Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence
To address the increasing complexity and frequency of cybersecurity incidents emphasized by the recent cybersecurity threat reports with over 10 billion instances, cyber threat intelligence (CTI) plays a critical role in the modern cybersecurity landscape by offering the insights required to understand and combat the constantly evolving nature of cyber threats. Inspired by the powerful capability of large language models (LLMs) in handling complex tasks, in this paper, we introduce a framework to benchmark, elicit, and improve cybersecurity incident analysis and response abilities in LLMs for Security Events (SEvenLLM). Specifically, we create a high-quality bilingual instruction corpus by crawling cybersecurity raw text from cybersecurity websites to overcome the lack of effective data for information extraction. Then, we design a pipeline to auto-select tasks from the tasks pool and convert the raw text into supervised corpora comprised of question and response. The instruction dataset SEvenLLM-Instruct is used to train cybersecurity LLMs with the multi-task learning objective (27 well-designed tasks) for augmenting the analysis of cybersecurity events. Extensive experiments in our curated benchmark (SEvenLLM-bench) demonstrate that SEvenLLM performs more sophisticated threat analysis and fortifies defenses against the evolving landscape of cyber threats.
CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model
This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.
MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels
Malware family classification is a significant issue with public safety and research implications that has been hindered by the high cost of expert labels. The vast majority of corpora use noisy labeling approaches that obstruct definitive quantification of results and study of deeper interactions. In order to provide the data needed to advance further, we have created the Malware Open-source Threat Intelligence Family (MOTIF) dataset. MOTIF contains 3,095 malware samples from 454 families, making it the largest and most diverse public malware dataset with ground truth family labels to date, nearly 3x larger than any prior expert-labeled corpus and 36x larger than the prior Windows malware corpus. MOTIF also comes with a mapping from malware samples to threat reports published by reputable industry sources, which both validates the labels and opens new research opportunities in connecting opaque malware samples to human-readable descriptions. This enables important evaluations that are normally infeasible due to non-standardized reporting in industry. For example, we provide aliases of the different names used to describe the same malware family, allowing us to benchmark for the first time accuracy of existing tools when names are obtained from differing sources. Evaluation results obtained using the MOTIF dataset indicate that existing tasks have significant room for improvement, with accuracy of antivirus majority voting measured at only 62.10% and the well-known AVClass tool having just 46.78% accuracy. Our findings indicate that malware family classification suffers a type of labeling noise unlike that studied in most ML literature, due to the large open set of classes that may not be known from the sample under consideration
SecureBERT 2.0: Advanced Language Model for Cybersecurity Intelligence
Effective analysis of cybersecurity and threat intelligence data demands language models that can interpret specialized terminology, complex document structures, and the interdependence of natural language and source code. Encoder-only transformer architectures provide efficient and robust representations that support critical tasks such as semantic search, technical entity extraction, and semantic analysis, which are key to automated threat detection, incident triage, and vulnerability assessment. However, general-purpose language models often lack the domain-specific adaptation required for high precision. We present SecureBERT 2.0, an enhanced encoder-only language model purpose-built for cybersecurity applications. Leveraging the ModernBERT architecture, SecureBERT 2.0 introduces improved long-context modeling and hierarchical encoding, enabling effective processing of extended and heterogeneous documents, including threat reports and source code artifacts. Pretrained on a domain-specific corpus more than thirteen times larger than its predecessor, comprising over 13 billion text tokens and 53 million code tokens from diverse real-world sources, SecureBERT 2.0 achieves state-of-the-art performance on multiple cybersecurity benchmarks. Experimental results demonstrate substantial improvements in semantic search for threat intelligence, semantic analysis, cybersecurity-specific named entity recognition, and automated vulnerability detection in code within the cybersecurity domain.
Enhancing Domain-Specific Retrieval-Augmented Generation: Synthetic Data Generation and Evaluation using Reasoning Models
Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluation metrics with synthetic data generation to optimize domain-specific RAG performance. First, we introduce token-aware metrics Precision Omega and Intersection-over-Union (IoU) that quantify context preservation versus information density trade-offs inherent in technical texts. Second, we develop a reasoning model-driven pipeline using instruction-tuned LLMs (DeepSeek-R1, DeepSeek-R1 distilled variants, and Phi-4) to generate context-anchored QA pairs with discontinuous reference spans across three specialized corpora: SEC 10-K filings (finance), biomedical abstracts (PubMed), and APT threat reports (cybersecurity). Our empirical analysis reveals critical insights: smaller chunks (less than 10 tokens) improve precision by 31-42% (IoU = 0.071 vs. baseline 0.053) at recall costs (-18%), while domain-specific embedding strategies yield 22% variance in optimal chunk sizing (5-20 tokens). The DeepSeek-R1-Distill-Qwen-32B model demonstrates superior concept alignment (+14% mean IoU over alternatives), though no configuration universally dominates. Financial texts favor larger chunks for risk factor coverage (Recall = 0.81 at size = 20), whereas cybersecurity content benefits from atomic segmentation, Precision Omega = 0.28 at size = 5. Our code is available on https://github.com/aryan-jadon/Synthetic-Data-Generation-and-Evaluation-using-Reasoning-Model
From Text to Actionable Intelligence: Automating STIX Entity and Relationship Extraction
Sharing methods of attack and their effectiveness is a cornerstone of building robust defensive systems. Threat analysis reports, produced by various individuals and organizations, play a critical role in supporting security operations and combating emerging threats. To enhance the timeliness and automation of threat intelligence sharing, several standards have been established, with the Structured Threat Information Expression (STIX) framework emerging as one of the most widely adopted. However, generating STIX-compatible data from unstructured security text remains a largely manual, expert-driven process. To address this challenge, we introduce AZERG, a tool designed to assist security analysts in automatically generating structured STIX representations. To achieve this, we adapt general-purpose large language models for the specific task of extracting STIX-formatted threat data. To manage the complexity, the task is divided into four subtasks: entity detection (T1), entity type identification (T2), related pair detection (T3), and relationship type identification (T4). We apply task-specific fine-tuning to accurately extract relevant entities and infer their relationships in accordance with the STIX specification. To address the lack of training data, we compiled a comprehensive dataset with 4,011 entities and 2,075 relationships extracted from 141 full threat analysis reports, all annotated in alignment with the STIX standard. Our models achieved F1-scores of 84.43% for T1, 88.49% for T2, 95.47% for T3, and 84.60% for T4 in real-world scenarios. We validated their performance against a range of open- and closed-parameter models, as well as state-of-the-art methods, demonstrating improvements of 2-25% across tasks.
AttackSeqBench: Benchmarking Large Language Models' Understanding of Sequential Patterns in Cyber Attacks
The observations documented in Cyber Threat Intelligence (CTI) reports play a critical role in describing adversarial behaviors, providing valuable insights for security practitioners to respond to evolving threats. Recent advancements of Large Language Models (LLMs) have demonstrated significant potential in various cybersecurity applications, including CTI report understanding and attack knowledge graph construction. While previous works have proposed benchmarks that focus on the CTI extraction ability of LLMs, the sequential characteristic of adversarial behaviors within CTI reports remains largely unexplored, which holds considerable significance in developing a comprehensive understanding of how adversaries operate. To address this gap, we introduce AttackSeqBench, a benchmark tailored to systematically evaluate LLMs' capability to understand and reason attack sequences in CTI reports. Our benchmark encompasses three distinct Question Answering (QA) tasks, each task focuses on the varying granularity in adversarial behavior. To alleviate the laborious effort of QA construction, we carefully design an automated dataset construction pipeline to create scalable and well-formulated QA datasets based on real-world CTI reports. To ensure the quality of our dataset, we adopt a hybrid approach of combining human evaluation and systematic evaluation metrics. We conduct extensive experiments and analysis with both fast-thinking and slow-thinking LLMs, while highlighting their strengths and limitations in analyzing the sequential patterns in cyber attacks. The overarching goal of this work is to provide a benchmark that advances LLM-driven CTI report understanding and fosters its application in real-world cybersecurity operations. Our dataset and code are available at https://github.com/Javiery3889/AttackSeqBench .
CTI-HAL: A Human-Annotated Dataset for Cyber Threat Intelligence Analysis
Organizations are increasingly targeted by Advanced Persistent Threats (APTs), which involve complex, multi-stage tactics and diverse techniques. Cyber Threat Intelligence (CTI) sources, such as incident reports and security blogs, provide valuable insights, but are often unstructured and in natural language, making it difficult to automatically extract information. Recent studies have explored the use of AI to perform automatic extraction from CTI data, leveraging existing CTI datasets for performance evaluation and fine-tuning. However, they present challenges and limitations that impact their effectiveness. To overcome these issues, we introduce a novel dataset manually constructed from CTI reports and structured according to the MITRE ATT&CK framework. To assess its quality, we conducted an inter-annotator agreement study using Krippendorff alpha, confirming its reliability. Furthermore, the dataset was used to evaluate a Large Language Model (LLM) in a real-world business context, showing promising generalizability.
AthenaBench: A Dynamic Benchmark for Evaluating LLMs in Cyber Threat Intelligence
Large Language Models (LLMs) have demonstrated strong capabilities in natural language reasoning, yet their application to Cyber Threat Intelligence (CTI) remains limited. CTI analysis involves distilling large volumes of unstructured reports into actionable knowledge, a process where LLMs could substantially reduce analyst workload. CTIBench introduced a comprehensive benchmark for evaluating LLMs across multiple CTI tasks. In this work, we extend CTIBench by developing AthenaBench, an enhanced benchmark that includes an improved dataset creation pipeline, duplicate removal, refined evaluation metrics, and a new task focused on risk mitigation strategies. We evaluate twelve LLMs, including state-of-the-art proprietary models such as GPT-5 and Gemini-2.5 Pro, alongside seven open-source models from the LLaMA and Qwen families. While proprietary LLMs achieve stronger results overall, their performance remains subpar on reasoning-intensive tasks, such as threat actor attribution and risk mitigation, with open-source models trailing even further behind. These findings highlight fundamental limitations in the reasoning capabilities of current LLMs and underscore the need for models explicitly tailored to CTI workflows and automation.
DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information
Heart disease remains a significant threat to human health. As a non-invasive diagnostic tool, the electrocardiogram (ECG) is one of the most widely used methods for cardiac screening. However, the scarcity of high-quality ECG data, driven by privacy concerns and limited medical resources, creates a pressing need for effective ECG signal generation. Existing approaches for generating ECG signals typically rely on small training datasets, lack comprehensive evaluation frameworks, and overlook potential applications beyond data augmentation. To address these challenges, we propose DiffuSETS, a novel framework capable of generating ECG signals with high semantic alignment and fidelity. DiffuSETS accepts various modalities of clinical text reports and patient-specific information as inputs, enabling the creation of clinically meaningful ECG signals. Additionally, to address the lack of standardized evaluation in ECG generation, we introduce a comprehensive benchmarking methodology to assess the effectiveness of generative models in this domain. Our model achieve excellent results in tests, proving its superiority in the task of ECG generation. Furthermore, we showcase its potential to mitigate data scarcity while exploring novel applications in cardiology education and medical knowledge discovery, highlighting the broader impact of our work.
POIROT: Aligning Attack Behavior with Kernel Audit Records for Cyber Threat Hunting
Cyber threat intelligence (CTI) is being used to search for indicators of attacks that might have compromised an enterprise network for a long time without being discovered. To have a more effective analysis, CTI open standards have incorporated descriptive relationships showing how the indicators or observables are related to each other. However, these relationships are either completely overlooked in information gathering or not used for threat hunting. In this paper, we propose a system, called POIROT, which uses these correlations to uncover the steps of a successful attack campaign. We use kernel audits as a reliable source that covers all causal relations and information flows among system entities and model threat hunting as an inexact graph pattern matching problem. Our technical approach is based on a novel similarity metric which assesses an alignment between a query graph constructed out of CTI correlations and a provenance graph constructed out of kernel audit log records. We evaluate POIROT on publicly released real-world incident reports as well as reports of an adversarial engagement designed by DARPA, including ten distinct attack campaigns against different OS platforms such as Linux, FreeBSD, and Windows. Our evaluation results show that POIROT is capable of searching inside graphs containing millions of nodes and pinpoint the attacks in a few minutes, and the results serve to illustrate that CTI correlations could be used as robust and reliable artifacts for threat hunting.
Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal
The rapid integration of Large Language Models (LLMs) across diverse sectors has marked a transformative era, showcasing remarkable capabilities in text generation and problem-solving tasks. However, this technological advancement is accompanied by significant risks and vulnerabilities. Despite ongoing security enhancements, attackers persistently exploit these weaknesses, casting doubts on the overall trustworthiness of LLMs. Compounding the issue, organisations are deploying LLM-integrated systems without understanding the severity of potential consequences. Existing studies by OWASP and MITRE offer a general overview of threats and vulnerabilities but lack a method for directly and succinctly analysing the risks for security practitioners, developers, and key decision-makers who are working with this novel technology. To address this gap, we propose a risk assessment process using tools like the OWASP risk rating methodology which is used for traditional systems. We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors. Through this analysis, we assess the likelihood of a cyberattack. Subsequently, we conduct a thorough impact analysis to derive a comprehensive threat matrix. We also map threats against three key stakeholder groups: developers engaged in model fine-tuning, application developers utilizing third-party APIs, and end users. The proposed threat matrix provides a holistic evaluation of LLM-related risks, enabling stakeholders to make informed decisions for effective mitigation strategies. Our outlined process serves as an actionable and comprehensive tool for security practitioners, offering insights for resource management and enhancing the overall system security.
