---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:124788
- loss:GISTEmbedLoss
base_model: Alibaba-NLP/gte-multilingual-base
widget:
- source_sentence: 其他机械、设备和有形货物租赁服务代表
sentences:
- 其他机械和设备租赁服务工作人员
- 电子和电信设备及零部件物流经理
- 工业主厨
- source_sentence: 公交车司机
sentences:
- 表演灯光设计师
- 乙烯基地板安装工
- 国际巴士司机
- source_sentence: online communication manager
sentences:
- trades union official
- social media manager
- budget manager
- source_sentence: Projektmanagerin
sentences:
- Projektmanager/Projektmanagerin
- Category-Manager
- Infanterist
- source_sentence: Volksvertreter
sentences:
- Parlamentarier
- Oberbürgermeister
- Konsul
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@20
- cosine_accuracy@50
- cosine_accuracy@100
- cosine_accuracy@150
- cosine_accuracy@200
- cosine_precision@1
- cosine_precision@20
- cosine_precision@50
- cosine_precision@100
- cosine_precision@150
- cosine_precision@200
- cosine_recall@1
- cosine_recall@20
- cosine_recall@50
- cosine_recall@100
- cosine_recall@150
- cosine_recall@200
- cosine_ndcg@1
- cosine_ndcg@20
- cosine_ndcg@50
- cosine_ndcg@100
- cosine_ndcg@150
- cosine_ndcg@200
- cosine_mrr@1
- cosine_mrr@20
- cosine_mrr@50
- cosine_mrr@100
- cosine_mrr@150
- cosine_mrr@200
- cosine_map@1
- cosine_map@20
- cosine_map@50
- cosine_map@100
- cosine_map@150
- cosine_map@200
- cosine_map@500
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full en
type: full_en
metrics:
- type: cosine_accuracy@1
value: 0.6666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9904761904761905
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9904761904761905
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9904761904761905
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9904761904761905
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9904761904761905
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6666666666666666
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5147619047619048
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.31999999999999995
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.19047619047619047
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.1361904761904762
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.10542857142857143
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06854687410617222
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5491240579458434
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7553654907661455
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8503209224897438
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8994749092946579
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9207884118691805
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6666666666666666
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6952098522285352
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7229572913271685
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7732532874348539
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7947334799125039
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.8038564389556094
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6666666666666666
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8182539682539683
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8182539682539683
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8182539682539683
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8182539682539683
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8182539682539683
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6666666666666666
name: Cosine Map@1
- type: cosine_map@20
value: 0.5566401101002375
name: Cosine Map@20
- type: cosine_map@50
value: 0.55344017265156
name: Cosine Map@50
- type: cosine_map@100
value: 0.5852249415484134
name: Cosine Map@100
- type: cosine_map@150
value: 0.5943042662925763
name: Cosine Map@150
- type: cosine_map@200
value: 0.5975837437975446
name: Cosine Map@200
- type: cosine_map@500
value: 0.6015742986218369
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full es
type: full_es
metrics:
- type: cosine_accuracy@1
value: 0.12432432432432433
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 1.0
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 1.0
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 1.0
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 1.0
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 1.0
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.12432432432432433
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.575945945945946
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.3923243243243244
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.2565945945945946
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.19282882882882882
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1527837837837838
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.0036138931714884822
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.3852888120551914
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5659574514538841
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.6898678629281393
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.7540209165372845
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.7858170054407897
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.12432432432432433
