--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:GISTEmbedLoss base_model: Alibaba-NLP/gte-multilingual-base widget: - source_sentence: 其他机械、设备和有形货物租赁服务代表 sentences: - 其他机械和设备租赁服务工作人员 - 电子和电信设备及零部件物流经理 - 工业主厨 - source_sentence: 公交车司机 sentences: - 表演灯光设计师 - 乙烯基地板安装工 - 国际巴士司机 - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbürgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6666666666666666 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9904761904761905 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6666666666666666 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5147619047619048 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.31999999999999995 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.19047619047619047 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1361904761904762 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.10542857142857143 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06854687410617222 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5491240579458434 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7553654907661455 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8503209224897438 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8994749092946579 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9207884118691805 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6666666666666666 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6952098522285352 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7229572913271685 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7732532874348539 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7947334799125039 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.8038564389556094 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6666666666666666 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8182539682539683 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8182539682539683 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8182539682539683 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8182539682539683 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8182539682539683 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6666666666666666 name: Cosine Map@1 - type: cosine_map@20 value: 0.5566401101002375 name: Cosine Map@20 - type: cosine_map@50 value: 0.55344017265156 name: Cosine Map@50 - type: cosine_map@100 value: 0.5852249415484134 name: Cosine Map@100 - type: cosine_map@150 value: 0.5943042662925763 name: Cosine Map@150 - type: cosine_map@200 value: 0.5975837437975446 name: Cosine Map@200 - type: cosine_map@500 value: 0.6015742986218369 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.12432432432432433 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.12432432432432433 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.575945945945946 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3923243243243244 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.2565945945945946 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.19282882882882882 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1527837837837838 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0036138931714884822 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3852888120551914 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5659574514538841 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6898678629281393 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7540209165372845 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7858170054407897 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.12432432432432433 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6168674053047035 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5913690595071309 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.62350509928888 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6556716735369459 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6716557949894583 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.12432432432432433 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5581081081081081 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5581081081081081 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5581081081081081 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5581081081081081 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5581081081081081 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.12432432432432433 name: Cosine Map@1 - type: cosine_map@20 value: 0.48407152706202555 name: Cosine Map@20 - type: cosine_map@50 value: 0.43043374125481026 name: Cosine Map@50 - type: cosine_map@100 value: 0.43735327570764515 name: Cosine Map@100 - type: cosine_map@150 value: 0.45269435912524697 name: Cosine Map@150 - type: cosine_map@200 value: 0.45930097680668164 name: Cosine Map@200 - type: cosine_map@500 value: 0.47204219228541466 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9753694581280788 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9852216748768473 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9901477832512315 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9901477832512315 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901477832512315 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5103448275862069 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.36935960591133016 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.23965517241379314 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1807881773399015 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1461576354679803 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3207974783481294 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5042046446720455 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6172666777909689 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.6848138831682932 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7253195006357535 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.537849085734973 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5288037060639387 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5551941695921919 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5887611959940118 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6092219717029682 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5164773875147672 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5167647438366063 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5168213657719442 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5168213657719442 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5168213657719442 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.398398563122481 name: Cosine Map@20 - type: cosine_map@50 value: 0.36032758502543594 name: Cosine Map@50 - type: cosine_map@100 value: 0.3632259128424842 name: Cosine Map@100 - type: cosine_map@150 value: 0.37822275477623696 name: Cosine Map@150 - type: cosine_map@200 value: 0.3863148456840816 name: Cosine Map@200 - type: cosine_map@500 value: 0.399227009561676 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.6796116504854369 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9805825242718447 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9902912621359223 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9902912621359223 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9902912621359223 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9902912621359223 