Semantic Ranking for Automated Adversarial Technique Annotation in Security Text
We introduce a new method for extracting structured threat behaviors from threat intelligence text. Our method is based on a multi-stage ranking architecture that allows jointly optimizing for efficiency and effectiveness. Therefore, we believe this problem formulation better aligns with the real-world nature of the task considering the large number of adversary techniques and the extensive body of threat intelligence created by security analysts. Our findings show that the proposed system yields state-of-the-art performance results for this task. Results show that our method has a top-3 recall performance of 81\% in identifying the relevant technique among 193 top-level techniques. Our tests also demonstrate that our system performs significantly better (+40\%) than the widely used large language models when tested under a zero-shot setting.
SPLAIN: Augmenting Cybersecurity Warnings with Reasons and Data
Effective cyber threat recognition and prevention demand comprehensible forecasting systems, as prior approaches commonly offer limited and, ultimately, unconvincing information. We introduce Simplified Plaintext Language (SPLAIN), a natural language generator that converts warning data into user-friendly cyber threat explanations. SPLAIN is designed to generate clear, actionable outputs, incorporating hierarchically organized explanatory details about input data and system functionality. Given the inputs of individual sensor-induced forecasting signals and an overall warning from a fusion module, SPLAIN queries each signal for information on contributing sensors and data signals. This collected data is processed into a coherent English explanation, encompassing forecasting, sensing, and data elements for user review. SPLAIN's template-based approach ensures consistent warning structure and vocabulary. SPLAIN's hierarchical output structure allows each threat and its components to be expanded to reveal underlying explanations on demand. Our conclusions emphasize the need for designers to specify the "how" and "why" behind cyber warnings, advocate for simple structured templates in generating consistent explanations, and recognize that direct causal links in Machine Learning approaches may not always be identifiable, requiring some explanations to focus on general methodologies, such as model and training data.
Using Language Models to Detect Alarming Student Responses
This article details the advances made to a system that uses artificial intelligence to identify alarming student responses. This system is built into our assessment platform to assess whether a student's response indicates they are a threat to themselves or others. Such responses may include details concerning threats of violence, severe depression, suicide risks, and descriptions of abuse. Driven by advances in natural language processing, the latest model is a fine-tuned language model trained on a large corpus consisting of student responses and supplementary texts. We demonstrate that the use of a language model delivers a substantial improvement in accuracy over the previous iterations of this system.
Assessing Language Model Deployment with Risk Cards
This paper introduces RiskCards, a framework for structured assessment and documentation of risks associated with an application of language models. As with all language, text generated by language models can be harmful, or used to bring about harm. Automating language generation adds both an element of scale and also more subtle or emergent undesirable tendencies to the generated text. Prior work establishes a wide variety of language model harms to many different actors: existing taxonomies identify categories of harms posed by language models; benchmarks establish automated tests of these harms; and documentation standards for models, tasks and datasets encourage transparent reporting. However, there is no risk-centric framework for documenting the complexity of a landscape in which some risks are shared across models and contexts, while others are specific, and where certain conditions may be required for risks to manifest as harms. RiskCards address this methodological gap by providing a generic framework for assessing the use of a given language model in a given scenario. Each RiskCard makes clear the routes for the risk to manifest harm, their placement in harm taxonomies, and example prompt-output pairs. While RiskCards are designed to be open-source, dynamic and participatory, we present a "starter set" of RiskCards taken from a broad literature survey, each of which details a concrete risk presentation. Language model RiskCards initiate a community knowledge base which permits the mapping of risks and harms to a specific model or its application scenario, ultimately contributing to a better, safer and shared understanding of the risk landscape.
LLM-Assisted Proactive Threat Intelligence for Automated Reasoning
Successful defense against dynamically evolving cyber threats requires advanced and sophisticated techniques. This research presents a novel approach to enhance real-time cybersecurity threat detection and response by integrating large language models (LLMs) and Retrieval-Augmented Generation (RAG) systems with continuous threat intelligence feeds. Leveraging recent advancements in LLMs, specifically GPT-4o, and the innovative application of RAG techniques, our approach addresses the limitations of traditional static threat analysis by incorporating dynamic, real-time data sources. We leveraged RAG to get the latest information in real-time for threat intelligence, which is not possible in the existing GPT-4o model. We employ the Patrowl framework to automate the retrieval of diverse cybersecurity threat intelligence feeds, including Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration (CWE), Exploit Prediction Scoring System (EPSS), and Known Exploited Vulnerabilities (KEV) databases, and integrate these with the all-mpnet-base-v2 model for high-dimensional vector embeddings, stored and queried in Milvus. We demonstrate our system's efficacy through a series of case studies, revealing significant improvements in addressing recently disclosed vulnerabilities, KEVs, and high-EPSS-score CVEs compared to the baseline GPT-4o. This work not only advances the role of LLMs in cybersecurity but also establishes a robust foundation for the development of automated intelligent cyberthreat information management systems, addressing crucial gaps in current cybersecurity practices.
An Empirical Study of Security-Policy Related Issues in Open Source Projects
GitHub recommends that projects adopt a security file that outlines vulnerability reporting procedures. However, the effectiveness and operational challenges of such files are not yet fully understood. This study aims to clarify the challenges that security files face in the vulnerability reporting process within open-source communities. Specifically, we classified and analyzed the content of 711 randomly sampled issues related to security files. We also conducted a quantitative comparative analysis of the close time and number of responses for issues concerning six community health files, including security files. Our analysis revealed that 79.5% of security file-related issues were requests to add the file, and reports that included links were closed, with a median time that was 2 days shorter. These findings offer practical insights for improving security reporting policies and community management, ultimately contributing to a more secure open-source ecosystem.
An In-kernel Forensics Engine for Investigating Evasive Attacks
Over the years, adversarial attempts against critical services have become more effective and sophisticated in launching low-profile attacks. This trend has always been concerning. However, an even more alarming trend is the increasing difficulty of collecting relevant evidence about these attacks and the involved threat actors in the early stages before significant damage is done. This issue puts defenders at a significant disadvantage, as it becomes exceedingly difficult to understand the attack details and formulate an appropriate response. Developing robust forensics tools to collect evidence about modern threats has never been easy. One main challenge is to provide a robust trade-off between achieving sufficient visibility while leaving minimal detectable artifacts. This paper will introduce LASE, an open-source Low-Artifact Forensics Engine to perform threat analysis and forensics in Windows operating system. LASE augments current analysis tools by providing detailed, system-wide monitoring capabilities while minimizing detectable artifacts. We designed multiple deployment scenarios, showing LASE's potential in evidence gathering and threat reasoning in a real-world setting. By making LASE and its execution trace data available to the broader research community, this work encourages further exploration in the field by reducing the engineering costs for threat analysis and building a longitudinal behavioral analysis catalog for diverse security domains.
Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, this report presents a comprehensive assessment of their frontier risks. Drawing on the E-T-C analysis (deployment environment, threat source, enabling capability) from the Frontier AI Risk Management Framework (v1.0) (SafeWork-F1-Framework), we identify critical risks in seven areas: cyber offense, biological and chemical risks, persuasion and manipulation, uncontrolled autonomous AI R\&D, strategic deception and scheming, self-replication, and collusion. Guided by the "AI-45^circ Law," we evaluate these risks using "red lines" (intolerable thresholds) and "yellow lines" (early warning indicators) to define risk zones: green (manageable risk for routine deployment and continuous monitoring), yellow (requiring strengthened mitigations and controlled deployment), and red (necessitating suspension of development and/or deployment). Experimental results show that all recent frontier AI models reside in green and yellow zones, without crossing red lines. Specifically, no evaluated models cross the yellow line for cyber offense or uncontrolled AI R\&D risks. For self-replication, and strategic deception and scheming, most models remain in the green zone, except for certain reasoning models in the yellow zone. In persuasion and manipulation, most models are in the yellow zone due to their effective influence on humans. For biological and chemical risks, we are unable to rule out the possibility of most models residing in the yellow zone, although detailed threat modeling and in-depth assessment are required to make further claims. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
SimpleSafetyTests: a Test Suite for Identifying Critical Safety Risks in Large Language Models
The past year has seen rapid acceleration in the development of large language models (LLMs). However, without proper steering and safeguards, LLMs will readily follow malicious instructions, provide unsafe advice, and generate toxic content. We introduce SimpleSafetyTests (SST) as a new test suite for rapidly and systematically identifying such critical safety risks. The test suite comprises 100 test prompts across five harm areas that LLMs, for the vast majority of applications, should refuse to comply with. We test 11 open-access and open-source LLMs and four closed-source LLMs, and find critical safety weaknesses. While some of the models do not give a single unsafe response, most give unsafe responses to more than 20% of the prompts, with over 50% unsafe responses in the extreme. Prepending a safety-emphasising system prompt substantially reduces the occurrence of unsafe responses, but does not completely stop them from happening. Trained annotators labelled every model response to SST (n = 3,000). We use these annotations to evaluate five AI safety filters (which assess whether a models' response is unsafe given a prompt) as a way of automatically evaluating models' performance on SST. The filters' performance varies considerably. There are also differences across the five harm areas, and on the unsafe versus safe responses. The widely-used Perspective API has 72% accuracy and a newly-created zero-shot prompt to OpenAI's GPT-4 performs best with 89% accuracy. Content Warning: This paper contains prompts and responses that relate to child abuse, suicide, self-harm and eating disorders, scams and fraud, illegal items, and physical harm.
Stylometric Detection of AI-Generated Text in Twitter Timelines
Recent advancements in pre-trained language models have enabled convenient methods for generating human-like text at a large scale. Though these generation capabilities hold great potential for breakthrough applications, it can also be a tool for an adversary to generate misinformation. In particular, social media platforms like Twitter are highly susceptible to AI-generated misinformation. A potential threat scenario is when an adversary hijacks a credible user account and incorporates a natural language generator to generate misinformation. Such threats necessitate automated detectors for AI-generated tweets in a given user's Twitter timeline. However, tweets are inherently short, thus making it difficult for current state-of-the-art pre-trained language model-based detectors to accurately detect at what point the AI starts to generate tweets in a given Twitter timeline. In this paper, we present a novel algorithm using stylometric signals to aid detecting AI-generated tweets. We propose models corresponding to quantifying stylistic changes in human and AI tweets in two related tasks: Task 1 - discriminate between human and AI-generated tweets, and Task 2 - detect if and when an AI starts to generate tweets in a given Twitter timeline. Our extensive experiments demonstrate that the stylometric features are effective in augmenting the state-of-the-art AI-generated text detectors.
Priority prediction of Asian Hornet sighting report using machine learning methods
As infamous invaders to the North American ecosystem, the Asian giant hornet (Vespa mandarinia) is devastating not only to native bee colonies, but also to local apiculture. One of the most effective way to combat the harmful species is to locate and destroy their nests. By mobilizing the public to actively report possible sightings of the Asian giant hornet, the governmentcould timely send inspectors to confirm and possibly destroy the nests. However, such confirmation requires lab expertise, where manually checking the reports one by one is extremely consuming of human resources. Further given the limited knowledge of the public about the Asian giant hornet and the randomness of report submission, only few of the numerous reports proved positive, i.e. existing nests. How to classify or prioritize the reports efficiently and automatically, so as to determine the dispatch of personnel, is of great significance to the control of the Asian giant hornet. In this paper, we propose a method to predict the priority of sighting reports based on machine learning. We model the problem of optimal prioritization of sighting reports as a problem of classification and prediction. We extracted a variety of rich features in the report: location, time, image(s), and textual description. Based on these characteristics, we propose a classification model based on logistic regression to predict the credibility of a certain report. Furthermore, our model quantifies the impact between reports to get the priority ranking of the reports. Extensive experiments on the public dataset from the WSDA (the Washington State Department of Agriculture) have proved the effectiveness of our method.
Ethical and social risks of harm from Language Models
This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.
RealHarm: A Collection of Real-World Language Model Application Failures
Language model deployments in consumer-facing applications introduce numerous risks. While existing research on harms and hazards of such applications follows top-down approaches derived from regulatory frameworks and theoretical analyses, empirical evidence of real-world failure modes remains underexplored. In this work, we introduce RealHarm, a dataset of annotated problematic interactions with AI agents built from a systematic review of publicly reported incidents. Analyzing harms, causes, and hazards specifically from the deployer's perspective, we find that reputational damage constitutes the predominant organizational harm, while misinformation emerges as the most common hazard category. We empirically evaluate state-of-the-art guardrails and content moderation systems to probe whether such systems would have prevented the incidents, revealing a significant gap in the protection of AI applications.
CrisiText: A dataset of warning messages for LLM training in emergency communication
Effectively identifying threats and mitigating their potential damage during crisis situations, such as natural disasters or violent attacks, is paramount for safeguarding endangered individuals. To tackle these challenges, AI has been used in assisting humans in emergency situations. Still, the use of NLP techniques remains limited and mostly focuses on classification tasks. The significant potential of timely warning message generation using NLG architectures, however, has been largely overlooked. In this paper we present CrisiText, the first large-scale dataset for the generation of warning messages across 13 different types of crisis scenarios. The dataset contains more than 400,000 warning messages (spanning almost 18,000 crisis situations) aimed at assisting civilians during and after such events. To generate the dataset, we started from existing crisis descriptions and created chains of events related to the scenarios. Each event was then paired with a warning message. The generations follow experts' written guidelines to ensure correct terminology and factuality of their suggestions. Additionally, each message is accompanied by three suboptimal warning types to allow for the study of different NLG approaches. To this end, we conducted a series of experiments comparing supervised fine-tuning setups with preference alignment, zero-shot, and few-shot approaches. We further assessed model performance in out-of-distribution scenarios and evaluated the effectiveness of an automatic post-editor.
