radoslavralev commited on
Commit
6de6989
·
verified ·
1 Parent(s): c323a6a

Training in progress, step 5000

Browse files
1_Pooling/config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 512,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
  "pooling_mode_max_tokens": false,
6
  "pooling_mode_mean_sqrt_len_tokens": false,
7
  "pooling_mode_weightedmean_tokens": false,
Information-Retrieval_evaluation_val_results.csv CHANGED
@@ -13,3 +13,4 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Precisi
13
  -1,-1,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
14
  -1,-1,0.828275,0.90535,0.930675,0.828275,0.828275,0.3017833333333333,0.90535,0.186135,0.930675,0.828275,0.8685570833333288,0.8726829662698361,0.8940991092644636,0.8748315667834753
15
  -1,-1,0.833175,0.90785,0.933075,0.833175,0.833175,0.3026166666666666,0.90785,0.186615,0.933075,0.833175,0.8724479166666644,0.876612886904759,0.8976448899066025,0.8786690345206932
 
 
13
  -1,-1,0.0,0.0,2.5e-05,0.0,0.0,0.0,0.0,5e-06,2.5e-05,0.0,5e-06,1.697420634920635e-05,4.0643645983386815e-05,5.219463554638405e-05
14
  -1,-1,0.828275,0.90535,0.930675,0.828275,0.828275,0.3017833333333333,0.90535,0.186135,0.930675,0.828275,0.8685570833333288,0.8726829662698361,0.8940991092644636,0.8748315667834753
15
  -1,-1,0.833175,0.90785,0.933075,0.833175,0.833175,0.3026166666666666,0.90785,0.186615,0.933075,0.833175,0.8724479166666644,0.876612886904759,0.8976448899066025,0.8786690345206932
16
+ -1,-1,0.835025,0.909175,0.9345,0.835025,0.835025,0.30305833333333326,0.909175,0.1869,0.9345,0.835025,0.8739791666666628,0.8779108432539642,0.898643365395631,0.8799559806850633
README.md CHANGED
@@ -5,123 +5,51 @@ tags:
5
  - feature-extraction
6
  - dense
7
  - generated_from_trainer
8
- - dataset_size:713743
9
  - loss:MultipleNegativesRankingLoss
10
- base_model: sentence-transformers/all-mpnet-base-v2
11
  widget:
12
- - source_sentence: 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
13
  sentences:
14
- - 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
15
- - What does the Gettysburg Address really mean?
16
- - What is eatalo.com?
17
- - source_sentence: Has the influence of Ancient Carthage in science, math, and society
18
- been underestimated?
19
  sentences:
20
- - How does one earn money online without an investment from home?
21
- - Has the influence of Ancient Carthage in science, math, and society been underestimated?
22
- - Has the influence of the Ancient Etruscans in science and math been underestimated?
23
- - source_sentence: Is there any app that shares charging to others like share it how
24
- we transfer files?
25
  sentences:
26
- - How do you think of Chinese claims that the present Private Arbitration is illegal,
27
- its verdict violates the UNCLOS and is illegal?
28
- - Is there any app that shares charging to others like share it how we transfer
29
- files?
30
- - Are there any platforms that provides end-to-end encryption for file transfer/
31
- sharing?
32
- - source_sentence: Why AAP’s MLA Dinesh Mohaniya has been arrested?
33
  sentences:
34
- - What are your views on the latest sex scandal by AAP MLA Sandeep Kumar?
35
- - What is a dc current? What are some examples?
36
- - Why AAP’s MLA Dinesh Mohaniya has been arrested?
37
- - source_sentence: What is the difference between economic growth and economic development?
38
  sentences:
39
- - How cold can the Gobi Desert get, and how do its average temperatures compare
40
- to the ones in the Simpson Desert?
41
- - the difference between economic growth and economic development is What?
42
- - What is the difference between economic growth and economic development?
43
  pipeline_tag: sentence-similarity
44
  library_name: sentence-transformers
45
- metrics:
46
- - cosine_accuracy@1
47
- - cosine_accuracy@3
48
- - cosine_accuracy@5
49
- - cosine_precision@1
50
- - cosine_precision@3
51
- - cosine_precision@5
52
- - cosine_recall@1
53
- - cosine_recall@3
54
- - cosine_recall@5
55
- - cosine_ndcg@10
56
- - cosine_mrr@1
57
- - cosine_mrr@5
58
- - cosine_mrr@10
59
- - cosine_map@100
60
- model-index:
61
- - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
62
- results:
63
- - task:
64
- type: information-retrieval
65
- name: Information Retrieval
66
- dataset:
67
- name: val
68
- type: val
69
- metrics:
70
- - type: cosine_accuracy@1
71
- value: 0.835025
72
- name: Cosine Accuracy@1
73
- - type: cosine_accuracy@3
74
- value: 0.909175
75
- name: Cosine Accuracy@3
76
- - type: cosine_accuracy@5
77
- value: 0.9345
78
- name: Cosine Accuracy@5
79
- - type: cosine_precision@1
80
- value: 0.835025
81
- name: Cosine Precision@1
82
- - type: cosine_precision@3
83
- value: 0.30305833333333326
84
- name: Cosine Precision@3
85
- - type: cosine_precision@5
86
- value: 0.1869
87
- name: Cosine Precision@5
88
- - type: cosine_recall@1
89
- value: 0.835025
90
- name: Cosine Recall@1
91
- - type: cosine_recall@3
92
- value: 0.909175
93
- name: Cosine Recall@3
94
- - type: cosine_recall@5
95
- value: 0.9345
96
- name: Cosine Recall@5
97
- - type: cosine_ndcg@10
98
- value: 0.898643365395631
99
- name: Cosine Ndcg@10
100
- - type: cosine_mrr@1
101
- value: 0.835025
102
- name: Cosine Mrr@1
103
- - type: cosine_mrr@5
104
- value: 0.8739791666666628
105
- name: Cosine Mrr@5
106
- - type: cosine_mrr@10
107
- value: 0.8779108432539642
108
- name: Cosine Mrr@10
109
- - type: cosine_map@100
110
- value: 0.8799559806850633
111
- name: Cosine Map@100
112
  ---
113
 