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6168674053047035
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5913690595071309
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.62350509928888
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.6556716735369459
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6716557949894583
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.12432432432432433
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5581081081081081
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5581081081081081
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5581081081081081
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5581081081081081
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5581081081081081
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.12432432432432433
name: Cosine Map@1
- type: cosine_map@20
value: 0.48407152706202555
name: Cosine Map@20
- type: cosine_map@50
value: 0.43043374125481026
name: Cosine Map@50
- type: cosine_map@100
value: 0.43735327570764515
name: Cosine Map@100
- type: cosine_map@150
value: 0.45269435912524697
name: Cosine Map@150
- type: cosine_map@200
value: 0.45930097680668164
name: Cosine Map@200
- type: cosine_map@500
value: 0.47204219228541466
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full de
type: full_de
metrics:
- type: cosine_accuracy@1
value: 0.2955665024630542
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9753694581280788
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9852216748768473
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9901477832512315
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9901477832512315
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9901477832512315
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.2955665024630542
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.5103448275862069
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.36935960591133016
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.23965517241379314
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.1807881773399015
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.1461576354679803
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.01108543831680986
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.3207974783481294
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.5042046446720455
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.6172666777909689
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.6848138831682932
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.7253195006357535
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.2955665024630542
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.537849085734973
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.5288037060639387
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.5551941695921919
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.5887611959940118
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.6092219717029682
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.2955665024630542
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.5164773875147672
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.5167647438366063
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.5168213657719442
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.5168213657719442
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.5168213657719442
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.2955665024630542
name: Cosine Map@1
- type: cosine_map@20
value: 0.398398563122481
name: Cosine Map@20
- type: cosine_map@50
value: 0.36032758502543594
name: Cosine Map@50
- type: cosine_map@100
value: 0.3632259128424842
name: Cosine Map@100
- type: cosine_map@150
value: 0.37822275477623696
name: Cosine Map@150
- type: cosine_map@200
value: 0.3863148456840816
name: Cosine Map@200
- type: cosine_map@500
value: 0.399227009561676
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: full zh
type: full_zh
metrics:
- type: cosine_accuracy@1
value: 0.6796116504854369
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9805825242718447
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9902912621359223
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9902912621359223
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9902912621359223
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9902912621359223
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6796116504854369
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.488349514563107
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.29631067961165053
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.17883495145631062
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.12776699029126212
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.09990291262135924
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.06931865009287731
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.5250914458143515
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.7082715439925011
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.8169166539243944
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.8613232254521018
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.8898175710074696
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6796116504854369
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.6680745295820606