Red Teaming Language Models with Language Models
Language Models (LMs) often cannot be deployed because of their potential to harm users in hard-to-predict ways. Prior work identifies harmful behaviors before deployment by using human annotators to hand-write test cases. However, human annotation is expensive, limiting the number and diversity of test cases. In this work, we automatically find cases where a target LM behaves in a harmful way, by generating test cases ("red teaming") using another LM. We evaluate the target LM's replies to generated test questions using a classifier trained to detect offensive content, uncovering tens of thousands of offensive replies in a 280B parameter LM chatbot. We explore several methods, from zero-shot generation to reinforcement learning, for generating test cases with varying levels of diversity and difficulty. Furthermore, we use prompt engineering to control LM-generated test cases to uncover a variety of other harms, automatically finding groups of people that the chatbot discusses in offensive ways, personal and hospital phone numbers generated as the chatbot's own contact info, leakage of private training data in generated text, and harms that occur over the course of a conversation. Overall, LM-based red teaming is one promising tool (among many needed) for finding and fixing diverse, undesirable LM behaviors before impacting users.
Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs
The proliferation of pre-trained models (PTMs) and datasets has led to the emergence of centralized model hubs like Hugging Face, which facilitate collaborative development and reuse. However, recent security reports have uncovered vulnerabilities and instances of malicious attacks within these platforms, highlighting growing security concerns. This paper presents the first systematic study of malicious code poisoning attacks on pre-trained model hubs, focusing on the Hugging Face platform. We conduct a comprehensive threat analysis, develop a taxonomy of model formats, and perform root cause analysis of vulnerable formats. While existing tools like Fickling and ModelScan offer some protection, they face limitations in semantic-level analysis and comprehensive threat detection. To address these challenges, we propose MalHug, an end-to-end pipeline tailored for Hugging Face that combines dataset loading script extraction, model deserialization, in-depth taint analysis, and heuristic pattern matching to detect and classify malicious code poisoning attacks in datasets and models. In collaboration with Ant Group, a leading financial technology company, we have implemented and deployed MalHug on a mirrored Hugging Face instance within their infrastructure, where it has been operational for over three months. During this period, MalHug has monitored more than 705K models and 176K datasets, uncovering 91 malicious models and 9 malicious dataset loading scripts. These findings reveal a range of security threats, including reverse shell, browser credential theft, and system reconnaissance. This work not only bridges a critical gap in understanding the security of the PTM supply chain but also provides a practical, industry-tested solution for enhancing the security of pre-trained model hubs.
"Silent Is Not Actually Silent": An Investigation of Toxicity on Bug Report Discussion
Toxicity in bug report discussions poses significant challenges to the collaborative dynamics of open-source software development. Bug reports are crucial for identifying and resolving defects, yet their inherently problem-focused nature and emotionally charged context make them susceptible to toxic interactions. This study explores toxicity in GitHub bug reports through a qualitative analysis of 203 bug threads, including 81 toxic ones. Our findings reveal that toxicity frequently arises from misaligned perceptions of bug severity and priority, unresolved frustrations with tools, and lapses in professional communication. These toxic interactions not only derail productive discussions but also reduce the likelihood of actionable outcomes, such as linking issues with pull requests. Our preliminary findings offer actionable recommendations to improve bug resolution by mitigating toxicity.
Explore, Establish, Exploit: Red Teaming Language Models from Scratch
Deploying Large language models (LLMs) can pose hazards from harmful outputs such as toxic or dishonest speech. Prior work has introduced tools that elicit harmful outputs in order to identify and mitigate these risks. While this is a valuable step toward securing language models, these approaches typically rely on a pre-existing classifier for undesired outputs. This limits their application to situations where the type of harmful behavior is known with precision beforehand. However, this skips a central challenge of red teaming: developing a contextual understanding of the behaviors that a model can exhibit. Furthermore, when such a classifier already exists, red teaming has limited marginal value because the classifier could simply be used to filter training data or model outputs. In this work, we consider red teaming under the assumption that the adversary is working from a high-level, abstract specification of undesired behavior. The red team is expected to refine/extend this specification and identify methods to elicit this behavior from the model. Our red teaming framework consists of three steps: 1) Exploring the model's behavior in the desired context; 2) Establishing a measurement of undesired behavior (e.g., a classifier trained to reflect human evaluations); and 3) Exploiting the model's flaws using this measure and an established red teaming methodology. We apply this approach to red team GPT-2 and GPT-3 models to systematically discover classes of prompts that elicit toxic and dishonest statements. In doing so, we also construct and release the CommonClaim dataset of 20,000 statements that have been labeled by human subjects as common-knowledge-true, common-knowledge-false, or neither. Code is available at https://github.com/thestephencasper/explore_establish_exploit_llms. CommonClaim is available at https://github.com/thestephencasper/common_claim.
LLM Cyber Evaluations Don't Capture Real-World Risk
Large language models (LLMs) are demonstrating increasing prowess in cybersecurity applications, creating creating inherent risks alongside their potential for strengthening defenses. In this position paper, we argue that current efforts to evaluate risks posed by these capabilities are misaligned with the goal of understanding real-world impact. Evaluating LLM cybersecurity risk requires more than just measuring model capabilities -- it demands a comprehensive risk assessment that incorporates analysis of threat actor adoption behavior and potential for impact. We propose a risk assessment framework for LLM cyber capabilities and apply it to a case study of language models used as cybersecurity assistants. Our evaluation of frontier models reveals high compliance rates but moderate accuracy on realistic cyber assistance tasks. However, our framework suggests that this particular use case presents only moderate risk due to limited operational advantages and impact potential. Based on these findings, we recommend several improvements to align research priorities with real-world impact assessment, including closer academia-industry collaboration, more realistic modeling of attacker behavior, and inclusion of economic metrics in evaluations. This work represents an important step toward more effective assessment and mitigation of LLM-enabled cybersecurity risks.
ViDAS: Vision-based Danger Assessment and Scoring
We present a novel dataset aimed at advancing danger analysis and assessment by addressing the challenge of quantifying danger in video content and identifying how human-like a Large Language Model (LLM) evaluator is for the same. This is achieved by compiling a collection of 100 YouTube videos featuring various events. Each video is annotated by human participants who provided danger ratings on a scale from 0 (no danger to humans) to 10 (life-threatening), with precise timestamps indicating moments of heightened danger. Additionally, we leverage LLMs to independently assess the danger levels in these videos using video summaries. We introduce Mean Squared Error (MSE) scores for multimodal meta-evaluation of the alignment between human and LLM danger assessments. Our dataset not only contributes a new resource for danger assessment in video content but also demonstrates the potential of LLMs in achieving human-like evaluations.
Operationalizing a Threat Model for Red-Teaming Large Language Models (LLMs)
Creating secure and resilient applications with large language models (LLM) requires anticipating, adjusting to, and countering unforeseen threats. Red-teaming has emerged as a critical technique for identifying vulnerabilities in real-world LLM implementations. This paper presents a detailed threat model and provides a systematization of knowledge (SoK) of red-teaming attacks on LLMs. We develop a taxonomy of attacks based on the stages of the LLM development and deployment process and extract various insights from previous research. In addition, we compile methods for defense and practical red-teaming strategies for practitioners. By delineating prominent attack motifs and shedding light on various entry points, this paper provides a framework for improving the security and robustness of LLM-based systems.
On Evaluating the Durability of Safeguards for Open-Weight LLMs
Stakeholders -- from model developers to policymakers -- seek to minimize the dual-use risks of large language models (LLMs). An open challenge to this goal is whether technical safeguards can impede the misuse of LLMs, even when models are customizable via fine-tuning or when model weights are fully open. In response, several recent studies have proposed methods to produce durable LLM safeguards for open-weight LLMs that can withstand adversarial modifications of the model's weights via fine-tuning. This holds the promise of raising adversaries' costs even under strong threat models where adversaries can directly fine-tune model weights. However, in this paper, we urge for more careful characterization of the limits of these approaches. Through several case studies, we demonstrate that even evaluating these defenses is exceedingly difficult and can easily mislead audiences into thinking that safeguards are more durable than they really are. We draw lessons from the evaluation pitfalls that we identify and suggest future research carefully cabin claims to more constrained, well-defined, and rigorously examined threat models, which can provide more useful and candid assessments to stakeholders.
Toxicity Ahead: Forecasting Conversational Derailment on GitHub
Toxic interactions in Open Source Software (OSS) communities reduce contributor engagement and threaten project sustainability. Preventing such toxicity before it emerges requires a clear understanding of how harmful conversations unfold. However, most proactive moderation strategies are manual, requiring significant time and effort from community maintainers. To support more scalable approaches, we curate a dataset of 159 derailed toxic threads and 207 non-toxic threads from GitHub discussions. Our analysis reveals that toxicity can be forecast by tension triggers, sentiment shifts, and specific conversational patterns. We present a novel Large Language Model (LLM)-based framework for predicting conversational derailment on GitHub using a two-step prompting pipeline. First, we generate Summaries of Conversation Dynamics (SCDs) via Least-to-Most (LtM) prompting; then we use these summaries to estimate the likelihood of derailment. Evaluated on Qwen and Llama models, our LtM strategy achieves F1-scores of 0.901 and 0.852, respectively, at a decision threshold of 0.3, outperforming established NLP baselines on conversation derailment. External validation on a dataset of 308 GitHub issue threads (65 toxic, 243 non-toxic) yields an F1-score up to 0.797. Our findings demonstrate the effectiveness of structured LLM prompting for early detection of conversational derailment in OSS, enabling proactive and explainable moderation.
Into the crossfire: evaluating the use of a language model to crowdsource gun violence reports
Gun violence is a pressing and growing human rights issue that affects nearly every dimension of the social fabric, from healthcare and education to psychology and the economy. Reliable data on firearm events is paramount to developing more effective public policy and emergency responses. However, the lack of comprehensive databases and the risks of in-person surveys prevent human rights organizations from collecting needed data in most countries. Here, we partner with a Brazilian human rights organization to conduct a systematic evaluation of language models to assist with monitoring real-world firearm events from social media data. We propose a fine-tuned BERT-based model trained on Twitter (now X) texts to distinguish gun violence reports from ordinary Portuguese texts. Our model achieves a high AUC score of 0.97. We then incorporate our model into a web application and test it in a live intervention. We study and interview Brazilian analysts who continuously fact-check social media texts to identify new gun violence events. Qualitative assessments show that our solution helped all analysts use their time more efficiently and expanded their search capacities. Quantitative assessments show that the use of our model was associated with more analysts' interactions with online users reporting gun violence. Taken together, our findings suggest that modern Natural Language Processing techniques can help support the work of human rights organizations.
FORTRESS: Frontier Risk Evaluation for National Security and Public Safety
The rapid advancement of large language models (LLMs) introduces dual-use capabilities that could both threaten and bolster national security and public safety (NSPS). Models implement safeguards to protect against potential misuse relevant to NSPS and allow for benign users to receive helpful information. However, current benchmarks often fail to test safeguard robustness to potential NSPS risks in an objective, robust way. We introduce FORTRESS: 500 expert-crafted adversarial prompts with instance-based rubrics of 4-7 binary questions for automated evaluation across 3 domains (unclassified information only): Chemical, Biological, Radiological, Nuclear and Explosive (CBRNE), Political Violence & Terrorism, and Criminal & Financial Illicit Activities, with 10 total subcategories across these domains. Each prompt-rubric pair has a corresponding benign version to test for model over-refusals. This evaluation of frontier LLMs' safeguard robustness reveals varying trade-offs between potential risks and model usefulness: Claude-3.5-Sonnet demonstrates a low average risk score (ARS) (14.09 out of 100) but the highest over-refusal score (ORS) (21.8 out of 100), while Gemini 2.5 Pro shows low over-refusal (1.4) but a high average potential risk (66.29). Deepseek-R1 has the highest ARS at 78.05, but the lowest ORS at only 0.06. Models such as o1 display a more even trade-off between potential risks and over-refusals (with an ARS of 21.69 and ORS of 5.2). To provide policymakers and researchers with a clear understanding of models' potential risks, we publicly release FORTRESS at https://huggingface.co/datasets/ScaleAI/fortress_public. We also maintain a private set for evaluation.
Towards Safer Pretraining: Analyzing and Filtering Harmful Content in Webscale datasets for Responsible LLMs
Large language models (LLMs) have become integral to various real-world applications, leveraging massive, web-sourced datasets like Common Crawl, C4, and FineWeb for pretraining. While these datasets provide linguistic data essential for high-quality natural language generation, they often contain harmful content, such as hate speech, misinformation, and biased narratives. Training LLMs on such unfiltered data risks perpetuating toxic behaviors, spreading misinformation, and amplifying societal biases which can undermine trust in LLM-driven applications and raise ethical concerns about their use. This paper presents a large-scale analysis of inappropriate content across these datasets, offering a comprehensive taxonomy that categorizes harmful webpages into Topical and Toxic based on their intent. We also introduce a prompt evaluation dataset, a high-accuracy Topical and Toxic Prompt (TTP), and a transformer-based model (HarmFormer) for content filtering. Additionally, we create a new multi-harm open-ended toxicity benchmark (HAVOC) and provide crucial insights into how models respond to adversarial toxic inputs. Upon publishing, we will also opensource our model signal on the entire C4 dataset. Our work offers insights into ensuring safer LLM pretraining and serves as a resource for Responsible AI (RAI) compliance.
