Job - Job matching Alibaba-NLP/gte-multilingual-base (v2)
Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- full_en
- full_de
- full_es
- full_zh
- mix
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v2")
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
full_en |
full_es |
full_de |
full_zh |
mix_es |
mix_de |
mix_zh |
| cosine_accuracy@1 |
0.6667 |
0.1243 |
0.2956 |
0.6796 |
0.7088 |
0.6485 |
0.7667 |
| cosine_accuracy@20 |
0.9905 |
1.0 |
0.9754 |
0.9806 |
0.9553 |
0.9324 |
0.9843 |
| cosine_accuracy@50 |
0.9905 |
1.0 |
0.9852 |
0.9903 |
0.9802 |
0.9683 |
0.9932 |
| cosine_accuracy@100 |
0.9905 |
1.0 |
0.9901 |
0.9903 |
0.9901 |
0.9849 |
0.9958 |
| cosine_accuracy@150 |
0.9905 |
1.0 |
0.9901 |
0.9903 |
0.9938 |
0.9886 |
0.9974 |
| cosine_accuracy@200 |
0.9905 |
1.0 |
0.9901 |
0.9903 |
0.9958 |
0.9938 |
0.9979 |
| cosine_precision@1 |
0.6667 |
0.1243 |
0.2956 |
0.6796 |
0.7088 |
0.6485 |
0.7667 |
| cosine_precision@20 |
0.5148 |
0.5759 |
0.5103 |
0.4883 |
0.1216 |
0.1209 |
0.1387 |
| cosine_precision@50 |
0.32 |
0.3923 |
0.3694 |
0.2963 |
0.0512 |
0.0514 |
0.0581 |
| cosine_precision@100 |
0.1905 |
0.2566 |
0.2397 |
0.1788 |
0.0261 |
0.0265 |
0.0296 |
| cosine_precision@150 |
0.1362 |
0.1928 |
0.1808 |
0.1278 |
0.0175 |
0.0179 |
0.0199 |
| cosine_precision@200 |
0.1054 |
0.1528 |
0.1462 |
0.0999 |
0.0132 |
0.0135 |
0.0149 |
| cosine_recall@1 |
0.0685 |
0.0036 |
0.0111 |
0.0693 |
0.2738 |
0.2436 |
0.2569 |
| cosine_recall@20 |
0.5491 |
0.3853 |
0.3208 |
0.5251 |
0.899 |
0.8787 |
0.9157 |
| cosine_recall@50 |
0.7554 |
0.566 |
0.5042 |
0.7083 |
0.9459 |
0.932 |
0.9583 |
| cosine_recall@100 |
0.8503 |
0.6899 |
0.6173 |
0.8169 |
0.9651 |
0.9596 |
0.9765 |
| cosine_recall@150 |
0.8995 |
0.754 |
0.6848 |
0.8613 |
0.9732 |
0.9718 |
0.9834 |
| cosine_recall@200 |
0.9208 |
0.7858 |
0.7253 |
0.8898 |
0.9791 |
0.98 |
0.9865 |
| cosine_ndcg@1 |
0.6667 |
0.1243 |
0.2956 |
0.6796 |
0.7088 |
0.6485 |
0.7667 |
| cosine_ndcg@20 |
0.6952 |
0.6169 |
0.5378 |
0.6681 |
0.7815 |
0.7448 |
0.8002 |
| cosine_ndcg@50 |
0.723 |
0.5914 |
0.5288 |
0.6857 |
0.7944 |
0.7595 |
0.8125 |
| cosine_ndcg@100 |
0.7733 |
0.6235 |
0.5552 |
0.7379 |
0.7986 |
0.7657 |
0.8167 |
| cosine_ndcg@150 |
0.7947 |
0.6557 |
0.5888 |
0.7577 |
0.8001 |
0.7682 |
0.8181 |
| cosine_ndcg@200 |
0.8039 |
0.6717 |
0.6092 |
0.7697 |
0.8012 |
0.7696 |
0.8187 |
| cosine_mrr@1 |
0.6667 |
0.1243 |
0.2956 |
0.6796 |
0.7088 |
0.6485 |
0.7667 |
| cosine_mrr@20 |
0.8183 |
0.5581 |
0.5165 |
0.8159 |
0.7804 |
0.7324 |
0.8422 |
| cosine_mrr@50 |
0.8183 |
0.5581 |
0.5168 |
0.8163 |
0.7813 |
0.7335 |
0.8425 |
| cosine_mrr@100 |
0.8183 |
0.5581 |
0.5168 |
0.8163 |
0.7814 |
0.7338 |
0.8425 |
| cosine_mrr@150 |
0.8183 |
0.5581 |
0.5168 |
0.8163 |
0.7814 |
0.7338 |
0.8425 |
| cosine_mrr@200 |
0.8183 |
0.5581 |
0.5168 |
0.8163 |
0.7814 |
0.7338 |
0.8426 |
| cosine_map@1 |
0.6667 |
0.1243 |
0.2956 |
0.6796 |
0.7088 |
0.6485 |
0.7667 |
| cosine_map@20 |
0.5566 |
0.4841 |
0.3984 |
0.5222 |
0.7071 |
0.6646 |
0.7007 |
| cosine_map@50 |
0.5534 |
0.4304 |
0.3603 |
0.5083 |
0.7107 |
0.6684 |
0.7046 |
| cosine_map@100 |
0.5852 |
0.4374 |
0.3632 |
0.5372 |
0.7113 |
0.6693 |
0.7054 |
| cosine_map@150 |
0.5943 |
0.4527 |
0.3782 |
0.5454 |
0.7114 |
0.6695 |
0.7055 |
| cosine_map@200 |
0.5976 |
0.4593 |
0.3863 |
0.5495 |
0.7115 |
0.6696 |
0.7056 |
| cosine_map@500 |
0.6016 |
0.472 |
0.3992 |
0.5542 |
0.7116 |
0.6697 |
0.7057 |
Training Details
