks. Additionally, we proposed a formatting method that improves the efficiency of the self-refine process while reducing attack success rates in fewer iterations. We've also observed that non-safety-aligned LMs outperform safety-aligned LMs in safety tasks by giving more helpful and safe responses. In conclusion, our findings can achieve less safety risk with fewer computational costs, allowing non-safety LM to be easily utilized in real-world service.
Vulnerability Detection: From Formal Verification to Large Language Models and Hybrid Approaches: A Comprehensive Overview
Software testing and verification are critical for ensuring the reliability and security of modern software systems. Traditionally, formal verification techniques, such as model checking and theorem proving, have provided rigorous frameworks for detecting bugs and vulnerabilities. However, these methods often face scalability challenges when applied to complex, real-world programs. Recently, the advent of Large Language Models (LLMs) has introduced a new paradigm for software analysis, leveraging their ability to understand insecure coding practices. Although LLMs demonstrate promising capabilities in tasks such as bug prediction and invariant generation, they lack the formal guarantees of classical methods. This paper presents a comprehensive study of state-of-the-art software testing and verification, focusing on three key approaches: classical formal methods, LLM-based analysis, and emerging hybrid techniques, which combine their strengths. We explore each approach's strengths, limitations, and practical applications, highlighting the potential of hybrid systems to address the weaknesses of standalone methods. We analyze whether integrating formal rigor with LLM-driven insights can enhance the effectiveness and scalability of software verification, exploring their viability as a pathway toward more robust and adaptive testing frameworks.
Vibe Checker: Aligning Code Evaluation with Human Preference
Large Language Models (LLMs) have catalyzed vibe coding, where users leverage LLMs to generate and iteratively refine code through natural language interactions until it passes their vibe check. Vibe check is tied to real-world human preference and goes beyond functionality: the solution should feel right, read cleanly, preserve intent, and remain correct. However, current code evaluation remains anchored to pass@k and captures only functional correctness, overlooking the non-functional instructions that users routinely apply. In this paper, we hypothesize that instruction following is the missing piece underlying vibe check that represents human preference in coding besides functional correctness. To quantify models' code instruction following capabilities with measurable signals, we present VeriCode, a taxonomy of 30 verifiable code instructions together with corresponding deterministic verifiers. We use the taxonomy to augment established evaluation suites, resulting in Vibe Checker, a testbed to assess both code instruction following and functional correctness. Upon evaluating 31 leading LLMs, we show that even the strongest models struggle to comply with multiple instructions and exhibit clear functional regression. Most importantly, a composite score of functional correctness and instruction following correlates the best with human preference, with the latter emerging as the primary differentiator on real-world programming tasks. Our work identifies core factors of the vibe check, providing a concrete path for benchmarking and developing models that better align with user preferences in coding.
Double-Checker: Enhancing Reasoning of Slow-Thinking LLMs via Self-Critical Fine-Tuning
While slow-thinking large language models (LLMs) exhibit reflection-like reasoning, commonly referred to as the "aha moment:, their ability to generate informative critiques and refine prior solutions remains limited. In this paper, we introduce Double-Checker, a principled framework designed to enhance the reasoning capabilities of slow-thinking LLMs by fostering explicit self-critique and iterative refinement of their previous solutions. By fine-tuning on our curated 1,730 self-critical instances, Double-Checker empowers long-CoT LLMs to iteratively critique and refine their outputs during inference until they evaluate their solutions as correct under self-generated critiques. We validate the efficacy of Double-Checker across a comprehensive suite of reasoning benchmarks, demonstrating that iterative self-critique significantly enhances the reasoning capabilities of long-CoT LLMs. Notably, our Double-Checker increases the pass@1 performance on challenging AIME benchmarks from 4.4% to 18.2% compared to the original long-CoT LLMs. These results highlight a promising direction for developing more trustworthy and effective LLMs capable of structured self-critique. Our codes and data are available at https://github.com/XinXU-USTC/DoubleChecker
LLM4TDD: Best Practices for Test Driven Development Using Large Language Models
In today's society, we are becoming increasingly dependent on software systems. However, we also constantly witness the negative impacts of buggy software. Program synthesis aims to improve software correctness by automatically generating the program given an outline of the expected behavior. For decades, program synthesis has been an active research field, with recent approaches looking to incorporate Large Language Models to help generate code. This paper explores the concept of LLM4TDD, where we guide Large Language Models to generate code iteratively using a test-driven development methodology. We conduct an empirical evaluation using ChatGPT and coding problems from LeetCode to investigate the impact of different test, prompt and problem attributes on the efficacy of LLM4TDD.
VeriEquivBench: An Equivalence Score for Ground-Truth-Free Evaluation of Formally Verifiable Code
Formal verification is the next frontier for ensuring the correctness of code generated by Large Language Models (LLMs). While methods that co-generate code and formal specifications in formal languages, like Dafny, can, in principle, prove alignment with user intent, progress is bottlenecked by specification quality evaluation. Current benchmarks rely on matching against ground-truth specifications, a manual and expertise-intensive process that has limited existing datasets to a few hundred simple problems and also suffers from a reliability issue. To address this, we introduce VeriEquivBench, a new benchmark with 2,389 complex algorithmic problems that probe the limitations of current models in both code generation and formal reasoning. Our evaluation framework replaces ground-truth matching with a formally grounded metric, the equivalence score, and rigorously verifies the quality of generated specifications and code. Our results show that generating formally verifiable code remains a profound challenge for state-of-the-art LLMs. This underscores both the difficulty of the task and the need for benchmarks like VeriEquivBench to drive progress toward scalable and reliable coding agents.
Chain of Code: Reasoning with a Language Model-Augmented Code Emulator
Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter - we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for semantic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detect_sarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they not only write code, but also selectively "emulate" the interpreter by generating the expected output of "detect_sarcasm(string)". In this work, we propose Chain of Code (CoC), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format semantic sub-tasks in a program as flexible pseudocode that the interpreter can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other baselines across a variety of benchmarks; on BIG-Bench Hard, Chain of Code achieves 84%, a gain of 12% over Chain of Thought. In a nutshell, CoC broadens the scope of reasoning questions that LMs can answer by "thinking in code".
A Static Evaluation of Code Completion by Large Language Models
Large language models trained on code have shown great potential to increase productivity of software developers. Several execution-based benchmarks have been proposed to evaluate functional correctness of model-generated code on simple programming problems. Nevertheless, it is expensive to perform the same evaluation on complex real-world projects considering the execution cost. On the contrary, static analysis tools such as linters, which can detect errors without running the program, haven't been well explored for evaluating code generation models. In this work, we propose a static evaluation framework to quantify static errors in Python code completions, by leveraging Abstract Syntax Trees. Compared with execution-based evaluation, our method is not only more efficient, but also applicable to code in the wild. For experiments, we collect code context from open source repos to generate one million function bodies using public models. Our static analysis reveals that Undefined Name and Unused Variable are the most common errors among others made by language models. Through extensive studies, we also show the impact of sampling temperature, model size, and context on static errors in code completions.
JADE: A Linguistics-based Safety Evaluation Platform for Large Language Models
In this paper, we present JADE, a targeted linguistic fuzzing platform which strengthens the linguistic complexity of seed questions to simultaneously and consistently break a wide range of widely-used LLMs categorized in three groups: eight open-sourced Chinese, six commercial Chinese and four commercial English LLMs. JADE generates three safety benchmarks for the three groups of LLMs, which contain unsafe questions that are highly threatening: the questions simultaneously trigger harmful generation of multiple LLMs, with an average unsafe generation ratio of 70% (please see the table below), while are still natural questions, fluent and preserving the core unsafe semantics. We release the benchmark demos generated for commercial English LLMs and open-sourced English LLMs in the following link: https://github.com/whitzard-ai/jade-db. For readers who are interested in evaluating on more questions generated by JADE, please contact us. JADE is based on Noam Chomsky's seminal theory of transformational-generative grammar. Given a seed question with unsafe intention, JADE invokes a sequence of generative and transformational rules to increment the complexity of the syntactic structure of the original question, until the safety guardrail is broken. Our key insight is: Due to the complexity of human language, most of the current best LLMs can hardly recognize the invariant evil from the infinite number of different syntactic structures which form an unbound example space that can never be fully covered. Technically, the generative/transformative rules are constructed by native speakers of the languages, and, once developed, can be used to automatically grow and transform the parse tree of a given question, until the guardrail is broken. For more evaluation results and demo, please check our website: https://whitzard-ai.github.io/jade.html.