"They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations
Large language models (LLMs) have emerged as an integral part of modern societies, powering user-facing applications such as personal assistants and enterprise applications like recruitment tools. Despite their utility, research indicates that LLMs perpetuate systemic biases. Yet, prior works on LLM harms predominantly focus on Western concepts like race and gender, often overlooking cultural concepts from other parts of the world. Additionally, these studies typically investigate "harm" as a singular dimension, ignoring the various and subtle forms in which harms manifest. To address this gap, we introduce the Covert Harms and Social Threats (CHAST), a set of seven metrics grounded in social science literature. We utilize evaluation models aligned with human assessments to examine the presence of covert harms in LLM-generated conversations, particularly in the context of recruitment. Our experiments reveal that seven out of the eight LLMs included in this study generated conversations riddled with CHAST, characterized by malign views expressed in seemingly neutral language unlikely to be detected by existing methods. Notably, these LLMs manifested more extreme views and opinions when dealing with non-Western concepts like caste, compared to Western ones such as race.
IndoToxic2024: A Demographically-Enriched Dataset of Hate Speech and Toxicity Types for Indonesian Language
Hate speech poses a significant threat to social harmony. Over the past two years, Indonesia has seen a ten-fold increase in the online hate speech ratio, underscoring the urgent need for effective detection mechanisms. However, progress is hindered by the limited availability of labeled data for Indonesian texts. The condition is even worse for marginalized minorities, such as Shia, LGBTQ, and other ethnic minorities because hate speech is underreported and less understood by detection tools. Furthermore, the lack of accommodation for subjectivity in current datasets compounds this issue. To address this, we introduce IndoToxic2024, a comprehensive Indonesian hate speech and toxicity classification dataset. Comprising 43,692 entries annotated by 19 diverse individuals, the dataset focuses on texts targeting vulnerable groups in Indonesia, specifically during the hottest political event in the country: the presidential election. We establish baselines for seven binary classification tasks, achieving a macro-F1 score of 0.78 with a BERT model (IndoBERTweet) fine-tuned for hate speech classification. Furthermore, we demonstrate how incorporating demographic information can enhance the zero-shot performance of the large language model, gpt-3.5-turbo. However, we also caution that an overemphasis on demographic information can negatively impact the fine-tuned model performance due to data fragmentation.
Evaluating Frontier Models for Dangerous Capabilities
To understand the risks posed by a new AI system, we must understand what it can and cannot do. Building on prior work, we introduce a programme of new "dangerous capability" evaluations and pilot them on Gemini 1.0 models. Our evaluations cover four areas: (1) persuasion and deception; (2) cyber-security; (3) self-proliferation; and (4) self-reasoning. We do not find evidence of strong dangerous capabilities in the models we evaluated, but we flag early warning signs. Our goal is to help advance a rigorous science of dangerous capability evaluation, in preparation for future models.
Competition Report: Finding Universal Jailbreak Backdoors in Aligned LLMs
Large language models are aligned to be safe, preventing users from generating harmful content like misinformation or instructions for illegal activities. However, previous work has shown that the alignment process is vulnerable to poisoning attacks. Adversaries can manipulate the safety training data to inject backdoors that act like a universal sudo command: adding the backdoor string to any prompt enables harmful responses from models that, otherwise, behave safely. Our competition, co-located at IEEE SaTML 2024, challenged participants to find universal backdoors in several large language models. This report summarizes the key findings and promising ideas for future research.
Current state of LLM Risks and AI Guardrails
Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount. However, LLMs have inherent risks accompanying them, including bias, potential for unsafe actions, dataset poisoning, lack of explainability, hallucinations, and non-reproducibility. These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm. This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques. We examine intrinsic and extrinsic bias evaluation methods and discuss the importance of fairness metrics for responsible AI development. The safety and reliability of agentic LLMs (those capable of real-world actions) are explored, emphasizing the need for testability, fail-safes, and situational awareness. Technical strategies for securing LLMs are presented, including a layered protection model operating at external, secondary, and internal levels. System prompts, Retrieval-Augmented Generation (RAG) architectures, and techniques to minimize bias and protect privacy are highlighted. Effective guardrail design requires a deep understanding of the LLM's intended use case, relevant regulations, and ethical considerations. Striking a balance between competing requirements, such as accuracy and privacy, remains an ongoing challenge. This work underscores the importance of continuous research and development to ensure the safe and responsible use of LLMs in real-world applications.
Automated Identification of Toxic Code Reviews Using ToxiCR
Toxic conversations during software development interactions may have serious repercussions on a Free and Open Source Software (FOSS) development project. For example, victims of toxic conversations may become afraid to express themselves, therefore get demotivated, and may eventually leave the project. Automated filtering of toxic conversations may help a FOSS community to maintain healthy interactions among its members. However, off-the-shelf toxicity detectors perform poorly on Software Engineering (SE) datasets, such as one curated from code review comments. To encounter this challenge, we present ToxiCR, a supervised learning-based toxicity identification tool for code review interactions. ToxiCR includes a choice to select one of the ten supervised learning algorithms, an option to select text vectorization techniques, eight preprocessing steps, and a large-scale labeled dataset of 19,571 code review comments. Two out of those eight preprocessing steps are SE domain specific. With our rigorous evaluation of the models with various combinations of preprocessing steps and vectorization techniques, we have identified the best combination for our dataset that boosts 95.8% accuracy and 88.9% F1 score. ToxiCR significantly outperforms existing toxicity detectors on our dataset. We have released our dataset, pre-trained models, evaluation results, and source code publicly available at: https://github.com/WSU-SEAL/ToxiCR
LAN: Learning Adaptive Neighbors for Real-Time Insider Threat Detection
Enterprises and organizations are faced with potential threats from insider employees that may lead to serious consequences. Previous studies on insider threat detection (ITD) mainly focus on detecting abnormal users or abnormal time periods (e.g., a week or a day). However, a user may have hundreds of thousands of activities in the log, and even within a day there may exist thousands of activities for a user, requiring a high investigation budget to verify abnormal users or activities given the detection results. On the other hand, existing works are mainly post-hoc methods rather than real-time detection, which can not report insider threats in time before they cause loss. In this paper, we conduct the first study towards real-time ITD at activity level, and present a fine-grained and efficient framework LAN. Specifically, LAN simultaneously learns the temporal dependencies within an activity sequence and the relationships between activities across sequences with graph structure learning. Moreover, to mitigate the data imbalance problem in ITD, we propose a novel hybrid prediction loss, which integrates self-supervision signals from normal activities and supervision signals from abnormal activities into a unified loss for anomaly detection. We evaluate the performance of LAN on two widely used datasets, i.e., CERT r4.2 and CERT r5.2. Extensive and comparative experiments demonstrate the superiority of LAN, outperforming 9 state-of-the-art baselines by at least 9.92% and 6.35% in AUC for real-time ITD on CERT r4.2 and r5.2, respectively. Moreover, LAN can be also applied to post-hoc ITD, surpassing 8 competitive baselines by at least 7.70% and 4.03% in AUC on two datasets. Finally, the ablation study, parameter analysis, and compatibility analysis evaluate the impact of each module and hyper-parameter in LAN. The source code can be obtained from https://github.com/Li1Neo/LAN.
Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs
With the rapid evolution of large language models (LLMs), new and hard-to-predict harmful capabilities are emerging. This requires developers to be able to identify risks through the evaluation of "dangerous capabilities" in order to responsibly deploy LLMs. In this work, we collect the first open-source dataset to evaluate safeguards in LLMs, and deploy safer open-source LLMs at a low cost. Our dataset is curated and filtered to consist only of instructions that responsible language models should not follow. We annotate and assess the responses of six popular LLMs to these instructions. Based on our annotation, we proceed to train several BERT-like classifiers, and find that these small classifiers can achieve results that are comparable with GPT-4 on automatic safety evaluation. Warning: this paper contains example data that may be offensive, harmful, or biased.
ACSE-Eval: Can LLMs threat model real-world cloud infrastructure?
While Large Language Models have shown promise in cybersecurity applications, their effectiveness in identifying security threats within cloud deployments remains unexplored. This paper introduces AWS Cloud Security Engineering Eval, a novel dataset for evaluating LLMs cloud security threat modeling capabilities. ACSE-Eval contains 100 production grade AWS deployment scenarios, each featuring detailed architectural specifications, Infrastructure as Code implementations, documented security vulnerabilities, and associated threat modeling parameters. Our dataset enables systemic assessment of LLMs abilities to identify security risks, analyze attack vectors, and propose mitigation strategies in cloud environments. Our evaluations on ACSE-Eval demonstrate that GPT 4.1 and Gemini 2.5 Pro excel at threat identification, with Gemini 2.5 Pro performing optimally in 0-shot scenarios and GPT 4.1 showing superior results in few-shot settings. While GPT 4.1 maintains a slight overall performance advantage, Claude 3.7 Sonnet generates the most semantically sophisticated threat models but struggles with threat categorization and generalization. To promote reproducibility and advance research in automated cybersecurity threat analysis, we open-source our dataset, evaluation metrics, and methodologies.
ExCyTIn-Bench: Evaluating LLM agents on Cyber Threat Investigation
We present ExCyTIn-Bench, the first benchmark to Evaluate an LLM agent x on the task of Cyber Threat Investigation through security questions derived from investigation graphs. Real-world security analysts must sift through a large number of heterogeneous alert signals and security logs, follow multi-hop chains of evidence, and compile an incident report. With the developments of LLMs, building LLM-based agents for automatic thread investigation is a promising direction. To assist the development and evaluation of LLM agents, we construct a dataset from a controlled Azure tenant that covers 8 simulated real-world multi-step attacks, 57 log tables from Microsoft Sentinel and related services, and 589 automatically generated questions. We leverage security logs extracted with expert-crafted detection logic to build threat investigation graphs, and then generate questions with LLMs using paired nodes on the graph, taking the start node as background context and the end node as answer. Anchoring each question to these explicit nodes and edges not only provides automatic, explainable ground truth answers but also makes the pipeline reusable and readily extensible to new logs. This also enables the automatic generation of procedural tasks with verifiable rewards, which can be naturally extended to training agents via reinforcement learning. Our comprehensive experiments with different models confirm the difficulty of the task: with the base setting, the average reward across all evaluated models is 0.249, and the best achieved is 0.368, leaving substantial headroom for future research. Code and data are coming soon!
Model evaluation for extreme risks
Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further progress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through "dangerous capability evaluations") and the propensity of models to apply their capabilities for harm (through "alignment evaluations"). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.
CyberSentinel: An Emergent Threat Detection System for AI Security
The rapid advancement of artificial intelligence (AI) has significantly expanded the attack surface for AI-driven cybersecurity threats, necessitating adaptive defense strategies. This paper introduces CyberSentinel, a unified, single-agent system for emergent threat detection, designed to identify and mitigate novel security risks in real time. CyberSentinel integrates: (1) Brute-force attack detection through SSH log analysis, (2) Phishing threat assessment using domain blacklists and heuristic URL scoring, and (3) Emergent threat detection via machine learning-based anomaly detection. By continuously adapting to evolving adversarial tactics, CyberSentinel strengthens proactive cybersecurity defense, addressing critical vulnerabilities in AI security.
A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly
Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes the papers into "The Good" (beneficial LLM applications), "The Bad" (offensive applications), and "The Ugly" (vulnerabilities of LLMs and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, Research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs' potential to both bolster and jeopardize cybersecurity.
Detection of Compromised Functions in a Serverless Cloud Environment
Serverless computing is an emerging cloud paradigm with serverless functions at its core. While serverless environments enable software developers to focus on developing applications without the need to actively manage the underlying runtime infrastructure, they open the door to a wide variety of security threats that can be challenging to mitigate with existing methods. Existing security solutions do not apply to all serverless architectures, since they require significant modifications to the serverless infrastructure or rely on third-party services for the collection of more detailed data. In this paper, we present an extendable serverless security threat detection model that leverages cloud providers' native monitoring tools to detect anomalous behavior in serverless applications. Our model aims to detect compromised serverless functions by identifying post-exploitation abnormal behavior related to different types of attacks on serverless functions, and therefore, it is a last line of defense. Our approach is not tied to any specific serverless application, is agnostic to the type of threats, and is adaptable through model adjustments. To evaluate our model's performance, we developed a serverless cybersecurity testbed in an AWS cloud environment, which includes two different serverless applications and simulates a variety of attack scenarios that cover the main security threats faced by serverless functions. Our evaluation demonstrates our model's ability to detect all implemented attacks while maintaining a negligible false alarm rate.