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.6856578240865067
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7378907298421352
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7576651805692517
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7696718049970358
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6796116504854369
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8158576051779936
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.816279724215562
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.816279724215562
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.816279724215562
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.816279724215562
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6796116504854369
name: Cosine Map@1
- type: cosine_map@20
value: 0.522177160195635
name: Cosine Map@20
- type: cosine_map@50
value: 0.5082601209392789
name: Cosine Map@50
- type: cosine_map@100
value: 0.5371705298206915
name: Cosine Map@100
- type: cosine_map@150
value: 0.5454012672534121
name: Cosine Map@150
- type: cosine_map@200
value: 0.5494570875591636
name: Cosine Map@200
- type: cosine_map@500
value: 0.5542116087189223
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix es
type: mix_es
metrics:
- type: cosine_accuracy@1
value: 0.7087883515340614
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9552782111284451
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9802392095683827
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9901196047841914
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9937597503900156
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9958398335933437
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.7087883515340614
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.12158086323452937
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05122204888195529
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.026125845033801356
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.017548968625411682
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013239729589183572
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.2737959042171211
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.8990032934650719
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9459438377535101
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9650979372508233
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9731582596637198
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.979086496793205
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.7087883515340614
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.7814741332820433
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7944033394497885
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7986024294603647
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.8001222520801115
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.801183843730514
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.7087883515340614
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7804158804359833
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.7812547046826683
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.7813961782842836
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7814280971923943
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7814392363829243
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.7087883515340614
name: Cosine Map@1
- type: cosine_map@20
value: 0.7070596364024803
name: Cosine Map@20
- type: cosine_map@50
value: 0.7106867578203881
name: Cosine Map@50
- type: cosine_map@100
value: 0.7112928928384499
name: Cosine Map@100
- type: cosine_map@150
value: 0.7114314004578745
name: Cosine Map@150
- type: cosine_map@200
value: 0.711504950521157
name: Cosine Map@200
- type: cosine_map@500
value: 0.7116431478000537
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix de
type: mix_de
metrics:
- type: cosine_accuracy@1
value: 0.6484659386375455
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9323972958918356
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.968278731149246
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.984919396775871
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9885595423816953
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9937597503900156
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.6484659386375455
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.12093083723348932
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05140925637025482
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.02647425897035882
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.017892182353960822
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.013530941237649509
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.2435517420696828
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.87873114924597
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9319899462645173
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9596117178020455
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9718322066215982
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.9799791991679667
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.6484659386375455
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.7448150588358