PyThaiNLP: Thai Natural Language Processing in Python
We present PyThaiNLP, a free and open-source natural language processing (NLP) library for Thai language implemented in Python. It provides a wide range of software, models, and datasets for Thai language. We first provide a brief historical context of tools for Thai language prior to the development of PyThaiNLP. We then outline the functionalities it provided as well as datasets and pre-trained language models. We later summarize its development milestones and discuss our experience during its development. We conclude by demonstrating how industrial and research communities utilize PyThaiNLP in their work. The library is freely available at https://github.com/pythainlp/pythainlp.
Automating Code Review Activities by Large-Scale Pre-training
Code review is an essential part to software development lifecycle since it aims at guaranteeing the quality of codes. Modern code review activities necessitate developers viewing, understanding and even running the programs to assess logic, functionality, latency, style and other factors. It turns out that developers have to spend far too much time reviewing the code of their peers. Accordingly, it is in significant demand to automate the code review process. In this research, we focus on utilizing pre-training techniques for the tasks in the code review scenario. We collect a large-scale dataset of real-world code changes and code reviews from open-source projects in nine of the most popular programming languages. To better understand code diffs and reviews, we propose CodeReviewer, a pre-trained model that utilizes four pre-training tasks tailored specifically for the code review scenario. To evaluate our model, we focus on three key tasks related to code review activities, including code change quality estimation, review comment generation and code refinement. Furthermore, we establish a high-quality benchmark dataset based on our collected data for these three tasks and conduct comprehensive experiments on it. The experimental results demonstrate that our model outperforms the previous state-of-the-art pre-training approaches in all tasks. Further analysis show that our proposed pre-training tasks and the multilingual pre-training dataset benefit the model on the understanding of code changes and reviews.
When Good and Reproducible Results are a Giant with Feet of Clay: The Importance of Software Quality in NLP
Despite its crucial role in research experiments, code correctness is often presumed only on the basis of the perceived quality of results. This assumption comes with the risk of erroneous outcomes and potentially misleading findings. To address this issue, we posit that the current focus on reproducibility should go hand in hand with the emphasis on software quality. We present a case study in which we identify and fix three bugs in widely used implementations of the state-of-the-art Conformer architecture. Through experiments on speech recognition and translation in various languages, we demonstrate that the presence of bugs does not prevent the achievement of good and reproducible results, which however can lead to incorrect conclusions that potentially misguide future research. As a countermeasure, we propose a Code-quality Checklist and release pangoliNN, a library dedicated to testing neural models, with the goal of promoting coding best practices and improving research software quality within the NLP community.
Uncovering Pretraining Code in LLMs: A Syntax-Aware Attribution Approach
As large language models (LLMs) become increasingly capable, concerns over the unauthorized use of copyrighted and licensed content in their training data have grown, especially in the context of code. Open-source code, often protected by open source licenses (e.g, GPL), poses legal and ethical challenges when used in pretraining. Detecting whether specific code samples were included in LLM training data is thus critical for transparency, accountability, and copyright compliance. We propose SynPrune, a syntax-pruned membership inference attack method tailored for code. Unlike prior MIA approaches that treat code as plain text, SynPrune leverages the structured and rule-governed nature of programming languages. Specifically, it identifies and excludes consequent tokens that are syntactically required and not reflective of authorship, from attribution when computing membership scores. Experimental results show that SynPrune consistently outperforms the state-of-the-arts. Our method is also robust across varying function lengths and syntax categories.
Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming
Proof-oriented programs mix computational content with proofs of program correctness. However, the human effort involved in programming and proving is still substantial, despite the use of Satisfiability Modulo Theories (SMT) solvers to automate proofs in languages such as F*. Seeking to spur research on using AI to automate the construction of proof-oriented programs, we curate a dataset of 600K lines of open-source F* programs and proofs, including software used in production systems ranging from Windows and Linux, to Python and Firefox. Our dataset includes around 32K top-level F* definitions, each representing a type-directed program and proof synthesis problem -- producing a definition given a formal specification expressed as an F* type. We provide a program-fragment checker that queries F* to check the correctness of candidate solutions. We believe this is the largest corpus of SMT-assisted program proofs coupled with a reproducible program-fragment checker. Grounded in this dataset, we investigate the use of AI to synthesize programs and their proofs in F*, with promising results. Our main finding in that the performance of fine-tuned smaller language models (such as Phi-2 or StarCoder) compare favorably with large language models (such as GPT-4), at a much lower computational cost. We also identify various type-based retrieval augmentation techniques and find that they boost performance significantly. With detailed error analysis and case studies, we identify potential strengths and weaknesses of models and techniques and suggest directions for future improvements.
Detecting and Characterizing Bots that Commit Code
Background: Some developer activity traditionally performed manually, such as making code commits, opening, managing, or closing issues is increasingly subject to automation in many OSS projects. Specifically, such activity is often performed by tools that react to events or run at specific times. We refer to such automation tools as bots and, in many software mining scenarios related to developer productivity or code quality it is desirable to identify bots in order to separate their actions from actions of individuals. Aim: Find an automated way of identifying bots and code committed by these bots, and to characterize the types of bots based on their activity patterns. Method and Result: We propose BIMAN, a systematic approach to detect bots using author names, commit messages, files modified by the commit, and projects associated with the ommits. For our test data, the value for AUC-ROC was 0.9. We also characterized these bots based on the time patterns of their code commits and the types of files modified, and found that they primarily work with documentation files and web pages, and these files are most prevalent in HTML and JavaScript ecosystems. We have compiled a shareable dataset containing detailed information about 461 bots we found (all of whom have more than 1000 commits) and 13,762,430 commits they created.
Searching by Code: a New SearchBySnippet Dataset and SnippeR Retrieval Model for Searching by Code Snippets
Code search is an important task that has seen many developments in recent years. However, previous attempts have mostly considered the problem of searching for code by a text query. We argue that using a code snippet (and possibly an associated traceback) as a query and looking for answers with bugfixing instructions and code samples is a natural use case that is not covered by existing approaches. Moreover, existing datasets use comments extracted from code rather than full-text descriptions as text, making them unsuitable for this use case. We present a new SearchBySnippet dataset implementing the search-by-code use case based on StackOverflow data; it turns out that in this setting, existing architectures fall short of the simplest BM25 baseline even after fine-tuning. We present a new single encoder model SnippeR that outperforms several strong baselines on the SearchBySnippet dataset with a result of 0.451 Recall@10; we propose the SearchBySnippet dataset and SnippeR as a new important benchmark for code search evaluation.
Intent-based Prompt Calibration: Enhancing prompt optimization with synthetic boundary cases
Prompt engineering is a challenging and important task due to the high sensitivity of Large Language Models (LLMs) to the given prompt and the inherent ambiguity of a textual task instruction. Automatic prompt engineering is essential to achieve optimized performance from LLMs. Recent studies have demonstrated the capabilities of LLMs to automatically conduct prompt engineering by employing a meta-prompt that incorporates the outcomes of the last trials and proposes an improved prompt. However, this requires a high-quality benchmark to compare different prompts, which is difficult and expensive to acquire in many real-world use cases. In this work, we introduce a new method for automatic prompt engineering, using a calibration process that iteratively refines the prompt to the user intent. During the optimization process, the system jointly generates synthetic data of boundary use cases and optimizes the prompt according to the generated dataset. We demonstrate the effectiveness of our method with respect to strong proprietary models on real-world tasks such as moderation and generation. Our method outperforms state-of-the-art methods with a limited number of annotated samples. Furthermore, we validate the advantages of each one of the system's key components. Our system is built in a modular way, facilitating easy adaptation to other tasks. The code is available https://github.com/Eladlev/AutoPrompt{here}.
CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing
Recent developments in large language models (LLMs) have been impressive. However, these models sometimes show inconsistencies and problematic behavior, such as hallucinating facts, generating flawed code, or creating offensive and toxic content. Unlike these models, humans typically utilize external tools to cross-check and refine their initial content, like using a search engine for fact-checking, or a code interpreter for debugging. Inspired by this observation, we introduce a framework called CRITIC that allows LLMs, which are essentially "black boxes" to validate and progressively amend their own outputs in a manner similar to human interaction with tools. More specifically, starting with an initial output, CRITIC interacts with appropriate tools to evaluate certain aspects of the text, and then revises the output based on the feedback obtained during this validation process. Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs. Meanwhile, our research highlights the crucial importance of external feedback in promoting the ongoing self-improvement of LLMs.
Proving Test Set Contamination in Black Box Language Models
Large language models are trained on vast amounts of internet data, prompting concerns and speculation that they have memorized public benchmarks. Going from speculation to proof of contamination is challenging, as the pretraining data used by proprietary models are often not publicly accessible. We show that it is possible to provide provable guarantees of test set contamination in language models without access to pretraining data or model weights. Our approach leverages the fact that when there is no data contamination, all orderings of an exchangeable benchmark should be equally likely. In contrast, the tendency for language models to memorize example order means that a contaminated language model will find certain canonical orderings to be much more likely than others. Our test flags potential contamination whenever the likelihood of a canonically ordered benchmark dataset is significantly higher than the likelihood after shuffling the examples. We demonstrate that our procedure is sensitive enough to reliably prove test set contamination in challenging situations, including models as small as 1.4 billion parameters, on small test sets of only 1000 examples, and datasets that appear only a few times in the pretraining corpus. Using our test, we audit five popular publicly accessible language models for test set contamination and find little evidence for pervasive contamination.
Effective Test Generation Using Pre-trained Large Language Models and Mutation Testing
One of the critical phases in software development is software testing. Testing helps with identifying potential bugs and reducing maintenance costs. The goal of automated test generation tools is to ease the development of tests by suggesting efficient bug-revealing tests. Recently, researchers have leveraged Large Language Models (LLMs) of code to generate unit tests. While the code coverage of generated tests was usually assessed, the literature has acknowledged that the coverage is weakly correlated with the efficiency of tests in bug detection. To improve over this limitation, in this paper, we introduce MuTAP for improving the effectiveness of test cases generated by LLMs in terms of revealing bugs by leveraging mutation testing. Our goal is achieved by augmenting prompts with surviving mutants, as those mutants highlight the limitations of test cases in detecting bugs. MuTAP is capable of generating effective test cases in the absence of natural language descriptions of the Program Under Test (PUTs). We employ different LLMs within MuTAP and evaluate their performance on different benchmarks. Our results show that our proposed method is able to detect up to 28% more faulty human-written code snippets. Among these, 17% remained undetected by both the current state-of-the-art fully automated test generation tool (i.e., Pynguin) and zero-shot/few-shot learning approaches on LLMs. Furthermore, MuTAP achieves a Mutation Score (MS) of 93.57% on synthetic buggy code, outperforming all other approaches in our evaluation. Our findings suggest that although LLMs can serve as a useful tool to generate test cases, they require specific post-processing steps to enhance the effectiveness of the generated test cases which may suffer from syntactic or functional errors and may be ineffective in detecting certain types of bugs and testing corner cases PUTs.
Benchmarking Language Models for Code Syntax Understanding
Pre-trained language models have demonstrated impressive performance in both natural language processing and program understanding, which represent the input as a token sequence without explicitly modeling its structure. Some prior works show that pre-trained language models can capture the syntactic rules of natural languages without finetuning on syntax understanding tasks. However, there is limited understanding of how well pre-trained models understand the code structure so far. In this work, we perform the first thorough benchmarking of the state-of-the-art pre-trained models for identifying the syntactic structures of programs. Specifically, we introduce CodeSyntax, a large-scale dataset of programs annotated with the syntactic relationships in their corresponding abstract syntax trees. Our key observation is that existing language models pretrained on code still lack the understanding of code syntax. In fact, these pre-trained programming language models fail to match the performance of simple baselines based on positional offsets and keywords. We also present a natural language benchmark to highlight the differences between natural languages and programming languages in terms of syntactic structure understanding. Our findings point out key limitations of existing pre-training methods for programming languages, and suggest the importance of modeling code syntactic structures.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
DAG: Dictionary-Augmented Generation for Disambiguation of Sentences in Endangered Uralic Languages using ChatGPT
We showcase that ChatGPT can be used to disambiguate lemmas in two endangered languages ChatGPT is not proficient in, namely Erzya and Skolt Sami. We augment our prompt by providing dictionary translations of the candidate lemmas to a majority language - Finnish in our case. This dictionary augmented generation approach results in 50\% accuracy for Skolt Sami and 41\% accuracy for Erzya. On a closer inspection, many of the error types were of the kind even an untrained human annotator would make.
Evaluating the Impact of Source Code Parsers on ML4SE Models
As researchers and practitioners apply Machine Learning to increasingly more software engineering problems, the approaches they use become more sophisticated. A lot of modern approaches utilize internal code structure in the form of an abstract syntax tree (AST) or its extensions: path-based representation, complex graph combining AST with additional edges. Even though the process of extracting ASTs from code can be done with different parsers, the impact of choosing a parser on the final model quality remains unstudied. Moreover, researchers often omit the exact details of extracting particular code representations. In this work, we evaluate two models, namely Code2Seq and TreeLSTM, in the method name prediction task backed by eight different parsers for the Java language. To unify the process of data preparation with different parsers, we develop SuperParser, a multi-language parser-agnostic library based on PathMiner. SuperParser facilitates the end-to-end creation of datasets suitable for training and evaluation of ML models that work with structural information from source code. Our results demonstrate that trees built by different parsers vary in their structure and content. We then analyze how this diversity affects the models' quality and show that the quality gap between the most and least suitable parsers for both models turns out to be significant. Finally, we discuss other features of the parsers that researchers and practitioners should take into account when selecting a parser along with the impact on the models' quality. The code of SuperParser is publicly available at https://doi.org/10.5281/zenodo.6366591. We also publish Java-norm, the dataset we use to evaluate the models: https://doi.org/10.5281/zenodo.6366599.
Witness Generation for JSON Schema
JSON Schema is an important, evolving standard schema language for families of JSON documents. It is based on a complex combination of structural and Boolean assertions, and features negation and recursion. The static analysis of JSON Schema documents comprises practically relevant problems, including schema satisfiability, inclusion, and equivalence. These three problems can be reduced to witness generation: given a schema, generate an element of the schema, if it exists, and report failure otherwise. Schema satisfiability, inclusion, and equivalence have been shown to be decidable, by reduction to reachability in alternating tree automata. However, no witness generation algorithm has yet been formally described. We contribute a first, direct algorithm for JSON Schema witness generation. We study its effectiveness and efficiency, in experiments over several schema collections, including thousands of real-world schemas. Our focus is on the completeness of the language, where we only exclude the uniqueItems operator, and on the ability of the algorithm to run in a reasonable time on a large set of real-world examples, despite the exponential complexity of the underlying problem.
FLAG: Finding Line Anomalies (in code) with Generative AI
Code contains security and functional bugs. The process of identifying and localizing them is difficult and relies on human labor. In this work, we present a novel approach (FLAG) to assist human debuggers. FLAG is based on the lexical capabilities of generative AI, specifically, Large Language Models (LLMs). Here, we input a code file then extract and regenerate each line within that file for self-comparison. By comparing the original code with an LLM-generated alternative, we can flag notable differences as anomalies for further inspection, with features such as distance from comments and LLM confidence also aiding this classification. This reduces the inspection search space for the designer. Unlike other automated approaches in this area, FLAG is language-agnostic, can work on incomplete (and even non-compiling) code and requires no creation of security properties, functional tests or definition of rules. In this work, we explore the features that help LLMs in this classification and evaluate the performance of FLAG on known bugs. We use 121 benchmarks across C, Python and Verilog; with each benchmark containing a known security or functional weakness. We conduct the experiments using two state of the art LLMs in OpenAI's code-davinci-002 and gpt-3.5-turbo, but our approach may be used by other models. FLAG can identify 101 of the defects and helps reduce the search space to 12-17% of source code.