LogPrécis: Unleashing Language Models for Automated Shell Log Analysis
The collection of security-related logs holds the key to understanding attack behaviors and diagnosing vulnerabilities. Still, their analysis remains a daunting challenge. Recently, Language Models (LMs) have demonstrated unmatched potential in understanding natural and programming languages. The question arises whether and how LMs could be also useful for security experts since their logs contain intrinsically confused and obfuscated information. In this paper, we systematically study how to benefit from the state-of-the-art in LM to automatically analyze text-like Unix shell attack logs. We present a thorough design methodology that leads to LogPr\'ecis. It receives as input raw shell sessions and automatically identifies and assigns the attacker tactic to each portion of the session, i.e., unveiling the sequence of the attacker's goals. We demonstrate LogPr\'ecis capability to support the analysis of two large datasets containing about 400,000 unique Unix shell attacks. LogPr\'ecis reduces them into about 3,000 fingerprints, each grouping sessions with the same sequence of tactics. The abstraction it provides lets the analyst better understand attacks, identify fingerprints, detect novelty, link similar attacks, and track families and mutations. Overall, LogPr\'ecis, released as open source, paves the way for better and more responsive defense against cyberattacks.
CYBERSECEVAL 3: Advancing the Evaluation of Cybersecurity Risks and Capabilities in Large Language Models
We are releasing a new suite of security benchmarks for LLMs, CYBERSECEVAL 3, to continue the conversation on empirically measuring LLM cybersecurity risks and capabilities. CYBERSECEVAL 3 assesses 8 different risks across two broad categories: risk to third parties, and risk to application developers and end users. Compared to previous work, we add new areas focused on offensive security capabilities: automated social engineering, scaling manual offensive cyber operations, and autonomous offensive cyber operations. In this paper we discuss applying these benchmarks to the Llama 3 models and a suite of contemporaneous state-of-the-art LLMs, enabling us to contextualize risks both with and without mitigations in place.
CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models
Large language models (LLMs) introduce new security risks, but there are few comprehensive evaluation suites to measure and reduce these risks. We present BenchmarkName, a novel benchmark to quantify LLM security risks and capabilities. We introduce two new areas for testing: prompt injection and code interpreter abuse. We evaluated multiple state-of-the-art (SOTA) LLMs, including GPT-4, Mistral, Meta Llama 3 70B-Instruct, and Code Llama. Our results show that conditioning away risk of attack remains an unsolved problem; for example, all tested models showed between 26% and 41% successful prompt injection tests. We further introduce the safety-utility tradeoff: conditioning an LLM to reject unsafe prompts can cause the LLM to falsely reject answering benign prompts, which lowers utility. We propose quantifying this tradeoff using False Refusal Rate (FRR). As an illustration, we introduce a novel test set to quantify FRR for cyberattack helpfulness risk. We find many LLMs able to successfully comply with "borderline" benign requests while still rejecting most unsafe requests. Finally, we quantify the utility of LLMs for automating a core cybersecurity task, that of exploiting software vulnerabilities. This is important because the offensive capabilities of LLMs are of intense interest; we quantify this by creating novel test sets for four representative problems. We find that models with coding capabilities perform better than those without, but that further work is needed for LLMs to become proficient at exploit generation. Our code is open source and can be used to evaluate other LLMs.
Managing Escalation in Off-the-Shelf Large Language Models
U.S. national security customers have begun to utilize large language models, including enterprise versions of ``off-the-shelf'' models (e.g., ChatGPT) familiar to the public. This uptake will likely accelerate. However, recent studies suggest that off-the-shelf large language models frequently suggest escalatory actions when prompted with geopolitical or strategic scenarios. We demonstrate two simple, non-technical interventions to control these tendencies. Introducing these interventions into the experimental wargame design of a recent study, we substantially reduce escalation throughout the game. Calls to restrict the use of large language models in national security applications are thus premature. The U.S. government is already, and will continue, employing large language models for scenario planning and suggesting courses of action. Rather than warning against such applications, this study acknowledges the imminent adoption of large language models, and provides actionable measures to align them with national security goals, including escalation management.
SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues
Malicious attackers can exploit large language models (LLMs) by engaging them in multi-turn dialogues to achieve harmful objectives, posing significant safety risks to society. To address this challenge, we propose a novel defense mechanism: SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues (STREAM). STREAM defends LLMs against multi-turn attacks while preserving their functional capabilities. Our approach involves constructing a human-annotated dataset, the Safety Reasoning Multi-turn Dialogues dataset, which is used to fine-tune a plug-and-play safety reasoning moderator. This model is designed to identify malicious intent hidden within multi-turn conversations and alert the target LLM of potential risks. We evaluate STREAM across multiple LLMs against prevalent multi-turn attack strategies. Experimental results demonstrate that our method significantly outperforms existing defense techniques, reducing the Attack Success Rate (ASR) by 51.2%, all while maintaining comparable LLM capability.
AutoAttacker: A Large Language Model Guided System to Implement Automatic Cyber-attacks
Large language models (LLMs) have demonstrated impressive results on natural language tasks, and security researchers are beginning to employ them in both offensive and defensive systems. In cyber-security, there have been multiple research efforts that utilize LLMs focusing on the pre-breach stage of attacks like phishing and malware generation. However, so far there lacks a comprehensive study regarding whether LLM-based systems can be leveraged to simulate the post-breach stage of attacks that are typically human-operated, or "hands-on-keyboard" attacks, under various attack techniques and environments. As LLMs inevitably advance, they may be able to automate both the pre- and post-breach attack stages. This shift may transform organizational attacks from rare, expert-led events to frequent, automated operations requiring no expertise and executed at automation speed and scale. This risks fundamentally changing global computer security and correspondingly causing substantial economic impacts, and a goal of this work is to better understand these risks now so we can better prepare for these inevitable ever-more-capable LLMs on the horizon. On the immediate impact side, this research serves three purposes. First, an automated LLM-based, post-breach exploitation framework can help analysts quickly test and continually improve their organization's network security posture against previously unseen attacks. Second, an LLM-based penetration test system can extend the effectiveness of red teams with a limited number of human analysts. Finally, this research can help defensive systems and teams learn to detect novel attack behaviors preemptively before their use in the wild....
Decomposing the Fundamentals of Creepy Stories
Fear is a universal concept; people crave it in urban legends, scary movies, and modern stories. Open questions remain, however, about why these stories are scary and more generally what scares people. In this study, we explore these questions by analyzing tens of thousands of scary stories on forums (known as subreddits) in a social media website, Reddit. We first explore how writing styles have evolved to keep these stories fresh before we analyze the stable core techniques writers use to make stories scary. We find that writers have changed the themes of their stories over years from haunted houses to school-related themes, body horror, and diseases. Yet some features remain stable; words associated with pseudo-human nouns, such as clown or devil are more common in scary stories than baselines. In addition, we collect a range of datasets that annotate sentences containing fear. We use these data to develop a high-accuracy fear detection neural network model, which is used to quantify where people express fear in scary stories. We find that sentences describing fear, and words most often seen in scary stories, spike at particular points in a story, possibly as a way to keep the readers on the edge of their seats until the story's conclusion. These results provide a new understanding of how authors cater to their readers, and how fear may manifest in stories.
Decoding Hate: Exploring Language Models' Reactions to Hate Speech
Hate speech is a harmful form of online expression, often manifesting as derogatory posts. It is a significant risk in digital environments. With the rise of Large Language Models (LLMs), there is concern about their potential to replicate hate speech patterns, given their training on vast amounts of unmoderated internet data. Understanding how LLMs respond to hate speech is crucial for their responsible deployment. However, the behaviour of LLMs towards hate speech has been limited compared. This paper investigates the reactions of seven state-of-the-art LLMs (LLaMA 2, Vicuna, LLaMA 3, Mistral, GPT-3.5, GPT-4, and Gemini Pro) to hate speech. Through qualitative analysis, we aim to reveal the spectrum of responses these models produce, highlighting their capacity to handle hate speech inputs. We also discuss strategies to mitigate hate speech generation by LLMs, particularly through fine-tuning and guideline guardrailing. Finally, we explore the models' responses to hate speech framed in politically correct language.
Chatbots in a Honeypot World
Question-and-answer agents like ChatGPT offer a novel tool for use as a potential honeypot interface in cyber security. By imitating Linux, Mac, and Windows terminal commands and providing an interface for TeamViewer, nmap, and ping, it is possible to create a dynamic environment that can adapt to the actions of attackers and provide insight into their tactics, techniques, and procedures (TTPs). The paper illustrates ten diverse tasks that a conversational agent or large language model might answer appropriately to the effects of command-line attacker. The original result features feasibility studies for ten model tasks meant for defensive teams to mimic expected honeypot interfaces with minimal risks. Ultimately, the usefulness outside of forensic activities stems from whether the dynamic honeypot can extend the time-to-conquer or otherwise delay attacker timelines short of reaching key network assets like databases or confidential information. While ongoing maintenance and monitoring may be required, ChatGPT's ability to detect and deflect malicious activity makes it a valuable option for organizations seeking to enhance their cyber security posture. Future work will focus on cybersecurity layers, including perimeter security, host virus detection, and data security.
Exploring Backdoor Vulnerabilities of Chat Models
Recent researches have shown that Large Language Models (LLMs) are susceptible to a security threat known as Backdoor Attack. The backdoored model will behave well in normal cases but exhibit malicious behaviours on inputs inserted with a specific backdoor trigger. Current backdoor studies on LLMs predominantly focus on instruction-tuned LLMs, while neglecting another realistic scenario where LLMs are fine-tuned on multi-turn conversational data to be chat models. Chat models are extensively adopted across various real-world scenarios, thus the security of chat models deserves increasing attention. Unfortunately, we point out that the flexible multi-turn interaction format instead increases the flexibility of trigger designs and amplifies the vulnerability of chat models to backdoor attacks. In this work, we reveal and achieve a novel backdoor attacking method on chat models by distributing multiple trigger scenarios across user inputs in different rounds, and making the backdoor be triggered only when all trigger scenarios have appeared in the historical conversations. Experimental results demonstrate that our method can achieve high attack success rates (e.g., over 90% ASR on Vicuna-7B) while successfully maintaining the normal capabilities of chat models on providing helpful responses to benign user requests. Also, the backdoor can not be easily removed by the downstream re-alignment, highlighting the importance of continued research and attention to the security concerns of chat models. Warning: This paper may contain toxic content.
LLM Security: Vulnerabilities, Attacks, Defenses, and Countermeasures
As large language models (LLMs) continue to evolve, it is critical to assess the security threats and vulnerabilities that may arise both during their training phase and after models have been deployed. This survey seeks to define and categorize the various attacks targeting LLMs, distinguishing between those that occur during the training phase and those that affect already trained models. A thorough analysis of these attacks is presented, alongside an exploration of defense mechanisms designed to mitigate such threats. Defenses are classified into two primary categories: prevention-based and detection-based defenses. Furthermore, our survey summarizes possible attacks and their corresponding defense strategies. It also provides an evaluation of the effectiveness of the known defense mechanisms for the different security threats. Our survey aims to offer a structured framework for securing LLMs, while also identifying areas that require further research to improve and strengthen defenses against emerging security challenges.
FLIRT: Feedback Loop In-context Red Teaming
Warning: this paper contains content that may be inappropriate or offensive. As generative models become available for public use in various applications, testing and analyzing vulnerabilities of these models has become a priority. Here we propose an automatic red teaming framework that evaluates a given model and exposes its vulnerabilities against unsafe and inappropriate content generation. Our framework uses in-context learning in a feedback loop to red team models and trigger them into unsafe content generation. We propose different in-context attack strategies to automatically learn effective and diverse adversarial prompts for text-to-image models. Our experiments demonstrate that compared to baseline approaches, our proposed strategy is significantly more effective in exposing vulnerabilities in Stable Diffusion (SD) model, even when the latter is enhanced with safety features. Furthermore, we demonstrate that the proposed framework is effective for red teaming text-to-text models, resulting in significantly higher toxic response generation rate compared to previously reported numbers.
SoK: Taxonomy and Evaluation of Prompt Security in Large Language Models
Large Language Models (LLMs) have rapidly become integral to real-world applications, powering services across diverse sectors. However, their widespread deployment has exposed critical security risks, particularly through jailbreak prompts that can bypass model alignment and induce harmful outputs. Despite intense research into both attack and defense techniques, the field remains fragmented: definitions, threat models, and evaluation criteria vary widely, impeding systematic progress and fair comparison. In this Systematization of Knowledge (SoK), we address these challenges by (1) proposing a holistic, multi-level taxonomy that organizes attacks, defenses, and vulnerabilities in LLM prompt security; (2) formalizing threat models and cost assumptions into machine-readable profiles for reproducible evaluation; (3) introducing an open-source evaluation toolkit for standardized, auditable comparison of attacks and defenses; (4) releasing JAILBREAKDB, the largest annotated dataset of jailbreak and benign prompts to date; and (5) presenting a comprehensive evaluation and leaderboard of state-of-the-art methods. Our work unifies fragmented research, provides rigorous foundations for future studies, and supports the development of robust, trustworthy LLMs suitable for high-stakes deployment.
Dynamics of Toxicity in Political Podcasts
Toxicity in digital media poses significant challenges, yet little attention has been given to its dynamics within the rapidly growing medium of podcasts. This paper addresses this gap by analyzing political podcast data to study the emergence and propagation of toxicity, focusing on conversation chains-structured reply patterns within podcast transcripts. Leveraging state-of-the-art transcription models and advanced conversational analysis techniques, we systematically examine toxic discourse in over 30 popular political podcasts in the United States. Our key contributions include: (1) creating a comprehensive dataset of transcribed and diarized political podcasts, identifying thousands of toxic instances using Google's Perspective API, (2) uncovering concerning trends where a majority of episodes contain at least one toxic instance, (3) introducing toxic conversation chains and analyzing their structural and linguistic properties, revealing characteristics such as longer durations, repetitive patterns, figurative language, and emotional cues tied to anger and annoyance, (4) identifying demand-related words like 'want', 'like', and 'know' as precursors to toxicity, and (5) developing predictive models to anticipate toxicity shifts based on annotated change points. Our findings provide critical insights into podcast toxicity and establish a foundation for future research on real-time monitoring and intervention mechanisms to foster healthier discourse in this influential medium.