114
- # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
115
 
116
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
117
 
118
  ## Model Details
119
 
120
  ### Model Description
121
  - **Model Type:** Sentence Transformer
122
- - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision e8c3b32edf5434bc2275fc9bab85f82640a19130 -->
123
  - **Maximum Sequence Length:** 128 tokens
124
- - **Output Dimensionality:** 768 dimensions
125
  - **Similarity Function:** Cosine Similarity
126
  <!-- - **Training Dataset:** Unknown -->
127
  <!-- - **Language:** Unknown -->
@@ -137,9 +65,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
137
 
138
  ```
139
  SentenceTransformer(
140
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'MPNetModel'})
141
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
142
- (2): Normalize()
143
  )
144
  ```
145
 
@@ -158,23 +85,23 @@ Then you can load this model and run inference.
158
  from sentence_transformers import SentenceTransformer
159
 
160
  # Download from the 🤗 Hub
161
- model = SentenceTransformer("redis/model-b-structured")
162
  # Run inference
163
  sentences = [
164
- 'What is the difference between economic growth and economic development?',
165
- 'What is the difference between economic growth and economic development?',
166
- 'the difference between economic growth and economic development is What?',
167
  ]
168
  embeddings = model.encode(sentences)
169
  print(embeddings.shape)
170
- # [3, 768]
171
 
172
  # Get the similarity scores for the embeddings
173
  similarities = model.similarity(embeddings, embeddings)
174
  print(similarities)
175
- # tensor([[ 0.9999, 0.9999, -0.0751],
176
- # [ 0.9999, 0.9999, -0.0751],
177
- # [-0.0751, -0.0751, 1.0000]])
178
  ```
179
 
180
  <!--
@@ -201,32 +128,6 @@ You can finetune this model on your own dataset.
201
  *List how the model may foreseeably be misused and address what users ought not to do with the model.*
202
  -->
203
 
204
- ## Evaluation
205
-
206
- ### Metrics
207
-
208
- #### Information Retrieval
209
-
210
- * Dataset: `val`
211
- * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
212
-
213
- | Metric | Value |
214
- |:-------------------|:-----------|
215
- | cosine_accuracy@1 | 0.835 |
216
- | cosine_accuracy@3 | 0.9092 |
217
- | cosine_accuracy@5 | 0.9345 |
218
- | cosine_precision@1 | 0.835 |
219
- | cosine_precision@3 | 0.3031 |
220
- | cosine_precision@5 | 0.1869 |
221
- | cosine_recall@1 | 0.835 |
222
- | cosine_recall@3 | 0.9092 |
223
- | cosine_recall@5 | 0.9345 |
224
- | **cosine_ndcg@10** | **0.8986** |
225
- | cosine_mrr@1 | 0.835 |
226
- | cosine_mrr@5 | 0.874 |
227
- | cosine_mrr@10 | 0.8779 |
228
- | cosine_map@100 | 0.88 |
229
-
230
  <!--
231
  ## Bias, Risks and Limitations
232
 
@@ -245,49 +146,23 @@ You can finetune this model on your own dataset.
245
 
246
  #### Unnamed Dataset
247
 
248
- * Size: 713,743 training samples
249
- * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
250
  * Approximate statistics based on the first 1000 samples:
251
- | | anchor | positive | negative |
252
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
253
  | type | string | string | string |
254
- | details | <ul><li>min: 6 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.03 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.81 tokens</li><li>max: 58 tokens</li></ul> |
255
  * Samples:
256
- | anchor | positive | negative |
257
- |:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|
258
- | <code>Which one is better Linux OS? Ubuntu or Mint?</code> | <code>Why do you use Linux Mint?</code> | <code>Which one is not better Linux OS ? Ubuntu or Mint ?</code> |
259
- | <code>What is flow?</code> | <code>What is flow?</code> | <code>What are flow lines?</code> |
260
- | <code>How is Trump planning to get Mexico to pay for his supposed wall?</code> | <code>How is it possible for Donald Trump to force Mexico to pay for the wall?</code> | <code>Why do we connect the positive terminal before the negative terminal to ground in a vehicle battery?</code> |
261
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
262
  ```json
263
  {
264
- "scale": 7.0,
265
- "similarity_fct": "cos_sim",
266
- "gather_across_devices": false
267
- }
268
- ```
269
-
270
- ### Evaluation Dataset
271
-
272
- #### Unnamed Dataset
273
-
274
- * Size: 40,000 evaluation samples
275
- * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
276
- * Approximate statistics based on the first 1000 samples:
277
- | | anchor | positive | negative |
278
- |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
279
- | type | string | string | string |
280
- | details | <ul><li>min: 6 tokens</li><li>mean: 15.52 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.51 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.79 tokens</li><li>max: 69 tokens</li></ul> |
281
- * Samples:
282
- | anchor | positive | negative |
283
- |:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
284
- | <code>Why are all my questions on Quora marked needing improvement?</code> | <code>Why are all my questions immediately being marked as needing improvement?</code> | <code>For a post-graduate student in IIT, is it allowed to take an external scholarship as a top-up to his/her MHRD assistantship?</code> |
285
- | <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused not ? Is it HIV risk ? . Heard the needle is too small to be reused . Had blood draw at clinic ?</code> |
286
- | <code>Why do people still believe the world is flat?</code> | <code>Why are there still people who believe the world is flat?</code> | <code>I'm not able to buy Udemy course .it is not accepting mine and my friends debit card.my card can be used for Flipkart .how to purchase now?</code> |
287
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
288
- ```json
289
- {
290
- "scale": 7.0,
291
  "similarity_fct": "cos_sim",
292
  "gather_across_devices": false
293
  }
@@ -296,49 +171,36 @@ You can finetune this model on your own dataset.
296
  ### Training Hyperparameters
297
  #### Non-Default Hyperparameters
298
 