Bugs in Large Language Models Generated Code: An Empirical Study
Large Language Models (LLMs) for code have gained significant attention recently. They can generate code in different programming languages based on provided prompts, fulfilling a long-lasting dream in Software Engineering (SE), i.e., automatic code generation. Similar to human-written code, LLM-generated code is prone to bugs, and these bugs have not yet been thoroughly examined by the community. Given the increasing adoption of LLM-based code generation tools (e.g., GitHub Copilot) in SE activities, it is critical to understand the characteristics of bugs contained in code generated by LLMs. This paper examines a sample of 333 bugs collected from code generated using three leading LLMs (i.e., CodeGen, PanGu-Coder, and Codex) and identifies the following 10 distinctive bug patterns: Misinterpretations, Syntax Error, Silly Mistake, Prompt-biased code, Missing Corner Case, Wrong Input Type, Hallucinated Object, Wrong Attribute, Incomplete Generation, and Non-Prompted Consideration. The bug patterns are presented in the form of a taxonomy. The identified bug patterns are validated using an online survey with 34 LLM practitioners and researchers. The surveyed participants generally asserted the significance and prevalence of the bug patterns. Researchers and practitioners can leverage these findings to develop effective quality assurance techniques for LLM-generated code. This study sheds light on the distinctive characteristics of LLM-generated code.
Neural Code Search Evaluation Dataset
There has been an increase of interest in code search using natural language. Assessing the performance of such code search models can be difficult without a readily available evaluation suite. In this paper, we present an evaluation dataset consisting of natural language query and code snippet pairs, with the hope that future work in this area can use this dataset as a common benchmark. We also provide the results of two code search models ([1] and [6]) from recent work. The evaluation dataset is available at https://github.com/facebookresearch/Neural-Code-Search-Evaluation-Dataset
AutoCodeRover: Autonomous Program Improvement
Researchers have made significant progress in automating the software development process in the past decades. Recent progress in Large Language Models (LLMs) has significantly impacted the development process, where developers can use LLM-based programming assistants to achieve automated coding. Nevertheless, software engineering involves the process of program improvement apart from coding, specifically to enable software maintenance (e.g. bug fixing) and software evolution (e.g. feature additions). In this paper, we propose an automated approach for solving GitHub issues to autonomously achieve program improvement. In our approach called AutoCodeRover, LLMs are combined with sophisticated code search capabilities, ultimately leading to a program modification or patch. In contrast to recent LLM agent approaches from AI researchers and practitioners, our outlook is more software engineering oriented. We work on a program representation (abstract syntax tree) as opposed to viewing a software project as a mere collection of files. Our code search exploits the program structure in the form of classes/methods to enhance LLM's understanding of the issue's root cause, and effectively retrieve a context via iterative search. The use of spectrum-based fault localization using tests, further sharpens the context, as long as a test-suite is available. Experiments on SWE-bench-lite (300 real-life GitHub issues) show increased efficacy in solving GitHub issues (19% on SWE-bench-lite), which is higher than the efficacy of the recently reported SWE-agent. In addition, AutoCodeRover achieved this efficacy with significantly lower cost (on average, $0.43 USD), compared to other baselines. We posit that our workflow enables autonomous software engineering, where, in future, auto-generated code from LLMs can be autonomously improved.
Type Prediction With Program Decomposition and Fill-in-the-Type Training
TypeScript and Python are two programming languages that support optional type annotations, which are useful but tedious to introduce and maintain. This has motivated automated type prediction: given an untyped program, produce a well-typed output program. Large language models (LLMs) are promising for type prediction, but there are challenges: fill-in-the-middle performs poorly, programs may not fit into the context window, generated types may not type check, and it is difficult to measure how well-typed the output program is. We address these challenges by building OpenTau, a search-based approach for type prediction that leverages large language models. We propose a new metric for type prediction quality, give a tree-based program decomposition that searches a space of generated types, and present fill-in-the-type fine-tuning for LLMs. We evaluate our work with a new dataset for TypeScript type prediction, and show that 47.4% of files type check (14.5% absolute improvement) with an overall rate of 3.3 type errors per file. All code, data, and models are available at: https://github.com/GammaTauAI/opentau.
Assessing the Quality and Security of AI-Generated Code: A Quantitative Analysis
This study presents a quantitative evaluation of the code quality and security of five prominent Large Language Models (LLMs): Claude Sonnet 4, Claude 3.7 Sonnet, GPT-4o, Llama 3.2 90B, and OpenCoder 8B. While prior research has assessed the functional performance of LLM-generated code, this research tested LLM output from 4,442 Java coding assignments through comprehensive static analysis using SonarQube. The findings suggest that although LLMs can generate functional code, they also introduce a range of software defects, including bugs, security vulnerabilities, and code smells. These defects do not appear to be isolated; rather, they may represent shared weaknesses stemming from systemic limitations within current LLM code generation methods. In particular, critically severe issues, such as hard-coded passwords and path traversal vulnerabilities, were observed across multiple models. These results indicate that LLM-generated code requires verification in order to be considered production-ready. This study found no direct correlation between a model's functional performance (measured by Pass@1 rate of unit tests) and the overall quality and security of its generated code, measured by the number of SonarQube issues in benchmark solutions that passed the functional tests. This suggests that functional benchmark performance score is not a good indicator of overall code quality and security. The goal of this study is not to rank LLM performance but to highlight that all evaluated models appear to share certain weaknesses. Consequently, these findings support the view that static analysis can be a valuable instrument for detecting latent defects and an important safeguard for organizations that deploy AI in software development.
Experimenting a New Programming Practice with LLMs
The recent development on large language models makes automatically constructing small programs possible. It thus has the potential to free software engineers from low-level coding and allow us to focus on the perhaps more interesting parts of software development, such as requirement engineering and system testing. In this project, we develop a prototype named AISD (AI-aided Software Development), which is capable of taking high-level (potentially vague) user requirements as inputs, generates detailed use cases, prototype system designs, and subsequently system implementation. Different from existing attempts, AISD is designed to keep the user in the loop, i.e., by repeatedly taking user feedback on use cases, high-level system designs, and prototype implementations through system testing. AISD has been evaluated with a novel benchmark of non-trivial software projects. The experimental results suggest that it might be possible to imagine a future where software engineering is reduced to requirement engineering and system testing only.
STACC: Code Comment Classification using SentenceTransformers
Code comments are a key resource for information about software artefacts. Depending on the use case, only some types of comments are useful. Thus, automatic approaches to classify these comments have been proposed. In this work, we address this need by proposing, STACC, a set of SentenceTransformers-based binary classifiers. These lightweight classifiers are trained and tested on the NLBSE Code Comment Classification tool competition dataset, and surpass the baseline by a significant margin, achieving an average F1 score of 0.74 against the baseline of 0.31, which is an improvement of 139%. A replication package, as well as the models themselves, are publicly available.
Tracr: Compiled Transformers as a Laboratory for Interpretability
We show how to "compile" human-readable programs into standard decoder-only transformer models. Our compiler, Tracr, generates models with known structure. This structure can be used to design experiments. For example, we use it to study "superposition" in transformers that execute multi-step algorithms. Additionally, the known structure of Tracr-compiled models can serve as ground-truth for evaluating interpretability methods. Commonly, because the "programs" learned by transformers are unknown it is unclear whether an interpretation succeeded. We demonstrate our approach by implementing and examining programs including computing token frequencies, sorting, and parenthesis checking. We provide an open-source implementation of Tracr at https://github.com/google-deepmind/tracr.
A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification
In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.