Training Datasets
full_en
full_en
- Dataset: full_en
- Size: 28,880 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 3 tokens
- mean: 5.68 tokens
- max: 11 tokens
|
- min: 3 tokens
- mean: 5.76 tokens
- max: 12 tokens
|
- Samples:
| anchor |
positive |
air commodore |
flight lieutenant |
command and control officer |
flight officer |
air commodore |
command and control officer |
- Loss:
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_de
full_de
- Dataset: full_de
- Size: 23,023 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 3 tokens
- mean: 7.99 tokens
- max: 30 tokens
|
- min: 3 tokens
- mean: 8.19 tokens
- max: 30 tokens
|
- Samples:
| anchor |
positive |
Staffelkommandantin |
Kommodore |
Luftwaffenoffizierin |
Luftwaffenoffizier/Luftwaffenoffizierin |
Staffelkommandantin |
Luftwaffenoffizierin |
- Loss:
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_es
full_es
- Dataset: full_es
- Size: 20,724 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 3 tokens
- mean: 9.13 tokens
- max: 32 tokens
|
- min: 3 tokens
- mean: 8.84 tokens
- max: 32 tokens
|
- Samples:
| anchor |
positive |
jefe de escuadrón |
instructor |
comandante de aeronave |
instructor de simulador |
instructor |
oficial del Ejército del Aire |
- Loss:
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_zh
full_zh
- Dataset: full_zh
- Size: 30,401 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 5 tokens
- mean: 7.15 tokens
- max: 14 tokens
|
- min: 5 tokens
- mean: 7.46 tokens
- max: 21 tokens
|
- Samples:
| anchor |
positive |
技术总监 |
技术和运营总监 |
技术总监 |
技术主管 |
技术总监 |
技术艺术总监 |
- Loss:
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
mix
mix
- Dataset: mix
- Size: 21,760 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 2 tokens
- mean: 6.71 tokens
- max: 19 tokens
|
- min: 2 tokens
- mean: 7.69 tokens
- max: 19 tokens
|
- Samples:
| anchor |
positive |
technical manager |
Technischer Direktor für Bühne, Film und Fernsehen |
head of technical |
directora técnica |
head of technical department |
技术艺术总监 |
- Loss:
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 128
per_device_eval_batch_size: 128
gradient_accumulation_steps: 2
num_train_epochs: 5
warmup_ratio: 0.05
log_on_each_node: False
fp16: True
dataloader_num_workers: 4
ddp_find_unused_parameters: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 128
per_device_eval_batch_size: 128
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 2
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 5
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.05
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: False
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 4
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: True
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
full_en_cosine_ndcg@200 |
full_es_cosine_ndcg@200 |
full_de_cosine_ndcg@200 |
full_zh_cosine_ndcg@200 |
mix_es_cosine_ndcg@200 |
mix_de_cosine_ndcg@200 |
mix_zh_cosine_ndcg@200 |
| -1 |
-1 |
- |
0.7447 |
0.6125 |
0.5378 |
0.7240 |
0.7029 |
0.6345 |
0.7437 |
| 0.0082 |
1 |
4.3088 |
- |
- |
- |
- |
- |
- |
- |
| 0.8230 |
100 |
1.9026 |
- |
- |
- |
- |
- |
- |
- |
| 1.6502 |
200 |
0.9336 |
0.8024 |
0.6703 |
0.6109 |
0.7695 |
0.7914 |
0.7594 |
0.8136 |
| 2.4774 |
300 |
0.161 |
- |
- |
- |
- |
- |
- |
- |
| 3.3045 |
400 |
0.1398 |
0.8039 |
0.6717 |
0.6092 |
0.7697 |
0.8012 |
0.7696 |
0.8187 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}