299
- - `eval_strategy`: steps
300
- - `per_device_train_batch_size`: 128
301
- - `per_device_eval_batch_size`: 128
302
- - `learning_rate`: 2e-05
303
- - `weight_decay`: 0.0001
304
- - `max_steps`: 5000
305
- - `warmup_ratio`: 0.1
306
  - `fp16`: True
307
- - `dataloader_drop_last`: True
308
- - `dataloader_num_workers`: 1
309
- - `dataloader_prefetch_factor`: 1
310
- - `load_best_model_at_end`: True
311
- - `optim`: adamw_torch
312
- - `ddp_find_unused_parameters`: False
313
- - `push_to_hub`: True
314
- - `hub_model_id`: redis/model-b-structured
315
- - `eval_on_start`: True
316
 
317
  #### All Hyperparameters
318
  <details><summary>Click to expand</summary>
319
 
320
  - `overwrite_output_dir`: False
321
  - `do_predict`: False
322
- - `eval_strategy`: steps
323
  - `prediction_loss_only`: True
324
- - `per_device_train_batch_size`: 128
325
- - `per_device_eval_batch_size`: 128
326
  - `per_gpu_train_batch_size`: None
327
  - `per_gpu_eval_batch_size`: None
328
  - `gradient_accumulation_steps`: 1
329
  - `eval_accumulation_steps`: None
330
  - `torch_empty_cache_steps`: None
331
- - `learning_rate`: 2e-05
332
- - `weight_decay`: 0.0001
333
  - `adam_beta1`: 0.9
334
  - `adam_beta2`: 0.999
335
  - `adam_epsilon`: 1e-08
336
- - `max_grad_norm`: 1.0
337
- - `num_train_epochs`: 3.0
338
- - `max_steps`: 5000
339
  - `lr_scheduler_type`: linear
340
  - `lr_scheduler_kwargs`: {}
341
- - `warmup_ratio`: 0.1
342
  - `warmup_steps`: 0
343
  - `log_level`: passive
344
  - `log_level_replica`: warning
@@ -366,14 +228,14 @@ You can finetune this model on your own dataset.
366
  - `tpu_num_cores`: None
367
  - `tpu_metrics_debug`: False
368
  - `debug`: []
369
- - `dataloader_drop_last`: True
370
- - `dataloader_num_workers`: 1
371
- - `dataloader_prefetch_factor`: 1
372
  - `past_index`: -1
373
  - `disable_tqdm`: False
374
  - `remove_unused_columns`: True
375
  - `label_names`: None
376
- - `load_best_model_at_end`: True
377
  - `ignore_data_skip`: False
378
  - `fsdp`: []
379
  - `fsdp_min_num_params`: 0
@@ -383,23 +245,23 @@ You can finetune this model on your own dataset.
383
  - `parallelism_config`: None
384
  - `deepspeed`: None
385
  - `label_smoothing_factor`: 0.0
386
- - `optim`: adamw_torch
387
  - `optim_args`: None
388
  - `adafactor`: False
389
  - `group_by_length`: False
390
  - `length_column_name`: length
391
  - `project`: huggingface
392
  - `trackio_space_id`: trackio
393
- - `ddp_find_unused_parameters`: False
394
  - `ddp_bucket_cap_mb`: None
395
  - `ddp_broadcast_buffers`: False
396
  - `dataloader_pin_memory`: True
397
  - `dataloader_persistent_workers`: False
398
  - `skip_memory_metrics`: True
399
  - `use_legacy_prediction_loop`: False
400
- - `push_to_hub`: True
401
  - `resume_from_checkpoint`: None
402
- - `hub_model_id`: redis/model-b-structured
403
  - `hub_strategy`: every_save
404
  - `hub_private_repo`: None
405
  - `hub_always_push`: False
@@ -426,45 +288,32 @@ You can finetune this model on your own dataset.
426
  - `neftune_noise_alpha`: None
427
  - `optim_target_modules`: None
428
  - `batch_eval_metrics`: False
429
- - `eval_on_start`: True
430
  - `use_liger_kernel`: False
431
  - `liger_kernel_config`: None
432
  - `eval_use_gather_object`: False
433
  - `average_tokens_across_devices`: True
434
  - `prompts`: None
435
  - `batch_sampler`: batch_sampler
436
- - `multi_dataset_batch_sampler`: proportional
437
  - `router_mapping`: {}
438
  - `learning_rate_mapping`: {}
439
 