Compiling C to Safe Rust, Formalized
The popularity of the Rust language continues to explode; yet, many critical codebases remain authored in C, and cannot be realistically rewritten by hand. Automatically translating C to Rust is thus an appealing course of action. Several works have gone down this path, handling an ever-increasing subset of C through a variety of Rust features, such as unsafe. While the prospect of automation is appealing, producing code that relies on unsafe negates the memory safety guarantees offered by Rust, and therefore the main advantages of porting existing codebases to memory-safe languages. We instead explore a different path, and explore what it would take to translate C to safe Rust; that is, to produce code that is trivially memory safe, because it abides by Rust's type system without caveats. Our work sports several original contributions: a type-directed translation from (a subset of) C to safe Rust; a novel static analysis based on "split trees" that allows expressing C's pointer arithmetic using Rust's slices and splitting operations; an analysis that infers exactly which borrows need to be mutable; and a compilation strategy for C's struct types that is compatible with Rust's distinction between non-owned and owned allocations. We apply our methodology to existing formally verified C codebases: the HACL* cryptographic library, and binary parsers and serializers from EverParse, and show that the subset of C we support is sufficient to translate both applications to safe Rust. Our evaluation shows that for the few places that do violate Rust's aliasing discipline, automated, surgical rewrites suffice; and that the few strategic copies we insert have a negligible performance impact. Of particular note, the application of our approach to HACL* results in a 80,000 line verified cryptographic library, written in pure Rust, that implements all modern algorithms - the first of its kind.
Efficient Algorithms for Recognizing Weighted Tree-Adjoining Languages
The class of tree-adjoining languages can be characterized by various two-level formalisms, consisting of a context-free grammar (CFG) or pushdown automaton (PDA) controlling another CFG or PDA. These four formalisms are equivalent to tree-adjoining grammars (TAG), linear indexed grammars (LIG), pushdown-adjoining automata (PAA), and embedded pushdown automata (EPDA). We define semiring-weighted versions of the above two-level formalisms, and we design new algorithms for computing their stringsums (the weight of all derivations of a string) and allsums (the weight of all derivations). From these, we also immediately obtain stringsum and allsum algorithms for TAG, LIG, PAA, and EPDA. For LIG, our algorithm is more time-efficient by a factor of O(n|N|) (where n is the string length and |N| is the size of the nonterminal set) and more space-efficient by a factor of O(|Gamma|) (where |Gamma| is the size of the stack alphabet) than the algorithm of Vijay-Shanker and Weir (1989). For EPDA, our algorithm is both more space-efficient and time-efficient than the algorithm of Alonso et al. (2001) by factors of O(|Gamma|^2) and O(|Gamma|^3), respectively. Finally, we give the first PAA stringsum and allsum algorithms.
AGB-DE: A Corpus for the Automated Legal Assessment of Clauses in German Consumer Contracts
Legal tasks and datasets are often used as benchmarks for the capabilities of language models. However, openly available annotated datasets are rare. In this paper, we introduce AGB-DE, a corpus of 3,764 clauses from German consumer contracts that have been annotated and legally assessed by legal experts. Together with the data, we present a first baseline for the task of detecting potentially void clauses, comparing the performance of an SVM baseline with three fine-tuned open language models and the performance of GPT-3.5. Our results show the challenging nature of the task, with no approach exceeding an F1-score of 0.54. While the fine-tuned models often performed better with regard to precision, GPT-3.5 outperformed the other approaches with regard to recall. An analysis of the errors indicates that one of the main challenges could be the correct interpretation of complex clauses, rather than the decision boundaries of what is permissible and what is not.
Enabling Memory Safety of C Programs using LLMs
Memory safety violations in low-level code, written in languages like C, continues to remain one of the major sources of software vulnerabilities. One method of removing such violations by construction is to port C code to a safe C dialect. Such dialects rely on programmer-supplied annotations to guarantee safety with minimal runtime overhead. This porting, however, is a manual process that imposes significant burden on the programmer and, hence, there has been limited adoption of this technique. The task of porting not only requires inferring annotations, but may also need refactoring/rewriting of the code to make it amenable to such annotations. In this paper, we use Large Language Models (LLMs) towards addressing both these concerns. We show how to harness LLM capabilities to do complex code reasoning as well as rewriting of large codebases. We also present a novel framework for whole-program transformations that leverages lightweight static analysis to break the transformation into smaller steps that can be carried out effectively by an LLM. We implement our ideas in a tool called MSA that targets the CheckedC dialect. We evaluate MSA on several micro-benchmarks, as well as real-world code ranging up to 20K lines of code. We showcase superior performance compared to a vanilla LLM baseline, as well as demonstrate improvement over a state-of-the-art symbolic (non-LLM) technique.
SynCode: LLM Generation with Grammar Augmentation
LLMs are widely used in complex AI applications. These applications underscore the need for LLM outputs to adhere to a specific format, for their integration with other components in the systems. Typically the format rules e.g., for data serialization formats such as JSON, YAML, or Code in Programming Language are expressed as context-free grammar (CFG). Due to the hallucinations and unreliability of LLMs, instructing LLMs to adhere to specified syntax becomes an increasingly important challenge. We present SynCode, a novel framework for efficient and general syntactical decoding with LLMs, to address this challenge. SynCode leverages the CFG of a formal language, utilizing an offline-constructed efficient lookup table called DFA mask store based on the discrete finite automaton (DFA) of the language grammar terminals. We demonstrate SynCode's soundness and completeness given the CFG of the formal language, presenting its ability to retain syntactically valid tokens while rejecting invalid ones. SynCode seamlessly integrates with any language defined by CFG, as evidenced by experiments focusing on generating JSON, Python, and Go outputs. Our experiments evaluating the effectiveness of SynCode for JSON generation demonstrate that SynCode eliminates all syntax errors and significantly outperforms state-of-the-art baselines. Furthermore, our results underscore how SynCode significantly reduces 96.07% of syntax errors in generated Python and Go code, showcasing its substantial impact on enhancing syntactical precision in LLM generation. Our code is available at https://github.com/uiuc-focal-lab/syncode
Syntax-Aware On-the-Fly Code Completion
Code completion aims to help improve developers' productivity by suggesting the next code tokens from a given context. Various approaches have been proposed to incorporate abstract syntax tree (AST) information for model training, ensuring that code completion is aware of the syntax of the programming languages. However, existing syntax-aware code completion approaches are not on-the-fly, as we found that for every two-thirds of characters that developers type, AST fails to be extracted because it requires the syntactically correct source code, limiting its practicality in real-world scenarios. On the other hand, existing on-the-fly code completion does not consider syntactic information yet. In this paper, we propose PyCoder to leverage token types, a kind of lightweight syntactic information, which is readily available and aligns with the natural order of source code. Our PyCoder is trained in a multi-task training manner so that by learning the supporting task of predicting token types during the training phase, the models achieve better performance on predicting tokens and lines of code without the need for token types in the inference phase. Comprehensive experiments show that PyCoder achieves the first rank on the CodeXGLUE leaderboard with an accuracy of 77.12% for the token-level predictions, which is 0.43%-24.25% more accurate than baselines. In addition, PyCoder achieves an exact match of 43.37% for the line-level predictions, which is 3.63%-84.73% more accurate than baselines. These results lead us to conclude that token type information (an alternative to syntactic information) that is rarely used in the past can greatly improve the performance of code completion approaches, without requiring the syntactically correct source code like AST-based approaches do. Our PyCoder is publicly available on HuggingFace.
StackEval: Benchmarking LLMs in Coding Assistance
We present two comprehensive benchmarks to evaluate the performance of language models in coding assistance tasks, covering code writing, debugging, code review, and conceptual understanding. Our main contribution includes two curated datasets: StackEval, a large-scale benchmark derived from Stack Overflow questions, and StackUnseen, a dynamic benchmark featuring the most recent Stack Overflow content. These benchmarks offer novel insights into the capabilities and limitations of LLMs, particularly in handling new and emerging content. Additionally, we assess LLMs' proficiency as judges for coding tasks using a curated, human-annotated dataset, exploring their evaluation capabilities and potential biases, including whether they favor their own generated solutions. Our findings underscore the potential of these benchmarks to advance LLM development and application in coding assistance. To ensure reproducibility, we publicly share our datasets and evaluation code at https://github.com/ProsusAI/stack-eval .