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6796116504854369 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.488349514563107 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.29631067961165053 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.17883495145631062 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.12776699029126212 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09990291262135924 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06931865009287731 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5250914458143515 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7082715439925011 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8169166539243944 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8613232254521018 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8898175710074696 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6796116504854369 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6680745295820606 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6856578240865067 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7378907298421352 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7576651805692517 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7696718049970358 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6796116504854369 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8158576051779936 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.816279724215562 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.816279724215562 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.816279724215562 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.816279724215562 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6796116504854369 name: Cosine Map@1 - type: cosine_map@20 value: 0.522177160195635 name: Cosine Map@20 - type: cosine_map@50 value: 0.5082601209392789 name: Cosine Map@50 - type: cosine_map@100 value: 0.5371705298206915 name: Cosine Map@100 - type: cosine_map@150 value: 0.5454012672534121 name: Cosine Map@150 - type: cosine_map@200 value: 0.5494570875591636 name: Cosine Map@200 - type: cosine_map@500 value: 0.5542116087189223 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.7087883515340614 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9552782111284451 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9802392095683827 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9901196047841914 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9937597503900156 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9958398335933437 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7087883515340614 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12158086323452937 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05122204888195529 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.026125845033801356 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017548968625411682 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013239729589183572 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2737959042171211 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.8990032934650719 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9459438377535101 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9650979372508233 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9731582596637198 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.979086496793205 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7087883515340614 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7814741332820433 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7944033394497885 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7986024294603647 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8001222520801115 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.801183843730514 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7087883515340614 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7804158804359833 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7812547046826683 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7813961782842836 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7814280971923943 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7814392363829243 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7087883515340614 name: Cosine Map@1 - type: cosine_map@20 value: 0.7070596364024803 name: Cosine Map@20 - type: cosine_map@50 value: 0.7106867578203881 name: Cosine Map@50 - type: cosine_map@100 value: 0.7112928928384499 name: Cosine Map@100 - type: cosine_map@150 value: 0.7114314004578745 name: Cosine Map@150 - type: cosine_map@200 value: 0.711504950521157 name: Cosine Map@200 - type: cosine_map@500 value: 0.7116431478000537 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.6484659386375455 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9323972958918356 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.968278731149246 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.984919396775871 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9885595423816953 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9937597503900156 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6484659386375455 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12093083723348932 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05140925637025482 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02647425897035882 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017892182353960822 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013530941237649509 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2435517420696828 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.87873114924597 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9319899462645173 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9596117178020455 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9718322066215982 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9799791991679667 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6484659386375455 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7448150588358 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7595232400510039 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7656851368194345 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7681576326024331 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7696474672652458 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6484659386375455 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7323691045739125 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.733538875120878 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.733776247038599 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7338087409764548 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7338398642058079 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6484659386375455 name: Cosine Map@1 - type: cosine_map@20 value: 0.6646138211839377 name: Cosine Map@20 - type: cosine_map@50 value: 0.6683657128313888 name: Cosine Map@50 - type: cosine_map@100 value: 0.6692634410264182 name: Cosine Map@100 - type: cosine_map@150 value: 0.669518875077899 name: Cosine Map@150 - type: cosine_map@200 value: 0.6696171599377958 name: Cosine Map@200 - type: cosine_map@500 value: 0.6697127210085475 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.7667014613778705 