440
  </details>
441
 
442
  ### Training Logs
443
- | Epoch | Step | Training Loss | Validation Loss | val_cosine_ndcg@10 |
444
- |:----------:|:--------:|:-------------:|:---------------:|:------------------:|
445
- | 0 | 0 | - | 0.7379 | 0.8652 |
446
- | 0.0448 | 250 | 0.6516 | 0.4058 | 0.8939 |
447
- | 0.0897 | 500 | 0.4799 | 0.3740 | 0.8953 |
448
- | 0.1345 | 750 | 0.4486 | 0.3556 | 0.8962 |
449
- | 0.1793 | 1000 | 0.4324 | 0.3486 | 0.8964 |
450
- | 0.2242 | 1250 | 0.4225 | 0.3411 | 0.8971 |
451
- | 0.2690 | 1500 | 0.4115 | 0.3385 | 0.8969 |
452
- | 0.3138 | 1750 | 0.405 | 0.3327 | 0.8970 |
453
- | 0.3587 | 2000 | 0.4017 | 0.3296 | 0.8969 |
454
- | 0.4035 | 2250 | 0.3954 | 0.3278 | 0.8973 |
455
- | 0.4484 | 2500 | 0.3928 | 0.3259 | 0.8974 |
456
- | 0.4932 | 2750 | 0.3868 | 0.3245 | 0.8980 |
457
- | 0.5380 | 3000 | 0.3844 | 0.3223 | 0.8978 |
458
- | 0.5829 | 3250 | 0.3833 | 0.3226 | 0.8982 |
459
- | 0.6277 | 3500 | 0.3845 | 0.3209 | 0.8984 |
460
- | 0.6725 | 3750 | 0.3807 | 0.3192 | 0.8986 |
461
- | 0.7174 | 4000 | 0.3797 | 0.3189 | 0.8983 |
462
- | 0.7622 | 4250 | 0.3773 | 0.3177 | 0.8984 |
463
- | 0.8070 | 4500 | 0.3763 | 0.3173 | 0.8985 |
464
- | 0.8519 | 4750 | 0.3782 | 0.3171 | 0.8985 |
465
- | **0.8967** | **5000** | **0.3769** | **0.317** | **0.8986** |
466
-
467
- * The bold row denotes the saved checkpoint.
468
 
469
  ### Framework Versions
470
  - Python: 3.10.18
 
5
  - feature-extraction
6
  - dense
7
  - generated_from_trainer
8
+ - dataset_size:100000
9
  - loss:MultipleNegativesRankingLoss
10
+ base_model: prajjwal1/bert-small
11
  widget:
12
+ - source_sentence: How do I calculate IQ?
13
  sentences:
14
+ - What is the easiest way to know my IQ?
15
+ - How do I calculate not IQ ?
16
+ - What are some creative and innovative business ideas with less investment in India?
17
+ - source_sentence: How can I learn martial arts in my home?
 
18
  sentences:
19
+ - How can I learn martial arts by myself?
20
+ - What are the advantages and disadvantages of investing in gold?
21
+ - Can people see that I have looked at their pictures on instagram if I am not following
22
+ them?
23
+ - source_sentence: When Enterprise picks you up do you have to take them back?
24
  sentences:
25
+ - Are there any software Training institute in Tuticorin?
26
+ - When Enterprise picks you up do you have to take them back?
27
+ - When Enterprise picks you up do them have to take youback?
28
+ - source_sentence: What are some non-capital goods?
 
 
 
29
  sentences:
30
+ - What are capital goods?
31
+ - How is the value of [math]\pi[/math] calculated?
32
+ - What are some non-capital goods?
33
+ - source_sentence: What is the QuickBooks technical support phone number in New York?
34
  sentences:
35
+ - What caused the Great Depression?
36
+ - Can I apply for PR in Canada?
37
+ - Which is the best QuickBooks Hosting Support Number in New York?
 
38
  pipeline_tag: sentence-similarity
39
  library_name: sentence-transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ---
41
 
42
+ # SentenceTransformer based on prajjwal1/bert-small
43
 
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
 
46
  ## Model Details
47
 
48
  ### Model Description
49
  - **Model Type:** Sentence Transformer
50
+ - **Base model:** [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) <!-- at revision 0ec5f86f27c1a77d704439db5e01c307ea11b9d4 -->
51
  - **Maximum Sequence Length:** 128 tokens
52
+ - **Output Dimensionality:** 512 dimensions
53
  - **Similarity Function:** Cosine Similarity
54
  <!-- - **Training Dataset:** Unknown -->
55
  <!-- - **Language:** Unknown -->
 
65
 
66
  ```
67
  SentenceTransformer(
68
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
69
+ (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
 
70
  )
71
  ```
72
 
 
85
  from sentence_transformers import SentenceTransformer
86
 
87
  # Download from the 🤗 Hub
88
+ model = SentenceTransformer("sentence_transformers_model_id")
89
  # Run inference
90
  sentences = [
91
+ 'What is the QuickBooks technical support phone number in New York?',
92
+ 'Which is the best QuickBooks Hosting Support Number in New York?',
93
+ 'Can I apply for PR in Canada?',
94
  ]
95
  embeddings = model.encode(sentences)
96
  print(embeddings.shape)
97
+ # [3, 512]
98
 