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.7595232400510039
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.7656851368194345
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.7681576326024331
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.7696474672652458
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.6484659386375455
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.7323691045739125
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.733538875120878
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.733776247038599
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.7338087409764548
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.7338398642058079
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.6484659386375455
name: Cosine Map@1
- type: cosine_map@20
value: 0.6646138211839377
name: Cosine Map@20
- type: cosine_map@50
value: 0.6683657128313888
name: Cosine Map@50
- type: cosine_map@100
value: 0.6692634410264182
name: Cosine Map@100
- type: cosine_map@150
value: 0.669518875077899
name: Cosine Map@150
- type: cosine_map@200
value: 0.6696171599377958
name: Cosine Map@200
- type: cosine_map@500
value: 0.6697127210085475
name: Cosine Map@500
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mix zh
type: mix_zh
metrics:
- type: cosine_accuracy@1
value: 0.7667014613778705
name: Cosine Accuracy@1
- type: cosine_accuracy@20
value: 0.9843423799582464
name: Cosine Accuracy@20
- type: cosine_accuracy@50
value: 0.9932150313152401
name: Cosine Accuracy@50
- type: cosine_accuracy@100
value: 0.9958246346555324
name: Cosine Accuracy@100
- type: cosine_accuracy@150
value: 0.9973903966597077
name: Cosine Accuracy@150
- type: cosine_accuracy@200
value: 0.9979123173277662
name: Cosine Accuracy@200
- type: cosine_precision@1
value: 0.7667014613778705
name: Cosine Precision@1
- type: cosine_precision@20
value: 0.13870041753653445
name: Cosine Precision@20
- type: cosine_precision@50
value: 0.05810020876826725
name: Cosine Precision@50
- type: cosine_precision@100
value: 0.029598121085595
name: Cosine Precision@100
- type: cosine_precision@150
value: 0.01986778009742519
name: Cosine Precision@150
- type: cosine_precision@200
value: 0.014945198329853866
name: Cosine Precision@200
- type: cosine_recall@1
value: 0.25692041952480366
name: Cosine Recall@1
- type: cosine_recall@20
value: 0.9156576200417536
name: Cosine Recall@20
- type: cosine_recall@50
value: 0.9582637439109255
name: Cosine Recall@50
- type: cosine_recall@100
value: 0.9765483646485734
name: Cosine Recall@100
- type: cosine_recall@150
value: 0.9833768267223383
name: Cosine Recall@150
- type: cosine_recall@200
value: 0.986464857341684
name: Cosine Recall@200
- type: cosine_ndcg@1
value: 0.7667014613778705
name: Cosine Ndcg@1
- type: cosine_ndcg@20
value: 0.8002168358295473
name: Cosine Ndcg@20
- type: cosine_ndcg@50
value: 0.8125113081884888
name: Cosine Ndcg@50
- type: cosine_ndcg@100
value: 0.8167350090334409
name: Cosine Ndcg@100
- type: cosine_ndcg@150
value: 0.8181122471507385
name: Cosine Ndcg@150
- type: cosine_ndcg@200
value: 0.8186874070081017
name: Cosine Ndcg@200
- type: cosine_mrr@1
value: 0.7667014613778705
name: Cosine Mrr@1
- type: cosine_mrr@20
value: 0.8421752732824312
name: Cosine Mrr@20
- type: cosine_mrr@50
value: 0.8424954415974232
name: Cosine Mrr@50
- type: cosine_mrr@100
value: 0.8425358910333786
name: Cosine Mrr@100
- type: cosine_mrr@150
value: 0.8425483391786986
name: Cosine Mrr@150
- type: cosine_mrr@200
value: 0.8425515411459873
name: Cosine Mrr@200
- type: cosine_map@1
value: 0.7667014613778705
name: Cosine Map@1
- type: cosine_map@20
value: 0.7007206423896271
name: Cosine Map@20
- type: cosine_map@50
value: 0.7046277360194696
name: Cosine Map@50
- type: cosine_map@100
value: 0.7053668771050886
name: Cosine Map@100
- type: cosine_map@150
value: 0.7055166914145262
name: Cosine Map@150
- type: cosine_map@200
value: 0.7055658329670217
name: Cosine Map@200
- type: cosine_map@500
value: 0.7056512281794008
name: Cosine Map@500
---
# Job - Job matching Alibaba-NLP/gte-multilingual-base (v2)
Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- full_en
- full_de
- full_es
- full_zh
- mix
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v2")
# Run inference
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
* Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 |
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9754 | 0.9806 | 0.9553 | 0.9324 | 0.9843 |
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9802 | 0.9683 | 0.9932 |
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9901 | 0.9849 | 0.9958 |
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9938 | 0.9886 | 0.9974 |
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9938 | 0.9979 |
| cosine_precision@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 |
| cosine_precision@20 | 0.5148 | 0.5759 | 0.5103 | 0.4883 | 0.1216 | 0.1209 | 0.1387 |
| cosine_precision@50 | 0.32 | 0.3923 | 0.3694 | 0.2963 | 0.0512 | 0.0514 | 0.0581 |
| cosine_precision@100 | 0.1905 | 0.2566 | 0.2397 | 0.1788 | 0.0261 | 0.0265 | 0.0296 |
| cosine_precision@150 | 0.1362 | 0.1928 | 0.1808 | 0.1278 | 0.0175 | 0.0179 | 0.0199 |
| cosine_precision@200 | 0.1054 | 0.1528 | 0.1462 | 0.0999 | 0.0132 | 0.0135 | 0.0149 |
| cosine_recall@1 | 0.0685 | 0.0036 | 0.0111 | 0.0693 | 0.2738 | 0.2436 | 0.2569 |