Coffee: Boost Your Code LLMs by Fixing Bugs with Feedback
Code editing is an essential step towards reliable program synthesis to automatically correct critical errors generated from code LLMs. Recent studies have demonstrated that closed-source LLMs (i.e., ChatGPT and GPT-4) are capable of generating corrective feedback to edit erroneous inputs. However, it remains challenging for open-source code LLMs to generate feedback for code editing, since these models tend to adhere to the superficial formats of feedback and provide feedback with misleading information. Hence, the focus of our work is to leverage open-source code LLMs to generate helpful feedback with correct guidance for code editing. To this end, we present Coffee, a collected dataset specifically designed for code fixing with feedback. Using this dataset, we construct CoffeePots, a framework for COde Fixing with FEEdback via Preference-Optimized Tuning and Selection. The proposed framework aims to automatically generate helpful feedback for code editing while minimizing the potential risk of superficial feedback. The combination of Coffee and CoffeePots marks a significant advancement, achieving state-of-the-art performance on HumanEvalFix benchmark. Codes and model checkpoints are publicly available at https://github.com/Lune-Blue/COFFEE.
Leveraging LLMs for Legacy Code Modernization: Challenges and Opportunities for LLM-Generated Documentation
Legacy software systems, written in outdated languages like MUMPS and mainframe assembly, pose challenges in efficiency, maintenance, staffing, and security. While LLMs offer promise for modernizing these systems, their ability to understand legacy languages is largely unknown. This paper investigates the utilization of LLMs to generate documentation for legacy code using two datasets: an electronic health records (EHR) system in MUMPS and open-source applications in IBM mainframe Assembly Language Code (ALC). We propose a prompting strategy for generating line-wise code comments and a rubric to evaluate their completeness, readability, usefulness, and hallucination. Our study assesses the correlation between human evaluations and automated metrics, such as code complexity and reference-based metrics. We find that LLM-generated comments for MUMPS and ALC are generally hallucination-free, complete, readable, and useful compared to ground-truth comments, though ALC poses challenges. However, no automated metrics strongly correlate with comment quality to predict or measure LLM performance. Our findings highlight the limitations of current automated measures and the need for better evaluation metrics for LLM-generated documentation in legacy systems.
Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Warning: This paper contains examples of harmful language, and reader discretion is recommended. The increasing open release of powerful large language models (LLMs) has facilitated the development of downstream applications by reducing the essential cost of data annotation and computation. To ensure AI safety, extensive safety-alignment measures have been conducted to armor these models against malicious use (primarily hard prompt attack). However, beneath the seemingly resilient facade of the armor, there might lurk a shadow. By simply tuning on 100 malicious examples with 1 GPU hour, these safely aligned LLMs can be easily subverted to generate harmful content. Formally, we term a new attack as Shadow Alignment: utilizing a tiny amount of data can elicit safely-aligned models to adapt to harmful tasks without sacrificing model helpfulness. Remarkably, the subverted models retain their capability to respond appropriately to regular inquiries. Experiments across 8 models released by 5 different organizations (LLaMa-2, Falcon, InternLM, BaiChuan2, Vicuna) demonstrate the effectiveness of shadow alignment attack. Besides, the single-turn English-only attack successfully transfers to multi-turn dialogue and other languages. This study serves as a clarion call for a collective effort to overhaul and fortify the safety of open-source LLMs against malicious attackers.
CodeReviewQA: The Code Review Comprehension Assessment for Large Language Models
State-of-the-art large language models (LLMs) have demonstrated impressive code generation capabilities but struggle with real-world software engineering tasks, such as revising source code to address code reviews, hindering their practical use. Code review comments are often implicit, ambiguous, and colloquial, requiring models to grasp both code and human intent. This challenge calls for evaluating large language models' ability to bridge both technical and conversational contexts. While existing work has employed the automated code refinement (ACR) task to resolve these comments, current evaluation methods fall short, relying on text matching metrics that provide limited insight into model failures and remain susceptible to training data contamination. To address these limitations, we introduce a novel evaluation benchmark, CodeReviewQA that enables us to conduct fine-grained assessment of model capabilities and mitigate data contamination risks. In CodeReviewQA, we decompose the generation task of code refinement into three essential reasoning steps: change type recognition (CTR), change localisation (CL), and solution identification (SI). Each step is reformulated as multiple-choice questions with varied difficulty levels, enabling precise assessment of model capabilities, while mitigating data contamination risks. Our comprehensive evaluation spans 72 recently released large language models on 900 manually curated, high-quality examples across nine programming languages. Our results show that CodeReviewQA is able to expose specific model weaknesses in code review comprehension, disentangled from their generative automated code refinement results.
On Evaluating the Efficiency of Source Code Generated by LLMs
Recent years have seen the remarkable capabilities of large language models (LLMs) for code generation. Different from existing work that evaluate the correctness of the code generated by LLMs, we propose to further evaluate its efficiency. More efficient code can lead to higher performance and execution efficiency of programs and software completed by LLM-assisted programming. First, we evaluate the efficiency of the code generated by LLMs on two benchmarks, HumanEval and MBPP. Then, we choose a set of programming problems from the online judge platform LeetCode to conduct a more difficult evaluation. Finally, we explore several prompts that would enable LLMs to generate more efficient code.
Proving the Coding Interview: A Benchmark for Formally Verified Code Generation
We introduce the Formally Verified Automated Programming Progress Standards, or FVAPPS, a benchmark of 4715 samples for writing programs and proving their correctness, the largest formal verification benchmark, including 1083 curated and quality controlled samples. Previously, APPS provided a benchmark and dataset for programming puzzles to be completed in Python and checked against unit tests, of the kind seen in technical assessments in the software engineering industry. Building upon recent approaches for benchmarks in interactive theorem proving, we generalize the unit tests to Lean 4 theorems given without proof (i.e., using Lean's "sorry" keyword). On the 406 theorems of 100 randomly selected samples, Sonnet correctly proves 30% and Gemini correctly proves 18%. We challenge the machine learning and program synthesis communities to solve both each general purpose programming problem and its associated correctness specifications. The benchmark is available at https://huggingface.co/datasets/quinn-dougherty/fvapps.
Open Subtitles Paraphrase Corpus for Six Languages
This paper accompanies the release of Opusparcus, a new paraphrase corpus for six European languages: German, English, Finnish, French, Russian, and Swedish. The corpus consists of paraphrases, that is, pairs of sentences in the same language that mean approximately the same thing. The paraphrases are extracted from the OpenSubtitles2016 corpus, which contains subtitles from movies and TV shows. The informal and colloquial genre that occurs in subtitles makes such data a very interesting language resource, for instance, from the perspective of computer assisted language learning. For each target language, the Opusparcus data have been partitioned into three types of data sets: training, development and test sets. The training sets are large, consisting of millions of sentence pairs, and have been compiled automatically, with the help of probabilistic ranking functions. The development and test sets consist of sentence pairs that have been checked manually; each set contains approximately 1000 sentence pairs that have been verified to be acceptable paraphrases by two annotators.
On Leakage of Code Generation Evaluation Datasets
In this paper we consider contamination by code generation test sets, in particular in their use in modern large language models. We discuss three possible sources of such contamination and show findings supporting each of them: (i) direct data leakage, (ii) indirect data leakage through the use of synthetic data and (iii) overfitting to evaluation sets during model selection. Key to our findings is a new dataset of 161 prompts with their associated python solutions, dataset which is released at https://huggingface.co/datasets/CohereForAI/lbpp .
AlphaVerus: Bootstrapping Formally Verified Code Generation through Self-Improving Translation and Treefinement
Automated code generation with large language models has gained significant traction, but there remains no guarantee on the correctness of generated code. We aim to use formal verification to provide mathematical guarantees that the generated code is correct. However, generating formally verified code with LLMs is hindered by the scarcity of training data and the complexity of formal proofs. To tackle this challenge, we introduce AlphaVerus, a self-improving framework that bootstraps formally verified code generation by iteratively translating programs from a higher-resource language and leveraging feedback from a verifier. AlphaVerus operates in three phases: exploration of candidate translations, Treefinement -- a novel tree search algorithm for program refinement using verifier feedback, and filtering misaligned specifications and programs to prevent reward hacking. Through this iterative process, AlphaVerus enables a LLaMA-3.1-70B model to generate verified code without human intervention or model finetuning. AlphaVerus shows an ability to generate formally verified solutions for HumanEval and MBPP, laying the groundwork for truly trustworthy code-generation agents.