99
  # Get the similarity scores for the embeddings
100
  similarities = model.similarity(embeddings, embeddings)
101
  print(similarities)
102
+ # tensor([[1.0000, 0.8563, 0.0594],
103
+ # [0.8563, 1.0000, 0.1245],
104
+ # [0.0594, 0.1245, 1.0000]])
105
  ```
106
 
107
  <!--
 
128
  *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
  -->
130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  <!--
132
  ## Bias, Risks and Limitations
133
 
 
146
 
147
  #### Unnamed Dataset
148
 
149
+ * Size: 100,000 training samples
150
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
151
  * Approximate statistics based on the first 1000 samples:
152
+ | | sentence_0 | sentence_1 | sentence_2 |
153
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
154
  | type | string | string | string |
155
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.79 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.68 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.37 tokens</li><li>max: 67 tokens</li></ul> |
156
  * Samples:
157
+ | sentence_0 | sentence_1 | sentence_2 |
158
+ |:-----------------------------------------------------------------|:-----------------------------------------------------------------|:----------------------------------------------------------------------------------|
159
+ | <code>Is masturbating bad for boys?</code> | <code>Is masturbating bad for boys?</code> | <code>How harmful or unhealthy is masturbation?</code> |
160
+ | <code>Does a train engine move in reverse?</code> | <code>Does a train engine move in reverse?</code> | <code>Time moves forward, not in reverse. Doesn't that make time a vector?</code> |
161
+ | <code>What is the most badass thing anyone has ever done?</code> | <code>What is the most badass thing anyone has ever done?</code> | <code>anyone is the most badass thing Whathas ever done?</code> |
162
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
163
  ```json
164
  {
165
+ "scale": 20.0,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
  "similarity_fct": "cos_sim",
167
  "gather_across_devices": false
168
  }
 
171
  ### Training Hyperparameters
172
  #### Non-Default Hyperparameters
173
 
174
+ - `per_device_train_batch_size`: 64
175
+ - `per_device_eval_batch_size`: 64
 
 
 
 
 
176
  - `fp16`: True
177
+ - `multi_dataset_batch_sampler`: round_robin
 
 
 
 
 
 
 
 
178
 
179
  #### All Hyperparameters
180
  <details><summary>Click to expand</summary>
181
 
182
  - `overwrite_output_dir`: False
183
  - `do_predict`: False
184
+ - `eval_strategy`: no
185
  - `prediction_loss_only`: True
186
+ - `per_device_train_batch_size`: 64
187
+ - `per_device_eval_batch_size`: 64
188
  - `per_gpu_train_batch_size`: None
189
  - `per_gpu_eval_batch_size`: None
190
  - `gradient_accumulation_steps`: 1
191
  - `eval_accumulation_steps`: None
192
  - `torch_empty_cache_steps`: None
193
+ - `learning_rate`: 5e-05
194
+ - `weight_decay`: 0.0
195
  - `adam_beta1`: 0.9
196
  - `adam_beta2`: 0.999
197
  - `adam_epsilon`: 1e-08
198
+ - `max_grad_norm`: 1
199
+ - `num_train_epochs`: 3
200
+ - `max_steps`: -1
201
  - `lr_scheduler_type`: linear
202
  - `lr_scheduler_kwargs`: {}
203
+ - `warmup_ratio`: 0.0
204
  - `warmup_steps`: 0
205
  - `log_level`: passive
206
  - `log_level_replica`: warning
 
228
  - `tpu_num_cores`: None
229
  - `tpu_metrics_debug`: False
230
  - `debug`: []
231
+ - `dataloader_drop_last`: False
232
+ - `dataloader_num_workers`: 0
233
+ - `dataloader_prefetch_factor`: None
234
  - `past_index`: -1
235
  - `disable_tqdm`: False
236
  - `remove_unused_columns`: True
237
  - `label_names`: None
238
+ - `load_best_model_at_end`: False
239
  - `ignore_data_skip`: False
240
  - `fsdp`: []
241
  - `fsdp_min_num_params`: 0
 
245
  - `parallelism_config`: None
246
  - `deepspeed`: None
247
  - `label_smoothing_factor`: 0.0
248
+ - `optim`: adamw_torch_fused
249
  - `optim_args`: None
250
  - `adafactor`: False
251
  - `group_by_length`: False
252
  - `length_column_name`: length
253
  - `project`: huggingface
254
  - `trackio_space_id`: trackio
255
+ - `ddp_find_unused_parameters`: None
256
  - `ddp_bucket_cap_mb`: None
257
  - `ddp_broadcast_buffers`: False
258
  - `dataloader_pin_memory`: True
259
  - `dataloader_persistent_workers`: False
260
  - `skip_memory_metrics`: True
261
  - `use_legacy_prediction_loop`: False
262
+ - `push_to_hub`: False
263
  - `resume_from_checkpoint`: None
264
+ - `hub_model_id`: None
265
  - `hub_strategy`: every_save
266
  - `hub_private_repo`: None
267
  - `hub_always_push`: False
 
288
  - `neftune_noise_alpha`: None
289
  - `optim_target_modules`: None
290
  - `batch_eval_metrics`: False
291
+ - `eval_on_start`: False
292
  - `use_liger_kernel`: False
293
  - `liger_kernel_config`: None
294
  - `eval_use_gather_object`: False
295
  - `average_tokens_across_devices`: True
296
  - `prompts`: None
297
  - `batch_sampler`: batch_sampler
298
+ - `multi_dataset_batch_sampler`: round_robin
299
  - `router_mapping`: {}
300
  - `learning_rate_mapping`: {}
301
 
302
  </details>
303
 
304
  ### Training Logs
305
+ | Epoch | Step | Training Loss |
306
+ |:------:|:----:|:-------------:|
307
+ | 0.3199 | 500 | 0.4294 |
308
+ | 0.6398 | 1000 | 0.1268 |
309
+ | 0.9597 | 1500 | 0.1 |
310
+ | 1.2796 | 2000 | 0.0792 |
311
+ | 1.5995 | 2500 | 0.0706 |
312
+ | 1.9194 | 3000 | 0.0687 |
313
+ | 2.2393 | 3500 | 0.0584 |
314
+ | 2.5592 | 4000 | 0.057 |
315
+ | 2.8791 | 4500 | 0.0581 |
316
+
 
 
 
 
 
 
 
 
 
 
 
 
 