| cosine_recall@20 | 0.5491 | 0.3853 | 0.3208 | 0.5251 | 0.899 | 0.8787 | 0.9157 |
| cosine_recall@50 | 0.7554 | 0.566 | 0.5042 | 0.7083 | 0.9459 | 0.932 | 0.9583 |
| cosine_recall@100 | 0.8503 | 0.6899 | 0.6173 | 0.8169 | 0.9651 | 0.9596 | 0.9765 |
| cosine_recall@150 | 0.8995 | 0.754 | 0.6848 | 0.8613 | 0.9732 | 0.9718 | 0.9834 |
| cosine_recall@200 | 0.9208 | 0.7858 | 0.7253 | 0.8898 | 0.9791 | 0.98 | 0.9865 |
| cosine_ndcg@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 |
| cosine_ndcg@20 | 0.6952 | 0.6169 | 0.5378 | 0.6681 | 0.7815 | 0.7448 | 0.8002 |
| cosine_ndcg@50 | 0.723 | 0.5914 | 0.5288 | 0.6857 | 0.7944 | 0.7595 | 0.8125 |
| cosine_ndcg@100 | 0.7733 | 0.6235 | 0.5552 | 0.7379 | 0.7986 | 0.7657 | 0.8167 |
| cosine_ndcg@150 | 0.7947 | 0.6557 | 0.5888 | 0.7577 | 0.8001 | 0.7682 | 0.8181 |
| **cosine_ndcg@200** | **0.8039** | **0.6717** | **0.6092** | **0.7697** | **0.8012** | **0.7696** | **0.8187** |
| cosine_mrr@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 |
| cosine_mrr@20 | 0.8183 | 0.5581 | 0.5165 | 0.8159 | 0.7804 | 0.7324 | 0.8422 |
| cosine_mrr@50 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7813 | 0.7335 | 0.8425 |
| cosine_mrr@100 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8425 |
| cosine_mrr@150 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8425 |
| cosine_mrr@200 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8426 |
| cosine_map@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 |
| cosine_map@20 | 0.5566 | 0.4841 | 0.3984 | 0.5222 | 0.7071 | 0.6646 | 0.7007 |
| cosine_map@50 | 0.5534 | 0.4304 | 0.3603 | 0.5083 | 0.7107 | 0.6684 | 0.7046 |
| cosine_map@100 | 0.5852 | 0.4374 | 0.3632 | 0.5372 | 0.7113 | 0.6693 | 0.7054 |
| cosine_map@150 | 0.5943 | 0.4527 | 0.3782 | 0.5454 | 0.7114 | 0.6695 | 0.7055 |
| cosine_map@200 | 0.5976 | 0.4593 | 0.3863 | 0.5495 | 0.7115 | 0.6696 | 0.7056 |
| cosine_map@500 | 0.6016 | 0.472 | 0.3992 | 0.5542 | 0.7116 | 0.6697 | 0.7057 |
## Training Details
### Training Datasets
full_en
#### full_en
* Dataset: full_en
* Size: 28,880 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 5.68 tokens
- max: 11 tokens
| - min: 3 tokens
- mean: 5.76 tokens
- max: 12 tokens
|
* Samples:
| anchor | positive |
|:-----------------------------------------|:-----------------------------------------|
| air commodore | flight lieutenant |
| command and control officer | flight officer |
| air commodore | command and control officer |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_de
#### full_de
* Dataset: full_de
* Size: 23,023 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 7.99 tokens
- max: 30 tokens
| - min: 3 tokens
- mean: 8.19 tokens
- max: 30 tokens
|
* Samples:
| anchor | positive |
|:----------------------------------|:-----------------------------------------------------|
| Staffelkommandantin | Kommodore |
| Luftwaffenoffizierin | Luftwaffenoffizier/Luftwaffenoffizierin |
| Staffelkommandantin | Luftwaffenoffizierin |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_es
#### full_es
* Dataset: full_es
* Size: 20,724 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 3 tokens
- mean: 9.13 tokens
- max: 32 tokens
| - min: 3 tokens
- mean: 8.84 tokens
- max: 32 tokens
|
* Samples:
| anchor | positive |
|:------------------------------------|:-------------------------------------------|
| jefe de escuadrón | instructor |
| comandante de aeronave | instructor de simulador |
| instructor | oficial del Ejército del Aire |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
full_zh
#### full_zh
* Dataset: full_zh
* Size: 30,401 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 5 tokens
- mean: 7.15 tokens
- max: 14 tokens
| - min: 5 tokens
- mean: 7.46 tokens
- max: 21 tokens
|
* Samples:
| anchor | positive |
|:------------------|:---------------------|
| 技术总监 | 技术和运营总监 |
| 技术总监 | 技术主管 |
| 技术总监 | 技术艺术总监 |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
mix
#### mix
* Dataset: mix
* Size: 21,760 training samples
* Columns: anchor and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | - min: 2 tokens
- mean: 6.71 tokens
- max: 19 tokens
| - min: 2 tokens
- mean: 7.69 tokens
- max: 19 tokens
|
* Samples:
| anchor | positive |
|:------------------------------------------|:----------------------------------------------------------------|
| technical manager | Technischer Direktor für Bühne, Film und Fernsehen |
| head of technical | directora técnica |
| head of technical department | 技术艺术总监 |
* Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 5
- `warmup_ratio`: 0.05
- `log_on_each_node`: False
- `fp16`: True
- `dataloader_num_workers`: 4
- `ddp_find_unused_parameters`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: False
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: True
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
### Training Logs
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
| -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.7437 |
| 0.0082 | 1 | 4.3088 | - | - | - | - | - | - | - |
| 0.8230 | 100 | 1.9026 | - | - | - | - | - | - | - |
| 1.6502 | 200 | 0.9336 | 0.8024 | 0.6703 | 0.6109 | 0.7695 | 0.7914 | 0.7594 | 0.8136 |
| 2.4774 | 300 | 0.161 | - | - | - | - | - | - | - |
| 3.3045 | 400 | 0.1398 | 0.8039 | 0.6717 | 0.6092 | 0.7697 | 0.8012 | 0.7696 | 0.8187 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```