Update README.md
Browse files
README.md
CHANGED
|
@@ -2,8 +2,25 @@
|
|
| 2 |
license: apache-2.0
|
| 3 |
datasets:
|
| 4 |
- vieanh/sports_img_classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
```py
|
| 8 |
Classification Report:
|
| 9 |
precision recall f1-score support
|
|
@@ -23,3 +40,86 @@ weighted avg 0.9611 0.9606 0.9606 6655
|
|
| 23 |
|
| 24 |

|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
datasets:
|
| 4 |
- vieanh/sports_img_classification
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- google/siglip2-base-patch16-224
|
| 9 |
+
pipeline_tag: image-classification
|
| 10 |
+
library_name: transformers
|
| 11 |
+
tags:
|
| 12 |
+
- Sports
|
| 13 |
+
- Cricket
|
| 14 |
+
- art
|
| 15 |
+
- Basketball
|
| 16 |
---
|
| 17 |
|
| 18 |
+

|
| 19 |
+
|
| 20 |
+
# **SportsNet-7**
|
| 21 |
+
|
| 22 |
+
> **SportsNet-7** is a SigLIP2-based image classification model fine-tuned to identify seven popular sports categories. Built upon the powerful `google/siglip2-base-patch16-224` backbone, this model enables fast and accurate sport-type recognition from images or video frames.
|
| 23 |
+
|
| 24 |
```py
|
| 25 |
Classification Report:
|
| 26 |
precision recall f1-score support
|
|
|
|
| 40 |
|
| 41 |

|
| 42 |
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
## **Label Classes**
|
| 46 |
+
|
| 47 |
+
The model classifies an input image into one of the following 7 sports:
|
| 48 |
+
|
| 49 |
+
```
|
| 50 |
+
0: badminton
|
| 51 |
+
1: cricket
|
| 52 |
+
2: football
|
| 53 |
+
3: karate
|
| 54 |
+
4: swimming
|
| 55 |
+
5: tennis
|
| 56 |
+
6: wrestling
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
---
|
| 60 |
+
|
| 61 |
+
## **Installation**
|
| 62 |
+
|
| 63 |
+
```bash
|
| 64 |
+
pip install transformers torch pillow gradio
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
---
|
| 68 |
+
|
| 69 |
+
## **Example Inference Code**
|
| 70 |
+
|
| 71 |
+
```python
|
| 72 |
+
import gradio as gr
|
| 73 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 74 |
+
from PIL import Image
|
| 75 |
+
import torch
|
| 76 |
+
|
| 77 |
+
# Load model and processor
|
| 78 |
+
model_name = "prithivMLmods/SportsNet-7"
|
| 79 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 80 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 81 |
+
|
| 82 |
+
# Label mapping
|
| 83 |
+
id2label = {
|
| 84 |
+
"0": "badminton",
|
| 85 |
+
"1": "cricket",
|
| 86 |
+
"2": "football",
|
| 87 |
+
"3": "karate",
|
| 88 |
+
"4": "swimming",
|
| 89 |
+
"5": "tennis",
|
| 90 |
+
"6": "wrestling"
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
def predict_sport(image):
|
| 94 |
+
image = Image.fromarray(image).convert("RGB")
|
| 95 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 96 |
+
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
outputs = model(**inputs)
|
| 99 |
+
logits = outputs.logits
|
| 100 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 101 |
+
|
| 102 |
+
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
| 103 |
+
return prediction
|
| 104 |
+
|
| 105 |
+
# Gradio interface
|
| 106 |
+
iface = gr.Interface(
|
| 107 |
+
fn=predict_sport,
|
| 108 |
+
inputs=gr.Image(type="numpy"),
|
| 109 |
+
outputs=gr.Label(num_top_classes=3, label="Predicted Sport"),
|
| 110 |
+
title="SportsNet-7",
|
| 111 |
+
description="Upload a sports image to classify it as Badminton, Cricket, Football, Karate, Swimming, Tennis, or Wrestling."
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
if __name__ == "__main__":
|
| 115 |
+
iface.launch()
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
---
|
| 119 |
+
|
| 120 |
+
## **Use Cases**
|
| 121 |
+
|
| 122 |
+
* Sports video tagging
|
| 123 |
+
* Real-time sport event classification
|
| 124 |
+
* Dataset enrichment for sports analytics
|
| 125 |
+
* Educational or training datasets for sports AI
|