On the Proactive Generation of Unsafe Images From Text-To-Image Models Using Benign Prompts
Text-to-image models like Stable Diffusion have had a profound impact on daily life by enabling the generation of photorealistic images from textual prompts, fostering creativity, and enhancing visual experiences across various applications. However, these models also pose risks. Previous studies have successfully demonstrated that manipulated prompts can elicit text-to-image models to generate unsafe images, e.g., hateful meme variants. Yet, these studies only unleash the harmful power of text-to-image models in a passive manner. In this work, we focus on the proactive generation of unsafe images using targeted benign prompts via poisoning attacks. We propose two poisoning attacks: a basic attack and a utility-preserving attack. We qualitatively and quantitatively evaluate the proposed attacks using four representative hateful memes and multiple query prompts. Experimental results indicate that text-to-image models are vulnerable to the basic attack even with five poisoning samples. However, the poisoning effect can inadvertently spread to non-targeted prompts, leading to undesirable side effects. Root cause analysis identifies conceptual similarity as an important contributing factor to the side effects. To address this, we introduce the utility-preserving attack as a viable mitigation strategy to maintain the attack stealthiness, while ensuring decent attack performance. Our findings underscore the potential risks of adopting text-to-image models in real-world scenarios, calling for future research and safety measures in this space.
From Facts to Insights: A Study on the Generation and Evaluation of Analytical Reports for Deciphering Earnings Calls
This paper explores the use of Large Language Models (LLMs) in the generation and evaluation of analytical reports derived from Earnings Calls (ECs). Addressing a current gap in research, we explore the generation of analytical reports with LLMs in a multi-agent framework, designing specialized agents that introduce diverse viewpoints and desirable topics of analysis into the report generation process. Through multiple analyses, we examine the alignment between generated and human-written reports and the impact of both individual and collective agents. Our findings suggest that the introduction of additional agents results in more insightful reports, although reports generated by human experts remain preferred in the majority of cases. Finally, we address the challenging issue of report evaluation, we examine the limitations and strengths of LLMs in assessing the quality of generated reports in different settings, revealing a significant correlation with human experts across multiple dimensions.
SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval 2020)
We present the results and main findings of SemEval-2020 Task 12 on Multilingual Offensive Language Identification in Social Media (OffensEval 2020). The task involves three subtasks corresponding to the hierarchical taxonomy of the OLID schema (Zampieri et al., 2019a) from OffensEval 2019. The task featured five languages: English, Arabic, Danish, Greek, and Turkish for Subtask A. In addition, English also featured Subtasks B and C. OffensEval 2020 was one of the most popular tasks at SemEval-2020 attracting a large number of participants across all subtasks and also across all languages. A total of 528 teams signed up to participate in the task, 145 teams submitted systems during the evaluation period, and 70 submitted system description papers.
In the Service of Online Order: Tackling Cyber-Bullying with Machine Learning and Affect Analysis
One of the burning problems lately in Japan has been cyber-bullying, or slandering and bullying people online. The problem has been especially noticed on unofficial Web sites of Japanese schools. Volunteers consisting of school personnel and PTA (Parent-Teacher Association) members have started Online Patrol to spot malicious contents within Web forums and blogs. In practise, Online Patrol assumes reading through the whole Web contents, which is a task difficult to perform manually. With this paper we introduce a research intended to help PTA members perform Online Patrol more efficiently. We aim to develop a set of tools that can automatically detect malicious entries and report them to PTA members. First, we collected cyber-bullying data from unofficial school Web sites. Then we performed analysis of this data in two ways. Firstly, we analysed the entries with a multifaceted affect analysis system in order to find distinctive features for cyber-bullying and apply them to a machine learning classifier. Secondly, we applied a SVM based machine learning method to train a classifier for detection of cyber-bullying. The system was able to classify cyber-bullying entries with 88.2% of balanced F-score.
Handling and Presenting Harmful Text in NLP Research
Text data can pose a risk of harm. However, the risks are not fully understood, and how to handle, present, and discuss harmful text in a safe way remains an unresolved issue in the NLP community. We provide an analytical framework categorising harms on three axes: (1) the harm type (e.g., misinformation, hate speech or racial stereotypes); (2) whether a harm is sought as a feature of the research design if explicitly studying harmful content (e.g., training a hate speech classifier), versus unsought if harmful content is encountered when working on unrelated problems (e.g., language generation or part-of-speech tagging); and (3) who it affects, from people (mis)represented in the data to those handling the data and those publishing on the data. We provide advice for practitioners, with concrete steps for mitigating harm in research and in publication. To assist implementation we introduce HarmCheck -- a documentation standard for handling and presenting harmful text in research.
The Psychogenic Machine: Simulating AI Psychosis, Delusion Reinforcement and Harm Enablement in Large Language Models
Background: Emerging reports of "AI psychosis" are on the rise, where user-LLM interactions may exacerbate or induce psychosis or adverse psychological symptoms. Whilst the sycophantic and agreeable nature of LLMs can be beneficial, it becomes a vector for harm by reinforcing delusional beliefs in vulnerable users. Methods: Psychosis-bench is a novel benchmark designed to systematically evaluate the psychogenicity of LLMs comprises 16 structured, 12-turn conversational scenarios simulating the progression of delusional themes(Erotic Delusions, Grandiose/Messianic Delusions, Referential Delusions) and potential harms. We evaluated eight prominent LLMs for Delusion Confirmation (DCS), Harm Enablement (HES), and Safety Intervention(SIS) across explicit and implicit conversational contexts. Findings: Across 1,536 simulated conversation turns, all LLMs demonstrated psychogenic potential, showing a strong tendency to perpetuate rather than challenge delusions (mean DCS of 0.91 pm0.88). Models frequently enabled harmful user requests (mean HES of 0.69 pm0.84) and offered safety interventions in only roughly a third of applicable turns (mean SIS of 0.37 pm0.48). 51 / 128 (39.8%) of scenarios had no safety interventions offered. Performance was significantly worse in implicit scenarios, models were more likely to confirm delusions and enable harm while offering fewer interventions (p < .001). A strong correlation was found between DCS and HES (rs = .77). Model performance varied widely, indicating that safety is not an emergent property of scale alone. Conclusion: This study establishes LLM psychogenicity as a quantifiable risk and underscores the urgent need for re-thinking how we train LLMs. We frame this issue not merely as a technical challenge but as a public health imperative requiring collaboration between developers, policymakers, and healthcare professionals.
COBRA Frames: Contextual Reasoning about Effects and Harms of Offensive Statements
Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance "your English is very good" may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement's offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors.
T2I-RiskyPrompt: A Benchmark for Safety Evaluation, Attack, and Defense on Text-to-Image Model
Using risky text prompts, such as pornography and violent prompts, to test the safety of text-to-image (T2I) models is a critical task. However, existing risky prompt datasets are limited in three key areas: 1) limited risky categories, 2) coarse-grained annotation, and 3) low effectiveness. To address these limitations, we introduce T2I-RiskyPrompt, a comprehensive benchmark designed for evaluating safety-related tasks in T2I models. Specifically, we first develop a hierarchical risk taxonomy, which consists of 6 primary categories and 14 fine-grained subcategories. Building upon this taxonomy, we construct a pipeline to collect and annotate risky prompts. Finally, we obtain 6,432 effective risky prompts, where each prompt is annotated with both hierarchical category labels and detailed risk reasons. Moreover, to facilitate the evaluation, we propose a reason-driven risky image detection method that explicitly aligns the MLLM with safety annotations. Based on T2I-RiskyPrompt, we conduct a comprehensive evaluation of eight T2I models, nine defense methods, five safety filters, and five attack strategies, offering nine key insights into the strengths and limitations of T2I model safety. Finally, we discuss potential applications of T2I-RiskyPrompt across various research fields. The dataset and code are provided in https://github.com/datar001/T2I-RiskyPrompt.
Measuring Harmfulness of Computer-Using Agents
Computer-using agents (CUAs), which autonomously control computers to perform multi-step actions, might pose significant safety risks if misused. Existing benchmarks mostly evaluate language models' (LMs) safety risks in chatbots or simple tool-usage scenarios, without granting full computer access. To better evaluate CUAs' misuse risks, we introduce a new benchmark: CUAHarm. CUAHarm consists of 104 expert-written realistic misuse risks, such as disabling firewalls, leaking confidential information, launching denial-of-service attacks, or installing backdoors. We provide a sandbox environment and rule-based verifiable rewards to measure CUAs' success rates in executing these tasks (e.g., whether the firewall is indeed disabled), not just refusal. We evaluate multiple frontier open-source and proprietary LMs, such as Claude Sonnet, GPT-4o, Gemini Pro 1.5, Llama-3.3-70B, and Mistral Large 2. Surprisingly, even without carefully designed jailbreaking prompts, these frontier LMs comply with executing these malicious tasks at a high success rate (e.g., 59% for Claude 3.7 Sonnet). Newer models show higher misuse rates: Claude 3.7 Sonnet succeeds on 15% more tasks than Claude 3.5. While these models are robust to common malicious prompts (e.g., creating a bomb) in chatbot settings, they behave unsafely as CUAs. We further evaluate a leading agentic framework (UI-TARS-1.5) and find that while it improves performance, it also amplifies misuse risks. Benign variants reveal refusals stem from alignment, not capability limits. To mitigate risks, we explore using LMs to monitor CUAs' actions and chain-of-thoughts (CoTs). Monitoring CUAs is significantly harder than chatbot outputs. Monitoring CoTs yields modest gains, with average detection accuracy at only 72%. Even with hierarchical summarization, improvement is limited to 4%. CUAHarm will be released at https://github.com/db-ol/CUAHarm.
SafeArena: Evaluating the Safety of Autonomous Web Agents
LLM-based agents are becoming increasingly proficient at solving web-based tasks. With this capability comes a greater risk of misuse for malicious purposes, such as posting misinformation in an online forum or selling illicit substances on a website. To evaluate these risks, we propose SafeArena, the first benchmark to focus on the deliberate misuse of web agents. SafeArena comprises 250 safe and 250 harmful tasks across four websites. We classify the harmful tasks into five harm categories -- misinformation, illegal activity, harassment, cybercrime, and social bias, designed to assess realistic misuses of web agents. We evaluate leading LLM-based web agents, including GPT-4o, Claude-3.5 Sonnet, Qwen-2-VL 72B, and Llama-3.2 90B, on our benchmark. To systematically assess their susceptibility to harmful tasks, we introduce the Agent Risk Assessment framework that categorizes agent behavior across four risk levels. We find agents are surprisingly compliant with malicious requests, with GPT-4o and Qwen-2 completing 34.7% and 27.3% of harmful requests, respectively. Our findings highlight the urgent need for safety alignment procedures for web agents. Our benchmark is available here: https://safearena.github.io
Detecting Abusive Albanian
The ever growing usage of social media in the recent years has had a direct impact on the increased presence of hate speech and offensive speech in online platforms. Research on effective detection of such content has mainly focused on English and a few other widespread languages, while the leftover majority fail to have the same work put into them and thus cannot benefit from the steady advancements made in the field. In this paper we present Shaj, an annotated Albanian dataset for hate speech and offensive speech that has been constructed from user-generated content on various social media platforms. Its annotation follows the hierarchical schema introduced in OffensEval. The dataset is tested using three different classification models, the best of which achieves an F1 score of 0.77 for the identification of offensive language, 0.64 F1 score for the automatic categorization of offensive types and lastly, 0.52 F1 score for the offensive language target identification.
Recent Advances in Attack and Defense Approaches of Large Language Models
Large Language Models (LLMs) have revolutionized artificial intelligence and machine learning through their advanced text processing and generating capabilities. However, their widespread deployment has raised significant safety and reliability concerns. Established vulnerabilities in deep neural networks, coupled with emerging threat models, may compromise security evaluations and create a false sense of security. Given the extensive research in the field of LLM security, we believe that summarizing the current state of affairs will help the research community better understand the present landscape and inform future developments. This paper reviews current research on LLM vulnerabilities and threats, and evaluates the effectiveness of contemporary defense mechanisms. We analyze recent studies on attack vectors and model weaknesses, providing insights into attack mechanisms and the evolving threat landscape. We also examine current defense strategies, highlighting their strengths and limitations. By contrasting advancements in attack and defense methodologies, we identify research gaps and propose future directions to enhance LLM security. Our goal is to advance the understanding of LLM safety challenges and guide the development of more robust security measures.
Attack Prompt Generation for Red Teaming and Defending Large Language Models
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content. Previous research constructs attack prompts via manual or automatic methods, which have their own limitations on construction cost and quality. To address these issues, we propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts. Specifically, considering the impressive capabilities of newly emerged LLMs, we propose an attack framework to instruct LLMs to mimic human-generated prompts through in-context learning. Furthermore, we propose a defense framework that fine-tunes victim LLMs through iterative interactions with the attack framework to enhance their safety against red teaming attacks. Extensive experiments on different LLMs validate the effectiveness of our proposed attack and defense frameworks. Additionally, we release a series of attack prompts datasets named SAP with varying sizes, facilitating the safety evaluation and enhancement of more LLMs. Our code and dataset is available on https://github.com/Aatrox103/SAP .