317
 
318
  ### Framework Versions
319
  - Python: 3.10.18
adapter_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alora_invocation_tokens": null,
3
+ "alpha_pattern": {},
4
+ "arrow_config": null,
5
+ "auto_mapping": null,
6
+ "base_model_name_or_path": "Alibaba-NLP/gte-modernbert-base",
7
+ "bias": "none",
8
+ "corda_config": null,
9
+ "ensure_weight_tying": false,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": true,
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 16,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.1,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "peft_version": "0.18.1",
27
+ "qalora_group_size": 16,
28
+ "r": 8,
29
+ "rank_pattern": {},
30
+ "revision": null,
31
+ "target_modules": [
32
+ "Wqkv",
33
+ "Wo"
34
+ ],
35
+ "target_parameters": null,
36
+ "task_type": "FEATURE_EXTRACTION",
37
+ "trainable_token_indices": null,
38
+ "use_dora": false,
39
+ "use_qalora": false,
40
+ "use_rslora": false
41
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f25533e4e17d05779d3342387206caf6e5a5341c1ae9d23bb66fff15aaf1a397
3
+ size 4611024
config_sentence_transformers.json CHANGED
@@ -1,10 +1,10 @@
1
  {
 
2
  "__version__": {
3
  "sentence_transformers": "5.2.0",
4
  "transformers": "4.57.3",
5
  "pytorch": "2.9.1+cu128"
6
  },
7
- "model_type": "SentenceTransformer",
8
  "prompts": {
9
  "query": "",
10
  "document": ""
 
1
  {
2
+ "model_type": "SentenceTransformer",
3
  "__version__": {
4
  "sentence_transformers": "5.2.0",
5
  "transformers": "4.57.3",
6
  "pytorch": "2.9.1+cu128"
7
  },
 