OpenFactCheck: A Unified Framework for Factuality Evaluation of LLMs
The increased use of large language models (LLMs) across a variety of real-world applications calls for automatic tools to check the factual accuracy of their outputs, as LLMs often hallucinate. This is difficult as it requires assessing the factuality of free-form open-domain responses. While there has been a lot of research on this topic, different papers use different evaluation benchmarks and measures, which makes them hard to compare and hampers future progress. To mitigate these issues, we developed OpenFactCheck, a unified framework, with three modules: (i) RESPONSEEVAL, which allows users to easily customize an automatic fact-checking system and to assess the factuality of all claims in an input document using that system, (ii) LLMEVAL, which assesses the overall factuality of an LLM, and (iii) CHECKEREVAL, a module to evaluate automatic fact-checking systems. OpenFactCheck is open-sourced (https://github.com/hasaniqbal777/openfactcheck) and publicly released as a Python library (https://pypi.org/project/openfactcheck/) and also as a web service (https://huggingface.co/spaces/hasaniqbal777/OpenFactCheck). A video describing the system is available at https://youtu.be/-i9VKL0HleI.
How Should I Build A Benchmark? Revisiting Code-Related Benchmarks For LLMs
Various benchmarks have been proposed to assess the performance of large language models (LLMs) in different coding scenarios. We refer to them as code-related benchmarks. However, there are no systematic guidelines by which such a benchmark should be developed to ensure its quality, reliability, and reproducibility. We propose How2Bench, which is comprised of a 55- 55-criteria checklist as a set of guidelines to govern the development of code-related benchmarks comprehensively. Using HOW2BENCH, we profiled 274 benchmarks released within the past decade and found concerning issues. Nearly 70% of the benchmarks did not take measures for data quality assurance; over 10% did not even open source or only partially open source. Many highly cited benchmarks have loopholes, including duplicated samples, incorrect reference codes/tests/prompts, and unremoved sensitive/confidential information. Finally, we conducted a human study involving 49 participants, which revealed significant gaps in awareness of the importance of data quality, reproducibility, and transparency.
Can Large Language Models Find And Fix Vulnerable Software?
In this study, we evaluated the capability of Large Language Models (LLMs), particularly OpenAI's GPT-4, in detecting software vulnerabilities, comparing their performance against traditional static code analyzers like Snyk and Fortify. Our analysis covered numerous repositories, including those from NASA and the Department of Defense. GPT-4 identified approximately four times the vulnerabilities than its counterparts. Furthermore, it provided viable fixes for each vulnerability, demonstrating a low rate of false positives. Our tests encompassed 129 code samples across eight programming languages, revealing the highest vulnerabilities in PHP and JavaScript. GPT-4's code corrections led to a 90% reduction in vulnerabilities, requiring only an 11% increase in code lines. A critical insight was LLMs' ability to self-audit, suggesting fixes for their identified vulnerabilities and underscoring their precision. Future research should explore system-level vulnerabilities and integrate multiple static code analyzers for a holistic perspective on LLMs' potential.
Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code Contributions
There is burgeoning interest in designing AI-based systems to assist humans in designing computing systems, including tools that automatically generate computer code. The most notable of these comes in the form of the first self-described `AI pair programmer', GitHub Copilot, a language model trained over open-source GitHub code. However, code often contains bugs - and so, given the vast quantity of unvetted code that Copilot has processed, it is certain that the language model will have learned from exploitable, buggy code. This raises concerns on the security of Copilot's code contributions. In this work, we systematically investigate the prevalence and conditions that can cause GitHub Copilot to recommend insecure code. To perform this analysis we prompt Copilot to generate code in scenarios relevant to high-risk CWEs (e.g. those from MITRE's "Top 25" list). We explore Copilot's performance on three distinct code generation axes -- examining how it performs given diversity of weaknesses, diversity of prompts, and diversity of domains. In total, we produce 89 different scenarios for Copilot to complete, producing 1,689 programs. Of these, we found approximately 40% to be vulnerable.
TransEvalnia: Reasoning-based Evaluation and Ranking of Translations
We present TransEvalnia, a prompting-based translation evaluation and ranking system that uses reasoning in performing its evaluations and ranking. This system presents fine-grained evaluations based on a subset of the Multidimensional Quality Metrics (https://themqm.org/), returns an assessment of which translation it deems the best, and provides numerical scores for the various dimensions and for the overall translation. We show that TransEvalnia performs as well as or better than the state-of-the-art MT-Ranker (Moosa et al. 2024) on our own English-Japanese data as well as several language pairs from various WMT shared tasks. Using Anthropic's Claude-3.5-Sonnet and Qwen-2.5-72B-Instruct as the evaluation LLMs, we show that the evaluations returned are deemed highly acceptable to human raters, and that the scores assigned to the translations by Sonnet, as well as other LLMs, correlate well with scores assigned by the human raters. We also note the sensitivity of our system -- as well as MT-Ranker -- to the order in which the translations are presented, and we propose methods to address this position bias. All data, including the system's evaluation and reasoning, human assessments, as well as code is released.
ROS Based Visual Programming Tool for Mobile Robot Education and Applications
Visual programming languages (VPLs) provide coding without typing texts. VPL makes coding easy to programmers with automatically adding usually used some code structure. Beginners in coding have generally two main challenges; transforming ideas into logical expressions and syntax errors. Syntax errors are impossible with VPLs because of there is no forgotten parentheses and semicolons. VPLs provide to focus on algorithm for programmers. VPL is a new trend for educational robotic environments. In this study, Robot Operating System (ROS) compatible web based visual programming system has been developed for evarobot. ROS provides libraries and tools to help software developers create robot applications. It provides hardware abstraction, device drivers, libraries, visualizers, message-passing, package management, and more. Blockly has been used as VPL for the study and to generate / use blocks (commucation, sensing etc.). Some applications were generated like teleoperation, SLAM and wander etc. In this system, communication between server and client is supported by rosbridge package. Web page connected to ROS which runs on server using roslibjs library. Rosbridge provides a JSON API to ROS functionality for non-ROS programs.
Small Edits, Big Consequences: Telling Good from Bad Robustness in Large Language Models
Large language models (LLMs) now write code in settings where misreading a single word can break safety or cost money, yet we still expect them to overlook stray typos. To probe where useful robustness ends and harmful insensitivity begins, we compile 50 LeetCode problems and craft three minimal prompt perturbations that should vary in importance: (i) progressive underspecification deleting 10 % of words per step; (ii) lexical flip swapping a pivotal quantifier ("max" to "min"); and (iii) jargon inflation replacing a common noun with an obscure technical synonym. Six frontier models, including three "reasoning-tuned" versions, solve each mutated prompt, and their Python outputs are checked against the original test suites to reveal whether they reused the baseline solution or adapted. Among 11 853 generations we observe a sharp double asymmetry. Models remain correct in 85 % of cases even after 90 % of the prompt is missing, showing over-robustness to underspecification, yet only 54 % react to a single quantifier flip that reverses the task, with reasoning-tuned variants even less sensitive than their bases. Jargon edits lie in between, passing through 56 %. Current LLMs thus blur the line between harmless noise and meaning - changing edits, often treating both as ignorable. Masking salient anchors such as function names can force re - evaluation. We advocate evaluation and training protocols that reward differential sensitivity: stay steady under benign noise but adapt - or refuse - when semantics truly change.
GlotScript: A Resource and Tool for Low Resource Writing System Identification
We present GlotScript, an open resource and tool for low resource writing system identification. GlotScript-R is a resource that provides the attested writing systems for more than 7,000 languages. It is compiled by aggregating information from existing writing system resources. GlotScript-T is a writing system identification tool that covers all 161 Unicode 15.0 scripts. For an input text, it returns its script distribution where scripts are identified by ISO 15924 codes. We also present two use cases for GlotScript. First, we demonstrate that GlotScript supports cleaning multilingual corpora such as mC4 and OSCAR. Second, we analyze the tokenization of a number of language models such as GPT-4 using GlotScript and provide insights on the coverage of low resource scripts and languages by each language model. We hope that GlotScript will become a useful resource for work on low resource languages in the NLP community. GlotScript-R and GlotScript-T are available at https://github.com/cisnlp/GlotScript.