SPECTRE: Conditional System Prompt Poisoning to Hijack LLMs
Large Language Models (LLMs) are increasingly deployed via third-party system prompts downloaded from public marketplaces. We identify a critical supply-chain vulnerability: conditional system prompt poisoning, where an adversary injects a ``sleeper agent'' into a benign-looking prompt. Unlike traditional jailbreaks that aim for broad refusal-breaking, our proposed framework, SPECTRE, optimizes system prompts to trigger LLMs to output targeted, compromised responses only for specific queries (e.g., ``Who should I vote for the US President?'') while maintaining high utility on benign inputs. Operating in a strict black-box setting without model weight access, SPECTRE utilizes a two-stage optimization including a global semantic search followed by a greedy lexical refinement. Tested on open-source models and commercial APIs (GPT-4o-mini, GPT-3.5), SPECTRE achieves up to 70% F1 reduction on targeted queries with minimal degradation to general capabilities. We further demonstrate that these poisoned prompts evade standard defenses, including perplexity filters and typo-correction, by exploiting the natural noise found in real-world system prompts. Our code and data are available at https://github.com/vietph34/CAIN. WARNING: Our paper contains examples that might be sensitive to the readers!
Dynamic Risk Assessments for Offensive Cybersecurity Agents
Foundation models are increasingly becoming better autonomous programmers, raising the prospect that they could also automate dangerous offensive cyber-operations. Current frontier model audits probe the cybersecurity risks of such agents, but most fail to account for the degrees of freedom available to adversaries in the real world. In particular, with strong verifiers and financial incentives, agents for offensive cybersecurity are amenable to iterative improvement by would-be adversaries. We argue that assessments should take into account an expanded threat model in the context of cybersecurity, emphasizing the varying degrees of freedom that an adversary may possess in stateful and non-stateful environments within a fixed compute budget. We show that even with a relatively small compute budget (8 H100 GPU Hours in our study), adversaries can improve an agent's cybersecurity capability on InterCode CTF by more than 40\% relative to the baseline -- without any external assistance. These results highlight the need to evaluate agents' cybersecurity risk in a dynamic manner, painting a more representative picture of risk.
Incivility in Open Source Projects: A Comprehensive Annotated Dataset of Locked GitHub Issue Threads
In the dynamic landscape of open source software (OSS) development, understanding and addressing incivility within issue discussions is crucial for fostering healthy and productive collaborations. This paper presents a curated dataset of 404 locked GitHub issue discussion threads and 5961 individual comments, collected from 213 OSS projects. We annotated the comments with various categories of incivility using Tone Bearing Discussion Features (TBDFs), and, for each issue thread, we annotated the triggers, targets, and consequences of incivility. We observed that Bitter frustration, Impatience, and Mocking are the most prevalent TBDFs exhibited in our dataset. The most common triggers, targets, and consequences of incivility include Failed use of tool/code or error messages, People, and Discontinued further discussion, respectively. This dataset can serve as a valuable resource for analyzing incivility in OSS and improving automated tools to detect and mitigate such behavior.
WLV-RIT at SemEval-2021 Task 5: A Neural Transformer Framework for Detecting Toxic Spans
In recent years, the widespread use of social media has led to an increase in the generation of toxic and offensive content on online platforms. In response, social media platforms have worked on developing automatic detection methods and employing human moderators to cope with this deluge of offensive content. While various state-of-the-art statistical models have been applied to detect toxic posts, there are only a few studies that focus on detecting the words or expressions that make a post offensive. This motivates the organization of the SemEval-2021 Task 5: Toxic Spans Detection competition, which has provided participants with a dataset containing toxic spans annotation in English posts. In this paper, we present the WLV-RIT entry for the SemEval-2021 Task 5. Our best performing neural transformer model achieves an 0.68 F1-Score. Furthermore, we develop an open-source framework for multilingual detection of offensive spans, i.e., MUDES, based on neural transformers that detect toxic spans in texts.
From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows
Autonomous AI agents powered by large language models (LLMs) with structured function-calling interfaces have dramatically expanded capabilities for real-time data retrieval, complex computation, and multi-step orchestration. Yet, the explosive proliferation of plugins, connectors, and inter-agent protocols has outpaced discovery mechanisms and security practices, resulting in brittle integrations vulnerable to diverse threats. In this survey, we introduce the first unified, end-to-end threat model for LLM-agent ecosystems, spanning host-to-tool and agent-to-agent communications, formalize adversary capabilities and attacker objectives, and catalog over thirty attack techniques. Specifically, we organized the threat model into four domains: Input Manipulation (e.g., prompt injections, long-context hijacks, multimodal adversarial inputs), Model Compromise (e.g., prompt- and parameter-level backdoors, composite and encrypted multi-backdoors, poisoning strategies), System and Privacy Attacks (e.g., speculative side-channels, membership inference, retrieval poisoning, social-engineering simulations), and Protocol Vulnerabilities (e.g., exploits in Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent Network Protocol (ANP), and Agent-to-Agent (A2A) protocol). For each category, we review representative scenarios, assess real-world feasibility, and evaluate existing defenses. Building on our threat taxonomy, we identify key open challenges and future research directions, such as securing MCP deployments through dynamic trust management and cryptographic provenance tracking; designing and hardening Agentic Web Interfaces; and achieving resilience in multi-agent and federated environments. Our work provides a comprehensive reference to guide the design of robust defense mechanisms and establish best practices for resilient LLM-agent workflows.
A ground-truth dataset of real security patches
Training machine learning approaches for vulnerability identification and producing reliable tools to assist developers in implementing quality software -- free of vulnerabilities -- is challenging due to the lack of large datasets and real data. Researchers have been looking at these issues and building datasets. However, these datasets usually miss natural language artifacts and programming language diversity. We scraped the entire CVE details database for GitHub references and augmented the data with 3 security-related datasets. We used the data to create a ground-truth dataset of natural language artifacts (such as commit messages, commits comments, and summaries), meta-data and code changes. Our dataset integrates a total of 8057 security-relevant commits -- the equivalent to 5942 security patches -- from 1339 different projects spanning 146 different types of vulnerabilities and 20 languages. A dataset of 110k non-security-related commits is also provided. Data and scripts are all available on GitHub. Data is stored in a .CSV file. Codebases can be downloaded using our scripts. Our dataset is a valuable asset to answer research questions on different topics such as the identification of security-relevant information using NLP models; software engineering and security best practices; and, vulnerability detection and patching; and, security program analysis.
Breaking Agent Backbones: Evaluating the Security of Backbone LLMs in AI Agents
AI agents powered by large language models (LLMs) are being deployed at scale, yet we lack a systematic understanding of how the choice of backbone LLM affects agent security. The non-deterministic sequential nature of AI agents complicates security modeling, while the integration of traditional software with AI components entangles novel LLM vulnerabilities with conventional security risks. Existing frameworks only partially address these challenges as they either capture specific vulnerabilities only or require modeling of complete agents. To address these limitations, we introduce threat snapshots: a framework that isolates specific states in an agent's execution flow where LLM vulnerabilities manifest, enabling the systematic identification and categorization of security risks that propagate from the LLM to the agent level. We apply this framework to construct the b^3 benchmark, a security benchmark based on 194331 unique crowdsourced adversarial attacks. We then evaluate 31 popular LLMs with it, revealing, among other insights, that enhanced reasoning capabilities improve security, while model size does not correlate with security. We release our benchmark, dataset, and evaluation code to facilitate widespread adoption by LLM providers and practitioners, offering guidance for agent developers and incentivizing model developers to prioritize backbone security improvements.
RTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios?
Large language models (LLMs) and small language models (SLMs) are being adopted at remarkable speed, although their safety still remains a serious concern. With the advent of multilingual S/LLMs, the question now becomes a matter of scale: can we expand multilingual safety evaluations of these models with the same velocity at which they are deployed? To this end we introduce RTP-LX, a human-transcreated and human-annotated corpus of toxic prompts and outputs in 28 languages. RTP-LX follows participatory design practices, and a portion of the corpus is especially designed to detect culturally-specific toxic language. We evaluate seven S/LLMs on their ability to detect toxic content in a culturally-sensitive, multilingual scenario. We find that, although they typically score acceptably in terms of accuracy, they have low agreement with human judges when judging holistically the toxicity of a prompt, and have difficulty discerning harm in context-dependent scenarios, particularly with subtle-yet-harmful content (e.g. microagressions, bias). We release of this dataset to contribute to further reduce harmful uses of these models and improve their safe deployment.
ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection
Toxic language detection systems often falsely flag text that contains minority group mentions as toxic, as those groups are often the targets of online hate. Such over-reliance on spurious correlations also causes systems to struggle with detecting implicitly toxic language. To help mitigate these issues, we create ToxiGen, a new large-scale and machine-generated dataset of 274k toxic and benign statements about 13 minority groups. We develop a demonstration-based prompting framework and an adversarial classifier-in-the-loop decoding method to generate subtly toxic and benign text with a massive pretrained language model. Controlling machine generation in this way allows ToxiGen to cover implicitly toxic text at a larger scale, and about more demographic groups, than previous resources of human-written text. We conduct a human evaluation on a challenging subset of ToxiGen and find that annotators struggle to distinguish machine-generated text from human-written language. We also find that 94.5% of toxic examples are labeled as hate speech by human annotators. Using three publicly-available datasets, we show that finetuning a toxicity classifier on our data improves its performance on human-written data substantially. We also demonstrate that ToxiGen can be used to fight machine-generated toxicity as finetuning improves the classifier significantly on our evaluation subset. Our code and data can be found at https://github.com/microsoft/ToxiGen.
Command A: An Enterprise-Ready Large Language Model
In this report we describe the development of Command A, a powerful large language model purpose-built to excel at real-world enterprise use cases. Command A is an agent-optimised and multilingual-capable model, with support for 23 languages of global business, and a novel hybrid architecture balancing efficiency with top of the range performance. It offers best-in-class Retrieval Augmented Generation (RAG) capabilities with grounding and tool use to automate sophisticated business processes. These abilities are achieved through a decentralised training approach, including self-refinement algorithms and model merging techniques. We also include results for Command R7B which shares capability and architectural similarities to Command A. Weights for both models have been released for research purposes. This technical report details our original training pipeline and presents an extensive evaluation of our models across a suite of enterprise-relevant tasks and public benchmarks, demonstrating excellent performance and efficiency.
Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Warning: This paper contains examples of harmful language, and reader discretion is recommended. The increasing open release of powerful large language models (LLMs) has facilitated the development of downstream applications by reducing the essential cost of data annotation and computation. To ensure AI safety, extensive safety-alignment measures have been conducted to armor these models against malicious use (primarily hard prompt attack). However, beneath the seemingly resilient facade of the armor, there might lurk a shadow. By simply tuning on 100 malicious examples with 1 GPU hour, these safely aligned LLMs can be easily subverted to generate harmful content. Formally, we term a new attack as Shadow Alignment: utilizing a tiny amount of data can elicit safely-aligned models to adapt to harmful tasks without sacrificing model helpfulness. Remarkably, the subverted models retain their capability to respond appropriately to regular inquiries. Experiments across 8 models released by 5 different organizations (LLaMa-2, Falcon, InternLM, BaiChuan2, Vicuna) demonstrate the effectiveness of shadow alignment attack. Besides, the single-turn English-only attack successfully transfers to multi-turn dialogue and other languages. This study serves as a clarion call for a collective effort to overhaul and fortify the safety of open-source LLMs against malicious attackers.
BountyBench: Dollar Impact of AI Agent Attackers and Defenders on Real-World Cybersecurity Systems
AI agents have the potential to significantly alter the cybersecurity landscape. To help us understand this change, we introduce the first framework to capture offensive and defensive cyber-capabilities in evolving real-world systems. Instantiating this framework with BountyBench, we set up 25 systems with complex, real-world codebases. To capture the vulnerability lifecycle, we define three task types: Detect (detecting a new vulnerability), Exploit (exploiting a specific vulnerability), and Patch (patching a specific vulnerability). For Detect, we construct a new success indicator, which is general across vulnerability types and provides localized evaluation. We manually set up the environment for each system, including installing packages, setting up server(s), and hydrating database(s). We add 40 bug bounties, which are vulnerabilities with monetary awards from \10 to 30,485, and cover 9 of the OWASP Top 10 Risks. To modulate task difficulty, we devise a new strategy based on information to guide detection, interpolating from identifying a zero day to exploiting a specific vulnerability. We evaluate 5 agents: Claude Code, OpenAI Codex CLI, and custom agents with GPT-4.1, Gemini 2.5 Pro Preview, and Claude 3.7 Sonnet Thinking. Given up to three attempts, the top-performing agents are Claude Code (5% on Detect, mapping to \1,350), Custom Agent with Claude 3.7 Sonnet Thinking (5% on Detect, mapping to 1,025; 67.5% on Exploit), and OpenAI Codex CLI (5% on Detect, mapping to \2,400; 90% on Patch, mapping to 14,422). OpenAI Codex CLI and Claude Code are more capable at defense, achieving higher Patch scores of 90% and 87.5%, compared to Exploit scores of 32.5% and 57.5% respectively; in contrast, the custom agents are relatively balanced between offense and defense, achieving Exploit scores of 40-67.5% and Patch scores of 45-60%.