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9843423799582464 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9932150313152401 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9958246346555324 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9973903966597077 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9979123173277662 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7667014613778705 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.13870041753653445 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05810020876826725 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.029598121085595 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.01986778009742519 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.014945198329853866 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.25692041952480366 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9156576200417536 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9582637439109255 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9765483646485734 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9833768267223383 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.986464857341684 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7667014613778705 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.8002168358295473 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.8125113081884888 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.8167350090334409 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8181122471507385 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.8186874070081017 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7667014613778705 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8421752732824312 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8424954415974232 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8425358910333786 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8425483391786986 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8425515411459873 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7667014613778705 name: Cosine Map@1 - type: cosine_map@20 value: 0.7007206423896271 name: Cosine Map@20 - type: cosine_map@50 value: 0.7046277360194696 name: Cosine Map@50 - type: cosine_map@100 value: 0.7053668771050886 name: Cosine Map@100 - type: cosine_map@150 value: 0.7055166914145262 name: Cosine Map@150 - type: cosine_map@200 value: 0.7055658329670217 name: Cosine Map@200 - type: cosine_map@500 value: 0.7056512281794008 name: Cosine Map@500 --- # Job - Job matching Alibaba-NLP/gte-multilingual-base (v2) Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v2") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbürgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 | | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9754 | 0.9806 | 0.9553 | 0.9324 | 0.9843 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9802 | 0.9683 | 0.9932 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9901 | 0.9849 | 0.9958 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9938 | 0.9886 | 0.9974 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9938 | 0.9979 | | cosine_precision@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 | | cosine_precision@20 | 0.5148 | 0.5759 | 0.5103 | 0.4883 | 0.1216 | 0.1209 | 0.1387 | | cosine_precision@50 | 0.32 | 0.3923 | 0.3694 | 0.2963 | 0.0512 | 0.0514 | 0.0581 | | cosine_precision@100 | 0.1905 | 0.2566 | 0.2397 | 0.1788 | 0.0261 | 0.0265 | 0.0296 | | cosine_precision@150 | 0.1362 | 0.1928 | 0.1808 | 0.1278 | 0.0175 | 0.0179 | 0.0199 | | cosine_precision@200 | 0.1054 | 0.1528 | 0.1462 | 0.0999 | 0.0132 | 0.0135 | 0.0149 | | cosine_recall@1 | 0.0685 | 0.0036 | 0.0111 | 0.0693 | 0.2738 | 0.2436 | 0.2569 | | cosine_recall@20 | 0.5491 | 0.3853 | 0.3208 | 0.5251 | 0.899 | 0.8787 | 0.9157 | | cosine_recall@50 | 0.7554 | 0.566 | 0.5042 | 0.7083 | 0.9459 | 0.932 | 0.9583 | | cosine_recall@100 | 0.8503 | 0.6899 | 0.6173 | 0.8169 | 0.9651 | 0.9596 | 0.9765 | | cosine_recall@150 | 0.8995 | 0.754 | 0.6848 | 0.8613 | 0.9732 | 0.9718 | 0.9834 | | cosine_recall@200 | 0.9208 | 0.7858 | 0.7253 | 0.8898 | 0.9791 | 0.98 | 0.9865 | | cosine_ndcg@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 | | cosine_ndcg@20 | 0.6952 | 0.6169 | 0.5378 | 0.6681 | 0.7815 | 0.7448 | 0.8002 | | cosine_ndcg@50 | 0.723 | 0.5914 | 0.5288 | 0.6857 | 0.7944 | 0.7595 | 0.8125 | | cosine_ndcg@100 | 0.7733 | 0.6235 | 0.5552 | 0.7379 | 0.7986 | 0.7657 | 0.8167 | | cosine_ndcg@150 | 0.7947 | 0.6557 | 0.5888 | 0.7577 | 0.8001 | 0.7682 | 0.8181 | | **cosine_ndcg@200** | **0.8039** | **0.6717** | **0.6092** | **0.7697** | **0.8012** | **0.7696** | **0.8187** | | cosine_mrr@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 | | cosine_mrr@20 | 0.8183 | 0.5581 | 0.5165 | 0.8159 | 0.7804 | 0.7324 | 0.8422 | | cosine_mrr@50 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7813 | 0.7335 | 0.8425 | | cosine_mrr@100 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8425 | | cosine_mrr@150 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8425 | | cosine_mrr@200 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8426 | | cosine_map@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 | | cosine_map@20 | 0.5566 | 0.4841 | 0.3984 | 0.5222 | 0.7071 | 0.6646 | 0.7007 | | cosine_map@50 | 0.5534 | 0.4304 | 0.3603 | 0.5083 | 0.7107 | 0.6684 | 0.7046 | | cosine_map@100 | 0.5852 | 0.4374 | 0.3632 | 0.5372 | 0.7113 | 0.6693 | 0.7054 | | cosine_map@150 | 0.5943 | 0.4527 | 0.3782 | 0.5454 | 0.7114 | 0.6695 | 0.7055 | | cosine_map@200 | 0.5976 | 0.4593 | 0.3863 | 0.5495 | 0.7115 | 0.6696 | 0.7056 | | cosine_map@500 | 0.6016 | 0.472 | 0.3992 | 0.5542 | 0.7116 | 0.6697 | 0.7057 | ## Training Details ### Training Datasets
full_en #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | air commodore | flight lieutenant | | command and control officer | flight officer | | air commodore | command and control officer | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_de #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | Staffelkommandantin | Kommodore | | Luftwaffenoffizierin | Luftwaffenoffizier/Luftwaffenoffizierin | | Staffelkommandantin | Luftwaffenoffizierin | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_es #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | jefe de escuadrón | instructor | | comandante de aeronave | instructor de simulador | | instructor | oficial del Ejército del Aire | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
full_zh #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------|:---------------------| | 技术总监 | 技术和运营总监 | | 技术总监 | 技术主管 | | 技术总监 | 技术艺术总监 | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
mix #### mix * Dataset: mix * Size: 21,760 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | technical manager | Technischer Direktor für Bühne, Film und Fernsehen | | head of technical | directora técnica | | head of technical department | 技术艺术总监 | * Loss: [GISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ```
### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.7437 | | 0.0082 | 1 | 4.3088 | - | - | - | - | - | - | - | | 0.8230 | 100 | 1.9026 | - | - | - | - | - | - | - | | 1.6502 | 200 | 0.9336 | 0.8024 | 0.6703 | 0.6109 | 0.7695 | 0.7914 | 0.7594 | 0.8136 | | 2.4774 | 300 | 0.161 | - | - | - | - | - | - | - | | 3.3045 | 400 | 0.1398 | 0.8039 | 0.6717 | 0.6092 | 0.7697 | 0.8012 | 0.7696 | 0.8187 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```