8
  "prompts": {
9
  "query": "",
10
  "document": ""
eval/Information-Retrieval_evaluation_val_results.csv CHANGED
@@ -798,3 +798,24 @@ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Precisi
798
  0.8070301291248206,4500,0.8346,0.90935,0.9345,0.8346,0.8346,0.3031166666666666,0.90935,0.1869,0.9345,0.8346,0.8737774999999952,0.8777162400793597,0.8985258842614039,0.8797375973269139
799
  0.8518651362984218,4750,0.83475,0.90905,0.93435,0.83475,0.83475,0.3030166666666666,0.90905,0.18687000000000004,0.93435,0.83475,0.873825833333329,0.8777601190476148,0.8984916815211705,0.8798133316506274
800
  0.896700143472023,5000,0.835025,0.909175,0.9345,0.835025,0.835025,0.30305833333333326,0.909175,0.1869,0.9345,0.835025,0.8739791666666628,0.8779108432539642,0.898643365395631,0.8799559806850633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798
  0.8070301291248206,4500,0.8346,0.90935,0.9345,0.8346,0.8346,0.3031166666666666,0.90935,0.1869,0.9345,0.8346,0.8737774999999952,0.8777162400793597,0.8985258842614039,0.8797375973269139
799
  0.8518651362984218,4750,0.83475,0.90905,0.93435,0.83475,0.83475,0.3030166666666666,0.90905,0.18687000000000004,0.93435,0.83475,0.873825833333329,0.8777601190476148,0.8984916815211705,0.8798133316506274
800
  0.896700143472023,5000,0.835025,0.909175,0.9345,0.835025,0.835025,0.30305833333333326,0.909175,0.1869,0.9345,0.835025,0.8739791666666628,0.8779108432539642,0.898643365395631,0.8799559806850633
801
+ 0,0,0.769975,0.889625,0.91985,0.769975,0.769975,0.2965416666666666,0.889625,0.18397000000000002,0.91985,0.769975,0.8319516666666593,0.8359622817460269,0.8638414256815761,0.838290225103594
802
+ 0.04483500717360115,250,0.82495,0.90125,0.9253,0.82495,0.82495,0.3004166666666666,0.90125,0.18506,0.9253,0.82495,0.8646454166666626,0.8684967559523761,0.8891323124260604,0.8706637993679694
803
+ 0.0896700143472023,500,0.828325,0.901425,0.926075,0.828325,0.828325,0.30047499999999994,0.901425,0.18521500000000002,0.926075,0.828325,0.8668595833333289,0.8706924900793598,0.8909952986254522,0.8728266931679165
804
+ 0.13450502152080343,750,0.829925,0.9033,0.928925,0.829925,0.829925,0.3011,0.9033,0.18578500000000003,0.928925,0.829925,0.8686724999999964,0.872389593253964,0.8927884209954878,0.8745338652203365
805
+ 0.1793400286944046,1000,0.830875,0.90345,0.9285,0.830875,0.830875,0.30115,0.90345,0.18570000000000003,0.9285,0.830875,0.8691316666666635,0.8730163690476158,0.8934430950474062,0.8751124447350896
806
+ 0.22417503586800575,1250,0.830825,0.9029,0.927925,0.830825,0.830825,0.30096666666666666,0.9029,0.18558500000000003,0.927925,0.830825,0.8687262499999963,0.8726118353174567,0.8929470656882862,0.8747667739386841
807
+ 0.26901004304160686,1500,0.83175,0.90405,0.9293,0.83175,0.83175,0.30135,0.90405,0.18586000000000003,0.9293,0.83175,0.869998749999997,0.8739076686507907,0.8942989511415662,0.8760275705845437
808
+ 0.31384505021520803,1750,0.8314,0.90425,0.9289,0.8314,0.8314,0.3014166666666666,0.90425,0.18578000000000003,0.9289,0.8314,0.8697149999999964,0.8736391269841235,0.8940321896511884,0.8757948801181361
809
+ 0.3586800573888092,2000,0.83095,0.903025,0.92875,0.83095,0.83095,0.3010083333333333,0.903025,0.18575000000000005,0.92875,0.83095,0.8692216666666626,0.8731796031745999,0.8937289259843335,0.8753032557166994
810
+ 0.4035150645624103,2250,0.8322,0.90465,0.930025,0.8322,0.8322,0.30155,0.90465,0.18600500000000003,0.930025,0.8322,0.8705049999999963,0.8744004761904726,0.8948382601566404,0.8765434016505158
811
+ 0.4483500717360115,2500,0.83145,0.904175,0.92965,0.83145,0.83145,0.3013916666666666,0.904175,0.18593,0.92965,0.83145,0.8698829166666615,0.873766815476186,0.8942468827241484,0.8759273736094337
812
+ 0.4931850789096126,2750,0.83195,0.904725,0.9293,0.83195,0.83195,0.301575,0.904725,0.18586000000000003,0.9293,0.83195,0.8700520833333291,0.8740178273809485,0.8944686865642945,0.8761756537936437
813
+ 0.5380200860832137,3000,0.8313,0.9031,0.92835,0.8313,0.8313,0.3010333333333333,0.9031,0.18567,0.92835,0.8313,0.8692845833333281,0.8732924007936453,0.8937748307709127,0.8754725077466841
814
+ 0.582855093256815,3250,0.8326,0.90435,0.9294,0.8326,0.8326,0.3014499999999999,0.90435,0.18588000000000002,0.9294,0.8326,0.8703729166666624,0.874360436507934,0.8947369904494606,0.8765203596358843
815
+ 0.6276901004304161,3500,0.832325,0.904975,0.930175,0.832325,0.832325,0.3016583333333333,0.904975,0.186035,0.930175,0.832325,0.8706195833333291,0.8745694444444403,0.895072923657719,0.8766897838401817
816
+ 0.6725251076040172,3750,0.832675,0.9039,0.9296,0.832675,0.832675,0.30129999999999996,0.9039,0.18592000000000003,0.9296,0.832675,0.8703779166666629,0.8743626190476156,0.8947968583867134,0.8765109505425651
817
+ 0.7173601147776184,4000,0.833175,0.90455,0.93025,0.833175,0.833175,0.3015166666666666,0.90455,0.18605000000000002,0.93025,0.833175,0.8709541666666628,0.8749690972222183,0.8954771008894465,0.8770683691251641
818
+ 0.7621951219512195,4250,0.83285,0.903975,0.92965,0.83285,0.83285,0.301325,0.903975,0.18593,0.92965,0.83285,0.8705329166666628,0.8745570436507895,0.8950345274435682,0.8766779510819511
819
+ 0.8070301291248206,4500,0.832675,0.90455,0.929975,0.832675,0.832675,0.3015166666666666,0.90455,0.18599500000000002,0.929975,0.832675,0.8706058333333294,0.8746744841269812,0.8952338142148334,0.8767897856201015
820
+ 0.8518651362984218,4750,0.8328,0.904525,0.9301,0.8328,0.8328,0.30150833333333327,0.904525,0.18602,0.9301,0.8328,0.870662916666663,0.8746742857142826,0.8951906540590878,0.8768001642702704
821
+ 0.896700143472023,5000,0.83295,0.9048,0.930625,0.83295,0.83295,0.3016,0.9048,0.186125,0.930625,0.83295,0.8708829166666628,0.8748452281746,0.8953809850299808,0.8769581868758156
final_metrics.json CHANGED
@@ -1,16 +1,16 @@
1
  {
2
- "val_cosine_accuracy@1": 0.833175,
3
- "val_cosine_accuracy@3": 0.90785,
4
- "val_cosine_accuracy@5": 0.933075,
5
- "val_cosine_precision@1": 0.833175,
6
- "val_cosine_precision@3": 0.3026166666666666,
7
- "val_cosine_precision@5": 0.186615,
8
- "val_cosine_recall@1": 0.833175,
9
- "val_cosine_recall@3": 0.90785,
10
- "val_cosine_recall@5": 0.933075,
11
- "val_cosine_ndcg@10": 0.8976448899066025,
12
- "val_cosine_mrr@1": 0.833175,
13
- "val_cosine_mrr@5": 0.8724479166666644,
14
- "val_cosine_mrr@10": 0.876612886904759,
15
- "val_cosine_map@100": 0.8786690345206932
16
  }
 
1
  {
2
+ "val_cosine_accuracy@1": 0.835025,
3
+ "val_cosine_accuracy@3": 0.909175,
4
+ "val_cosine_accuracy@5": 0.9345,
5
+ "val_cosine_precision@1": 0.835025,
6
+ "val_cosine_precision@3": 0.30305833333333326,
7
+ "val_cosine_precision@5": 0.1869,
8
+ "val_cosine_recall@1": 0.835025,
9
+ "val_cosine_recall@3": 0.909175,
10
+ "val_cosine_recall@5": 0.9345,
11
+ "val_cosine_ndcg@10": 0.898643365395631,
12
+ "val_cosine_mrr@1": 0.835025,
13
+ "val_cosine_mrr@5": 0.8739791666666628,
14
+ "val_cosine_mrr@10": 0.8779108432539642,
15
+ "val_cosine_map@100": 0.8799559806850633
16
  }
modules.json CHANGED
@@ -10,11 +10,5 @@
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
13
- },
14
- {
15
- "idx": 2,
16
- "name": "2",
17
- "path": "2_Normalize",
18
- "type": "sentence_transformers.models.Normalize"
19
  }
20
  ]
 