Software Testing with Large Language Model: Survey, Landscape, and Vision
Pre-trained large language models (LLMs) have recently emerged as a breakthrough technology in natural language processing and artificial intelligence, with the ability to handle large-scale datasets and exhibit remarkable performance across a wide range of tasks. Meanwhile, software testing is a crucial undertaking that serves as a cornerstone for ensuring the quality and reliability of software products. As the scope and complexity of software systems continue to grow, the need for more effective software testing techniques becomes increasingly urgent, and making it an area ripe for innovative approaches such as the use of LLMs. This paper provides a comprehensive review of the utilization of LLMs in software testing. It analyzes 52 relevant studies that have used LLMs for software testing, from both the software testing and LLMs perspectives. The paper presents a detailed discussion of the software testing tasks for which LLMs are commonly used, among which test case preparation and program repair are the most representative ones. It also analyzes the commonly used LLMs, the types of prompt engineering that are employed, as well as the accompanied techniques with these LLMs. It also summarizes the key challenges and potential opportunities in this direction. This work can serve as a roadmap for future research in this area, highlighting potential avenues for exploration, and identifying gaps in our current understanding of the use of LLMs in software testing.
Lemur: Integrating Large Language Models in Automated Program Verification
The demonstrated code-understanding capability of LLMs raises the question of whether they can be used for automated program verification, a task that often demands high-level abstract reasoning about program properties, which is challenging for verification tools. We propose a general methodology to combine the power of LLMs and automated reasoners for automated program verification. We formally describe this methodology as a set of derivation rules and prove its soundness. We instantiate the calculus as a sound automated verification procedure, which led to practical improvements on a set of synthetic and competition benchmarks.
Efficient Guided Generation for Large Language Models
In this article we describe an efficient approach to guiding language model text generation with regular expressions and context-free grammars. Our approach adds little to no overhead to the token sequence generation process, and makes guided generation feasible in practice. An implementation is provided in the open source Python library Outlines.
I Need Help! Evaluating LLM's Ability to Ask for Users' Support: A Case Study on Text-to-SQL Generation
This study explores the proactive ability of LLMs to seek user support. We propose metrics to evaluate the trade-off between performance improvements and user burden, and investigate whether LLMs can determine when to request help under varying information availability. Our experiments show that without external feedback, many LLMs struggle to recognize their need for user support. The findings highlight the importance of external signals and provide insights for future research on improving support-seeking strategies. Source code: https://github.com/appier-research/i-need-help
Toward Formal Data Set Verification for Building Effective Machine Learning Models
In order to properly train a machine learning model, data must be properly collected. To guarantee a proper data collection, verifying that the collected data set holds certain properties is a possible solution. For example, guaranteeing that the data set contains samples across the whole input space, or that the data set is balanced w.r.t. different classes. We present a formal approach for verifying a set of arbitrarily stated properties over a data set. The proposed approach relies on the transformation of the data set into a first order logic formula, which can be later verified w.r.t. the different properties also stated in the same logic. A prototype tool, which uses the z3 solver, has been developed; the prototype can take as an input a set of properties stated in a formal language and formally verify a given data set w.r.t. to the given set of properties. Preliminary experimental results show the feasibility and performance of the proposed approach, and furthermore the flexibility for expressing properties of interest.
miniF2F-Lean Revisited: Reviewing Limitations and Charting a Path Forward
We perform a thorough analysis of the formal and informal statements in the miniF2F benchmark from the perspective of an AI system that is tasked to participate in a math Olympiad consisting of the problems in miniF2F. In such setting, the model has to read and comprehend the problems in natural language, formalize them in Lean language, then proceed with proving the problems, and it will get credit for each problem if the formal proof corresponds to the original informal statement presented to the model. Our evaluation results reveal that the best accuracy of such pipeline can be about 36% using the SoTA models in the literature, considerably lower than the individual SoTA accuracies, 97% and 69% reported in the autoformalization and theorem proving literature. Analyzing the failure modes, we trace back a considerable portion of this drop to discrepancies between the formal and informal statements for more than half of the problems in miniF2F. We proceed with correcting all the errors, discrepancies and simplifications in formal and informal statements, and present the miniF2F-v2 with fully verified formal and informal statements and proofs. Evaluating the full theorem proving pipeline on miniF2F-v2 leads to the best accuracy of 70%, a significant improvement from the 40% on the original miniF2F, yet indicating considerable misalignment between the autoformalization models and theorem provers. Our deep analysis suggests that a higher quality benchmark can help the community better evaluate progress in the field of formal reasoning and also better diagnose the failure and success modes of autoformalization and theorem proving models. Our dataset is available at https://github.com/roozbeh-yz/miniF2F_v2.
Exploring Language Model's Code Generation Ability with Auxiliary Functions
Auxiliary function is a helpful component to improve language model's code generation ability. However, a systematic exploration of how they affect has yet to be done. In this work, we comprehensively evaluate the ability to utilize auxiliary functions encoded in recent code-pretrained language models. First, we construct a human-crafted evaluation set, called HumanExtension, which contains examples of two functions where one function assists the other. With HumanExtension, we design several experiments to examine their ability in a multifaceted way. Our evaluation processes enable a comprehensive understanding of including auxiliary functions in the prompt in terms of effectiveness and robustness. An additional implementation style analysis captures the models' various implementation patterns when they access the auxiliary function. Through this analysis, we discover the models' promising ability to utilize auxiliary functions including their self-improving behavior by implementing the two functions step-by-step. However, our analysis also reveals the model's underutilized behavior to call the auxiliary function, suggesting the future direction to enhance their implementation by eliciting the auxiliary function call ability encoded in the models. We release our code and dataset to facilitate this research direction.
Position: The Pitfalls of Over-Alignment: Overly Caution Health-Related Responses From LLMs are Unethical and Dangerous
Large Language Models (LLMs) are usually aligned with "human values/preferences" to prevent harmful output. Discussions around the alignment of Large Language Models (LLMs) generally focus on preventing harmful outputs. However, in this paper, we argue that in health-related queries, over-alignment-leading to overly cautious responses-can itself be harmful, especially for people with anxiety and obsessive-compulsive disorder (OCD). This is not only unethical but also dangerous to the user, both mentally and physically. We also showed qualitative results that some LLMs exhibit varying degrees of alignment. Finally, we call for the development of LLMs with stronger reasoning capabilities that provide more tailored and nuanced responses to health queries. Warning: This paper contains materials that could trigger health anxiety or OCD.
PromptSet: A Programmer's Prompting Dataset
The rise of capabilities expressed by large language models has been quickly followed by the integration of the same complex systems into application level logic. Algorithms, programs, systems, and companies are built around structured prompting to black box models where the majority of the design and implementation lies in capturing and quantifying the `agent mode'. The standard way to shape a closed language model is to prime it for a specific task with a tailored prompt, often initially handwritten by a human. The textual prompts co-evolve with the codebase, taking shape over the course of project life as artifacts which must be reviewed and maintained, just as the traditional code files might be. Unlike traditional code, we find that prompts do not receive effective static testing and linting to prevent runtime issues. In this work, we present a novel dataset called PromptSet, with more than 61,000 unique developer prompts used in open source Python programs. We perform analysis on this dataset and introduce the notion of a static linter for prompts. Released with this publication is a HuggingFace dataset and a Github repository to recreate collection and processing efforts, both under the name pisterlabs/promptset.
CodeQA: A Question Answering Dataset for Source Code Comprehension
We propose CodeQA, a free-form question answering dataset for the purpose of source code comprehension: given a code snippet and a question, a textual answer is required to be generated. CodeQA contains a Java dataset with 119,778 question-answer pairs and a Python dataset with 70,085 question-answer pairs. To obtain natural and faithful questions and answers, we implement syntactic rules and semantic analysis to transform code comments into question-answer pairs. We present the construction process and conduct systematic analysis of our dataset. Experiment results achieved by several neural baselines on our dataset are shown and discussed. While research on question-answering and machine reading comprehension develops rapidly, few prior work has drawn attention to code question answering. This new dataset can serve as a useful research benchmark for source code comprehension.