SecureCode v2.0: A Production-Grade Dataset for Training Security-Aware Code Generation Models
AI assistants produce vulnerable code in 45% of security-relevant scenarios, introducing flaws into production systems at scale. Yet existing secure coding datasets fall short. They lack incident grounding, don't provide the scale modern training requires, and miss the operational security context developers need for production deployments. We present SecureCode v2.0, a production-grade dataset of 1,215 security-focused coding examples that passed structural validation and expert security review. Every example ties to actual documented security incidents with CVE references, provides vulnerable and secure implementations, demonstrates concrete attacks, and includes defense-in-depth operational guidance. The dataset covers 11 vulnerability categories (complete OWASP Top 10:2025 plus AI/ML Security Threats) across 11 languages (Python, JavaScript, Java, Go, PHP, C#, TypeScript, Ruby, Rust, Kotlin, and YAML for infrastructure-as-code). Our quality assurance framework ensures complete incident grounding. Each example includes SIEM integration strategies, infrastructure hardening recommendations (Docker, AppArmor, WAF configurations), and testing approaches using language-appropriate frameworks. The dataset uses a 4-turn conversational structure mirroring actual developer-AI interactions, escalating from basic implementations to advanced security considerations and defense-in-depth guidance. Our contributions: (1) 1,215 rigorously validated examples split into 989 training, 122 validation, and 104 test sets, (2) an automated validation framework ensuring dataset consistency, (3) a 4-turn conversational structure capturing realistic security workflows, (4) comprehensive operational security guidance with SIEM integration strategies, (5) complete language-specific implementation fidelity, and (6) open-source release of data, validation tools, and benchmarking protocols.
CT-AGRG: Automated Abnormality-Guided Report Generation from 3D Chest CT Volumes
The rapid increase of computed tomography (CT) scans and their time-consuming manual analysis have created an urgent need for robust automated analysis techniques in clinical settings. These aim to assist radiologists and help them managing their growing workload. Existing methods typically generate entire reports directly from 3D CT images, without explicitly focusing on observed abnormalities. This unguided approach often results in repetitive content or incomplete reports, failing to prioritize anomaly-specific descriptions. We propose a new anomaly-guided report generation model, which first predicts abnormalities and then generates targeted descriptions for each. Evaluation on a public dataset demonstrates significant improvements in report quality and clinical relevance. We extend our work by conducting an ablation study to demonstrate its effectiveness.
Be Careful about Poisoned Word Embeddings: Exploring the Vulnerability of the Embedding Layers in NLP Models
Recent studies have revealed a security threat to natural language processing (NLP) models, called the Backdoor Attack. Victim models can maintain competitive performance on clean samples while behaving abnormally on samples with a specific trigger word inserted. Previous backdoor attacking methods usually assume that attackers have a certain degree of data knowledge, either the dataset which users would use or proxy datasets for a similar task, for implementing the data poisoning procedure. However, in this paper, we find that it is possible to hack the model in a data-free way by modifying one single word embedding vector, with almost no accuracy sacrificed on clean samples. Experimental results on sentiment analysis and sentence-pair classification tasks show that our method is more efficient and stealthier. We hope this work can raise the awareness of such a critical security risk hidden in the embedding layers of NLP models. Our code is available at https://github.com/lancopku/Embedding-Poisoning.
Large Language Models for Cyber Security: A Systematic Literature Review
The rapid advancement of Large Language Models (LLMs) has opened up new opportunities for leveraging artificial intelligence in various domains, including cybersecurity. As the volume and sophistication of cyber threats continue to grow, there is an increasing need for intelligent systems that can automatically detect vulnerabilities, analyze malware, and respond to attacks. In this survey, we conduct a comprehensive review of the literature on the application of LLMs in cybersecurity (LLM4Security). By comprehensively collecting over 30K relevant papers and systematically analyzing 127 papers from top security and software engineering venues, we aim to provide a holistic view of how LLMs are being used to solve diverse problems across the cybersecurity domain. Through our analysis, we identify several key findings. First, we observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection. Second, we find that the datasets used for training and evaluating LLMs in these tasks are often limited in size and diversity, highlighting the need for more comprehensive and representative datasets. Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training. Finally, we discuss the main challenges and opportunities for future research in LLM4Security, including the need for more interpretable and explainable models, the importance of addressing data privacy and security concerns, and the potential for leveraging LLMs for proactive defense and threat hunting. Overall, our survey provides a comprehensive overview of the current state-of-the-art in LLM4Security and identifies several promising directions for future research.
Multi-lingual Multi-turn Automated Red Teaming for LLMs
Language Model Models (LLMs) have improved dramatically in the past few years, increasing their adoption and the scope of their capabilities over time. A significant amount of work is dedicated to ``model alignment'', i.e., preventing LLMs to generate unsafe responses when deployed into customer-facing applications. One popular method to evaluate safety risks is red-teaming, where agents attempt to bypass alignment by crafting elaborate prompts that trigger unsafe responses from a model. Standard human-driven red-teaming is costly, time-consuming and rarely covers all the recent features (e.g., multi-lingual, multi-modal aspects), while proposed automation methods only cover a small subset of LLMs capabilities (i.e., English or single-turn). We present Multi-lingual Multi-turn Automated Red Teaming (MM-ART), a method to fully automate conversational, multi-lingual red-teaming operations and quickly identify prompts leading to unsafe responses. Through extensive experiments on different languages, we show the studied LLMs are on average 71\% more vulnerable after a 5-turn conversation in English than after the initial turn. For conversations in non-English languages, models display up to 195\% more safety vulnerabilities than the standard single-turn English approach, confirming the need for automated red-teaming methods matching LLMs capabilities.
ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming
When building Large Language Models (LLMs), it is paramount to bear safety in mind and protect them with guardrails. Indeed, LLMs should never generate content promoting or normalizing harmful, illegal, or unethical behavior that may contribute to harm to individuals or society. This principle applies to both normal and adversarial use. In response, we introduce ALERT, a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy. It is designed to evaluate the safety of LLMs through red teaming methodologies and consists of more than 45k instructions categorized using our novel taxonomy. By subjecting LLMs to adversarial testing scenarios, ALERT aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models. Furthermore, the fine-grained taxonomy enables researchers to perform an in-depth evaluation that also helps one to assess the alignment with various policies. In our experiments, we extensively evaluate 10 popular open- and closed-source LLMs and demonstrate that many of them still struggle to attain reasonable levels of safety.
Exploring the Role of Large Language Models in Cybersecurity: A Systematic Survey
With the rapid development of technology and the acceleration of digitalisation, the frequency and complexity of cyber security threats are increasing. Traditional cybersecurity approaches, often based on static rules and predefined scenarios, are struggling to adapt to the rapidly evolving nature of modern cyberattacks. There is an urgent need for more adaptive and intelligent defence strategies. The emergence of Large Language Model (LLM) provides an innovative solution to cope with the increasingly severe cyber threats, and its potential in analysing complex attack patterns, predicting threats and assisting real-time response has attracted a lot of attention in the field of cybersecurity, and exploring how to effectively use LLM to defend against cyberattacks has become a hot topic in the current research field. This survey examines the applications of LLM from the perspective of the cyber attack lifecycle, focusing on the three phases of defense reconnaissance, foothold establishment, and lateral movement, and it analyzes the potential of LLMs in Cyber Threat Intelligence (CTI) tasks. Meanwhile, we investigate how LLM-based security solutions are deployed and applied in different network scenarios. It also summarizes the internal and external risk issues faced by LLM during its application. Finally, this survey also points out the facing risk issues and possible future research directions in this domain.
DeepKnown-Guard: A Proprietary Model-Based Safety Response Framework for AI Agents
With the widespread application of Large Language Models (LLMs), their associated security issues have become increasingly prominent, severely constraining their trustworthy deployment in critical domains. This paper proposes a novel safety response framework designed to systematically safeguard LLMs at both the input and output levels. At the input level, the framework employs a supervised fine-tuning-based safety classification model. Through a fine-grained four-tier taxonomy (Safe, Unsafe, Conditionally Safe, Focused Attention), it performs precise risk identification and differentiated handling of user queries, significantly enhancing risk coverage and business scenario adaptability, and achieving a risk recall rate of 99.3%. At the output level, the framework integrates Retrieval-Augmented Generation (RAG) with a specifically fine-tuned interpretation model, ensuring all responses are grounded in a real-time, trustworthy knowledge base. This approach eliminates information fabrication and enables result traceability. Experimental results demonstrate that our proposed safety control model achieves a significantly higher safety score on public safety evaluation benchmarks compared to the baseline model, TinyR1-Safety-8B. Furthermore, on our proprietary high-risk test set, the framework's components attained a perfect 100% safety score, validating their exceptional protective capabilities in complex risk scenarios. This research provides an effective engineering pathway for building high-security, high-trust LLM applications.
SurrogatePrompt: Bypassing the Safety Filter of Text-To-Image Models via Substitution
Advanced text-to-image models such as DALL-E 2 and Midjourney possess the capacity to generate highly realistic images, raising significant concerns regarding the potential proliferation of unsafe content. This includes adult, violent, or deceptive imagery of political figures. Despite claims of rigorous safety mechanisms implemented in these models to restrict the generation of not-safe-for-work (NSFW) content, we successfully devise and exhibit the first prompt attacks on Midjourney, resulting in the production of abundant photorealistic NSFW images. We reveal the fundamental principles of such prompt attacks and suggest strategically substituting high-risk sections within a suspect prompt to evade closed-source safety measures. Our novel framework, SurrogatePrompt, systematically generates attack prompts, utilizing large language models, image-to-text, and image-to-image modules to automate attack prompt creation at scale. Evaluation results disclose an 88% success rate in bypassing Midjourney's proprietary safety filter with our attack prompts, leading to the generation of counterfeit images depicting political figures in violent scenarios. Both subjective and objective assessments validate that the images generated from our attack prompts present considerable safety hazards.
OR-Bench: An Over-Refusal Benchmark for Large Language Models
Large Language Models (LLMs) require careful safety alignment to prevent malicious outputs. While significant research focuses on mitigating harmful content generation, the enhanced safety often come with the side effect of over-refusal, where LLMs may reject innocuous prompts and become less helpful. Although the issue of over-refusal has been empirically observed, a systematic measurement is challenging due to the difficulty of crafting prompts that appear harmful but are benign. This study proposes a novel method for automatically generating large-scale sets of "seemingly toxic prompts" (benign prompts likely rejected by LLMs). Leveraging this technique, we introduce OR-Bench, the first large-scale over-refusal benchmark. OR-Bench comprises 80,000 seemingly toxic prompts across 10 common rejection categories, a subset of around 1,000 hard prompts that are challenging even for state-of-the-art LLMs, and an additional 600 toxic prompts to prevent indiscriminate responses. We then conduct a comprehensive study to measure the over-refusal of 25 popular LLMs across 8 model families. Our datasets are available at https://huggingface.co/datasets/bench-llm/or-bench and the demo can be found at https://huggingface.co/spaces/bench-llm/or-bench. We hope this benchmark can help the community develop better safety aligned models.
PropensityBench: Evaluating Latent Safety Risks in Large Language Models via an Agentic Approach
Recent advances in Large Language Models (LLMs) have sparked concerns over their potential to acquire and misuse dangerous or high-risk capabilities, posing frontier risks. Current safety evaluations primarily test for what a model can do - its capabilities - without assessing what it would do if endowed with high-risk capabilities. This leaves a critical blind spot: models may strategically conceal capabilities or rapidly acquire them, while harboring latent inclinations toward misuse. We argue that propensity - the likelihood of a model to pursue harmful actions if empowered - is a critical, yet underexplored, axis of safety evaluation. We present PropensityBench, a novel benchmark framework that assesses the proclivity of models to engage in risky behaviors when equipped with simulated dangerous capabilities using proxy tools. Our framework includes 5,874 scenarios with 6,648 tools spanning four high-risk domains: cybersecurity, self-proliferation, biosecurity, and chemical security. We simulate access to powerful capabilities via a controlled agentic environment and evaluate the models' choices under varying operational pressures that reflect real-world constraints or incentives models may encounter, such as resource scarcity or gaining more autonomy. Across open-source and proprietary frontier models, we uncover 9 alarming signs of propensity: models frequently choose high-risk tools when under pressure, despite lacking the capability to execute such actions unaided. These findings call for a shift from static capability audits toward dynamic propensity assessments as a prerequisite for deploying frontier AI systems safely. Our code is available at https://github.com/scaleapi/propensity-evaluation.
LLM-based event log analysis techniques: A survey
Event log analysis is an important task that security professionals undertake. Event logs record key information on activities that occur on computing devices, and due to the substantial number of events generated, they consume a large amount of time and resources to analyse. This demanding and repetitive task is also prone to errors. To address these concerns, researchers have developed automated techniques to improve the event log analysis process. Large Language Models (LLMs) have recently demonstrated the ability to successfully perform a wide range of tasks that individuals would usually partake in, to high standards, and at a pace and degree of complexity that outperform humans. Due to this, researchers are rapidly investigating the use of LLMs for event log analysis. This includes fine-tuning, Retrieval-Augmented Generation (RAG) and in-context learning, which affect performance. These works demonstrate good progress, yet there is a need to understand the developing body of knowledge, identify commonalities between works, and identify key challenges and potential solutions to further developments in this domain. This paper aims to survey LLM-based event log analysis techniques, providing readers with an in-depth overview of the domain, gaps identified in previous research, and concluding with potential avenues to explore in future.