10
  "name": "1",
11
  "path": "1_Pooling",
12
  "type": "sentence_transformers.models.Pooling"
 
 
 
 
 
 
13
  }
14
  ]
special_tokens_map.json CHANGED
@@ -1,41 +1,27 @@
1
  {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
  "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
  "lstrip": false,
19
  "normalized": false,
20
  "rstrip": false,
21
  "single_word": false
22
  },
23
  "mask_token": {
24
- "content": "<mask>",
25
  "lstrip": true,
26
  "normalized": false,
27
  "rstrip": false,
28
  "single_word": false
29
  },
30
  "pad_token": {
31
- "content": "<pad>",
32
  "lstrip": false,
33
  "normalized": false,
34
  "rstrip": false,
35
  "single_word": false
36
  },
37
  "sep_token": {
38
- "content": "</s>",
39
  "lstrip": false,
40
  "normalized": false,
41
  "rstrip": false,
 
1
  {
 
 
 
 
 
 
 
2
  "cls_token": {
3
+ "content": "[CLS]",
 
 
 
 
 
 
 
4
  "lstrip": false,
5
  "normalized": false,
6
  "rstrip": false,
7
  "single_word": false
8
  },
9
  "mask_token": {
10
+ "content": "[MASK]",
11
  "lstrip": true,
12
  "normalized": false,
13
  "rstrip": false,
14
  "single_word": false
15
  },
16
  "pad_token": {
17
+ "content": "[PAD]",
18
  "lstrip": false,
19
  "normalized": false,
20
  "rstrip": false,
21
  "single_word": false
22
  },
23
  "sep_token": {
24
+ "content": "[SEP]",
25
  "lstrip": false,
26
  "normalized": false,
27
  "rstrip": false,
tokenizer.json CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:faaa392e91b132ea18a5c356477832565e05553acb30458841dd9710753a3dba
3
- size 710932
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:218484396a9d08293b108b0e5ea31e0a1b7c801dcbed35a821deb392d2fe9bb4
3
+ size 3583485
tokenizer_config.json CHANGED
@@ -1,73 +1,945 @@
1
  {
2
  "added_tokens_decoder": {
3
  "0": {
4
- "content": "<s>",
 
 
 
 
 
 
 
 
5
  "lstrip": false,
6
  "normalized": false,
7
  "rstrip": false,
8
  "single_word": false,
9
  "special": true
10
  },
11
- "1": {
12
- "content": "<pad>",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  "lstrip": false,
14
  "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
18
  },
19
- "2": {
20
- "content": "</s>",
21
  "lstrip": false,
22
  "normalized": false,
23
  "rstrip": false,
24
  "single_word": false,
25
  "special": true
26
  },
27
- "3": {
28
- "content": "<unk>",
29
  "lstrip": false,
30
- "normalized": true,
31
  "rstrip": false,
32
  "single_word": false,
33
  "special": true
34
  },
35
- "104": {
36
- "content": "[UNK]",
37
  "lstrip": false,
38
  "normalized": false,
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
42
  },
43
- "30526": {
44
- "content": "<mask>",
 
 
 
 
 
 
 
 
45
  "lstrip": true,
46
  "normalized": false,
47
  "rstrip": false,
48
  "single_word": false,
49
  "special": true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  }
51
  },
52
- "bos_token": "<s>",
53
- "clean_up_tokenization_spaces": false,
54
- "cls_token": "<s>",
55
- "do_lower_case": true,
56
- "eos_token": "</s>",
57
  "extra_special_tokens": {},
58
- "mask_token": "<mask>",
59
- "max_length": 128,
60
- "model_max_length": 384,
61
- "pad_to_multiple_of": null,
62
- "pad_token": "<pad>",
63
- "pad_token_type_id": 0,
64
- "padding_side": "right",
65
- "sep_token": "</s>",
66
- "stride": 0,
67
- "strip_accents": null,
68
- "tokenize_chinese_chars": true,
69
- "tokenizer_class": "MPNetTokenizer",
70
- "truncation_side": "right",
71
- "truncation_strategy": "longest_first",
72
  "unk_token": "[UNK]"
73
  }
 
1
  {
2
  "added_tokens_decoder": {
3
  "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
  "lstrip": false,
14
  "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
18
  },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
  "lstrip": false,
222
  "normalized": false,
223
  "rstrip": false,
224
  "single_word": false,
225
  "special": true
226
  },
227
+ "50280": {
228
+ "content": "[UNK]",
229
  "lstrip": false,
230
  "normalized": false,
231
  "rstrip": false,
232
  "single_word": false,
233
  "special": true
234
  },
235
+ "50281": {
236
+ "content": "[CLS]",
237
  "lstrip": false,
238
+ "normalized": false,
239
  "rstrip": false,
240
  "single_word": false,
241
  "special": true
242
  },
243
+ "50282": {
244
+ "content": "[SEP]",
245
  "lstrip": false,
246
  "normalized": false,
247
  "rstrip": false,
248
  "single_word": false,
249
  "special": true
250
  },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
  "lstrip": true,
262
  "normalized": false,
263
  "rstrip": false,
264
  "single_word": false,
265
  "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
  }
931
  },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
 
 
 
934
  "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 1000000000000000019884624838656,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizerFast",
 
 
 
 
 
944
  "unk_token": "[UNK]"
945
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fcb37e6b968d556eedfc831d961ab7fcaa49504d2631242a44ef780da21af2c5
3
  size 6161
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:509dc84fab2c36ed6d2ec320a321343e5561e26e230aa0243f3e61d187261c66
3
  size 6161